LICM.cpp revision 3280f7bd557250a448eb56edbddfc90c94a406e6
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads out of loops.  If we can determine that a
19//     load inside of a loop never aliases anything stored to, we can hoist it
20//     or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/AliasSetTracker.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Instructions.h"
42#include "llvm/DerivedTypes.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Support/CFG.h"
45#include "Support/CommandLine.h"
46#include "Support/Debug.h"
47#include "Support/Statistic.h"
48#include "llvm/Assembly/Writer.h"
49#include <algorithm>
50using namespace llvm;
51
52namespace {
53  cl::opt<bool>
54  DisablePromotion("disable-licm-promotion", cl::Hidden,
55                   cl::desc("Disable memory promotion in LICM pass"));
56
57  Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
58  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
59  Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
60  Statistic<> NumMovedCalls("licm", "Number of call insts hoisted or sunk");
61  Statistic<> NumPromoted("licm",
62                          "Number of memory locations promoted to registers");
63
64  struct LICM : public FunctionPass {
65    virtual bool runOnFunction(Function &F);
66
67    /// This transformation requires natural loop information & requires that
68    /// loop preheaders be inserted into the CFG...
69    ///
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71      AU.setPreservesCFG();
72      AU.addRequiredID(LoopSimplifyID);
73      AU.addRequired<LoopInfo>();
74      AU.addRequired<DominatorTree>();
75      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
76      AU.addRequired<AliasAnalysis>();
77    }
78
79  private:
80    // Various analyses that we use...
81    AliasAnalysis *AA;       // Current AliasAnalysis information
82    LoopInfo      *LI;       // Current LoopInfo
83    DominatorTree *DT;       // Dominator Tree for the current Loop...
84    DominanceFrontier *DF;   // Current Dominance Frontier
85
86    // State that is updated as we process loops
87    bool Changed;            // Set to true when we change anything.
88    BasicBlock *Preheader;   // The preheader block of the current loop...
89    Loop *CurLoop;           // The current loop we are working on...
90    AliasSetTracker *CurAST; // AliasSet information for the current loop...
91
92    /// visitLoop - Hoist expressions out of the specified loop...
93    ///
94    void visitLoop(Loop *L, AliasSetTracker &AST);
95
96    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
97    /// dominated by the specified block, and that are in the current loop) in
98    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
99    /// visit uses before definitions, allowing us to sink a loop body in one
100    /// pass without iteration.
101    ///
102    void SinkRegion(DominatorTree::Node *N);
103
104    /// HoistRegion - Walk the specified region of the CFG (defined by all
105    /// blocks dominated by the specified block, and that are in the current
106    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
107    /// visit definitions before uses, allowing us to hoist a loop body in one
108    /// pass without iteration.
109    ///
110    void HoistRegion(DominatorTree::Node *N);
111
112    /// inSubLoop - Little predicate that returns true if the specified basic
113    /// block is in a subloop of the current one, not the current one itself.
114    ///
115    bool inSubLoop(BasicBlock *BB) {
116      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
117      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
118        if ((*I)->contains(BB))
119          return true;  // A subloop actually contains this block!
120      return false;
121    }
122
123    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
124    /// specified exit block of the loop is dominated by the specified block
125    /// that is in the body of the loop.  We use these constraints to
126    /// dramatically limit the amount of the dominator tree that needs to be
127    /// searched.
128    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
129                                           BasicBlock *BlockInLoop) const {
130      // If the block in the loop is the loop header, it must be dominated!
131      BasicBlock *LoopHeader = CurLoop->getHeader();
132      if (BlockInLoop == LoopHeader)
133        return true;
134
135      DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
136      DominatorTree::Node *IDom            = DT->getNode(ExitBlock);
137
138      // Because the exit block is not in the loop, we know we have to get _at
139      // least_ it's immediate dominator.
140      do {
141        // Get next Immediate Dominator.
142        IDom = IDom->getIDom();
143
144        // If we have got to the header of the loop, then the instructions block
145        // did not dominate the exit node, so we can't hoist it.
146        if (IDom->getBlock() == LoopHeader)
147          return false;
148
149      } while (IDom != BlockInLoopNode);
150
151      return true;
152    }
153
154    /// sink - When an instruction is found to only be used outside of the loop,
155    /// this function moves it to the exit blocks and patches up SSA form as
156    /// needed.
157    ///
158    void sink(Instruction &I);
159
160    /// hoist - When an instruction is found to only use loop invariant operands
161    /// that is safe to hoist, this instruction is called to do the dirty work.
162    ///
163    void hoist(Instruction &I);
164
165    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
166    /// is not a trapping instruction or if it is a trapping instruction and is
167    /// guaranteed to execute.
168    ///
169    bool isSafeToExecuteUnconditionally(Instruction &I);
170
171    /// pointerInvalidatedByLoop - Return true if the body of this loop may
172    /// store into the memory location pointed to by V.
173    ///
174    bool pointerInvalidatedByLoop(Value *V) {
175      // Check to see if any of the basic blocks in CurLoop invalidate *V.
176      return CurAST->getAliasSetForPointer(V, 0).isMod();
177    }
178
179    bool canSinkOrHoistInst(Instruction &I);
180    bool isLoopInvariantInst(Instruction &I);
181    bool isNotUsedInLoop(Instruction &I);
182
183    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
184    /// to scalars as we can.
185    ///
186    void PromoteValuesInLoop();
187
188    /// findPromotableValuesInLoop - Check the current loop for stores to
189    /// definite pointers, which are not loaded and stored through may aliases.
190    /// If these are found, create an alloca for the value, add it to the
191    /// PromotedValues list, and keep track of the mapping from value to
192    /// alloca...
193    ///
194    void findPromotableValuesInLoop(
195                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
196                                    std::map<Value*, AllocaInst*> &Val2AlMap);
197  };
198
199  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
200}
201
202FunctionPass *llvm::createLICMPass() { return new LICM(); }
203
204/// runOnFunction - For LICM, this simply traverses the loop structure of the
205/// function, hoisting expressions out of loops if possible.
206///
207bool LICM::runOnFunction(Function &) {
208  Changed = false;
209
210  // Get our Loop and Alias Analysis information...
211  LI = &getAnalysis<LoopInfo>();
212  AA = &getAnalysis<AliasAnalysis>();
213  DF = &getAnalysis<DominanceFrontier>();
214  DT = &getAnalysis<DominatorTree>();
215
216  // Hoist expressions out of all of the top-level loops.
217  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
218    AliasSetTracker AST(*AA);
219    visitLoop(*I, AST);
220  }
221  return Changed;
222}
223
224
225/// visitLoop - Hoist expressions out of the specified loop...
226///
227void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
228  // Recurse through all subloops before we process this loop...
229  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
230    AliasSetTracker SubAST(*AA);
231    visitLoop(*I, SubAST);
232
233    // Incorporate information about the subloops into this loop...
234    AST.add(SubAST);
235  }
236  CurLoop = L;
237  CurAST = &AST;
238
239  // Get the preheader block to move instructions into...
240  Preheader = L->getLoopPreheader();
241  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
242
243  // Loop over the body of this loop, looking for calls, invokes, and stores.
244  // Because subloops have already been incorporated into AST, we skip blocks in
245  // subloops.
246  //
247  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
248         E = L->getBlocks().end(); I != E; ++I)
249    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
250      AST.add(**I);                     // Incorporate the specified basic block
251
252  // We want to visit all of the instructions in this loop... that are not parts
253  // of our subloops (they have already had their invariants hoisted out of
254  // their loop, into this loop, so there is no need to process the BODIES of
255  // the subloops).
256  //
257  // Traverse the body of the loop in depth first order on the dominator tree so
258  // that we are guaranteed to see definitions before we see uses.  This allows
259  // us to sink instructions in one pass, without iteration.  AFter sinking
260  // instructions, we perform another pass to hoist them out of the loop.
261  //
262  SinkRegion(DT->getNode(L->getHeader()));
263  HoistRegion(DT->getNode(L->getHeader()));
264
265  // Now that all loop invariants have been removed from the loop, promote any
266  // memory references to scalars that we can...
267  if (!DisablePromotion)
268    PromoteValuesInLoop();
269
270  // Clear out loops state information for the next iteration
271  CurLoop = 0;
272  Preheader = 0;
273}
274
275/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
276/// dominated by the specified block, and that are in the current loop) in
277/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
278/// uses before definitions, allowing us to sink a loop body in one pass without
279/// iteration.
280///
281void LICM::SinkRegion(DominatorTree::Node *N) {
282  assert(N != 0 && "Null dominator tree node?");
283  BasicBlock *BB = N->getBlock();
284
285  // If this subregion is not in the top level loop at all, exit.
286  if (!CurLoop->contains(BB)) return;
287
288  // We are processing blocks in reverse dfo, so process children first...
289  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
290  for (unsigned i = 0, e = Children.size(); i != e; ++i)
291    SinkRegion(Children[i]);
292
293  // Only need to process the contents of this block if it is not part of a
294  // subloop (which would already have been processed).
295  if (inSubLoop(BB)) return;
296
297  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
298    Instruction &I = *--II;
299
300    // Check to see if we can sink this instruction to the exit blocks
301    // of the loop.  We can do this if the all users of the instruction are
302    // outside of the loop.  In this case, it doesn't even matter if the
303    // operands of the instruction are loop invariant.
304    //
305    if (canSinkOrHoistInst(I) && isNotUsedInLoop(I)) {
306      ++II;
307      sink(I);
308    }
309  }
310}
311
312
313/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
314/// dominated by the specified block, and that are in the current loop) in depth
315/// first order w.r.t the DominatorTree.  This allows us to visit definitions
316/// before uses, allowing us to hoist a loop body in one pass without iteration.
317///
318void LICM::HoistRegion(DominatorTree::Node *N) {
319  assert(N != 0 && "Null dominator tree node?");
320  BasicBlock *BB = N->getBlock();
321
322  // If this subregion is not in the top level loop at all, exit.
323  if (!CurLoop->contains(BB)) return;
324
325  // Only need to process the contents of this block if it is not part of a
326  // subloop (which would already have been processed).
327  if (!inSubLoop(BB))
328    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
329      Instruction &I = *II++;
330
331      // Try hoisting the instruction out to the preheader.  We can only do this
332      // if all of the operands of the instruction are loop invariant and if it
333      // is safe to hoist the instruction.
334      //
335      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
336          isSafeToExecuteUnconditionally(I))
337          hoist(I);
338      }
339
340  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
341  for (unsigned i = 0, e = Children.size(); i != e; ++i)
342    HoistRegion(Children[i]);
343}
344
345/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
346/// instruction.
347///
348bool LICM::canSinkOrHoistInst(Instruction &I) {
349  // Loads have extra constraints we have to verify before we can hoist them.
350  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
351    if (LI->isVolatile())
352      return false;        // Don't hoist volatile loads!
353
354    // Don't hoist loads which have may-aliased stores in loop.
355    return !pointerInvalidatedByLoop(LI->getOperand(0));
356  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
357    // Handle obvious cases efficiently.
358    if (Function *Callee = CI->getCalledFunction()) {
359      if (AA->doesNotAccessMemory(Callee))
360        return true;
361      else if (AA->onlyReadsMemory(Callee)) {
362        // If this call only reads from memory and there are no writes to memory
363        // in the loop, we can hoist or sink the call as appropriate.
364        bool FoundMod = false;
365        for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
366             I != E; ++I) {
367          AliasSet &AS = *I;
368          if (!AS.isForwardingAliasSet() && AS.isMod()) {
369            FoundMod = true;
370            break;
371          }
372        }
373        if (!FoundMod) return true;
374      }
375    }
376
377    // FIXME: This should use mod/ref information to see if we can hoist or sink
378    // the call.
379
380    return false;
381  }
382
383  return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
384         isa<SelectInst>(I) ||
385         isa<GetElementPtrInst>(I) || isa<VANextInst>(I) || isa<VAArgInst>(I);
386}
387
388/// isNotUsedInLoop - Return true if the only users of this instruction are
389/// outside of the loop.  If this is true, we can sink the instruction to the
390/// exit blocks of the loop.
391///
392bool LICM::isNotUsedInLoop(Instruction &I) {
393  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
394    Instruction *User = cast<Instruction>(*UI);
395    if (PHINode *PN = dyn_cast<PHINode>(User)) {
396      // PHI node uses occur in predecessor blocks!
397      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
398        if (PN->getIncomingValue(i) == &I)
399          if (CurLoop->contains(PN->getIncomingBlock(i)))
400            return false;
401    } else if (CurLoop->contains(User->getParent())) {
402      return false;
403    }
404  }
405  return true;
406}
407
408
409/// isLoopInvariantInst - Return true if all operands of this instruction are
410/// loop invariant.  We also filter out non-hoistable instructions here just for
411/// efficiency.
412///
413bool LICM::isLoopInvariantInst(Instruction &I) {
414  // The instruction is loop invariant if all of its operands are loop-invariant
415  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
416    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
417      return false;
418
419  // If we got this far, the instruction is loop invariant!
420  return true;
421}
422
423/// sink - When an instruction is found to only be used outside of the loop,
424/// this function moves it to the exit blocks and patches up SSA form as needed.
425/// This method is guaranteed to remove the original instruction from its
426/// position, and may either delete it or move it to outside of the loop.
427///
428void LICM::sink(Instruction &I) {
429  DEBUG(std::cerr << "LICM sinking instruction: " << I);
430
431  std::vector<BasicBlock*> ExitBlocks;
432  CurLoop->getExitBlocks(ExitBlocks);
433
434  if (isa<LoadInst>(I)) ++NumMovedLoads;
435  else if (isa<CallInst>(I)) ++NumMovedCalls;
436  ++NumSunk;
437  Changed = true;
438
439  // The case where there is only a single exit node of this loop is common
440  // enough that we handle it as a special (more efficient) case.  It is more
441  // efficient to handle because there are no PHI nodes that need to be placed.
442  if (ExitBlocks.size() == 1) {
443    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
444      // Instruction is not used, just delete it.
445      CurAST->remove(&I);
446      I.getParent()->getInstList().erase(&I);
447    } else {
448      // Move the instruction to the start of the exit block, after any PHI
449      // nodes in it.
450      I.getParent()->getInstList().remove(&I);
451
452      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
453      while (isa<PHINode>(InsertPt)) ++InsertPt;
454      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
455    }
456  } else if (ExitBlocks.size() == 0) {
457    // The instruction is actually dead if there ARE NO exit blocks.
458    CurAST->remove(&I);
459    I.getParent()->getInstList().erase(&I);
460  } else {
461    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
462    // do all of the hard work of inserting PHI nodes as necessary.  We convert
463    // the value into a stack object to get it to do this.
464
465    // Firstly, we create a stack object to hold the value...
466    AllocaInst *AI = new AllocaInst(I.getType(), 0, I.getName(),
467                                   I.getParent()->getParent()->front().begin());
468
469    // Secondly, insert load instructions for each use of the instruction
470    // outside of the loop.
471    while (!I.use_empty()) {
472      Instruction *U = cast<Instruction>(I.use_back());
473
474      // If the user is a PHI Node, we actually have to insert load instructions
475      // in all predecessor blocks, not in the PHI block itself!
476      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
477        // Only insert into each predecessor once, so that we don't have
478        // different incoming values from the same block!
479        std::map<BasicBlock*, Value*> InsertedBlocks;
480        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
481          if (UPN->getIncomingValue(i) == &I) {
482            BasicBlock *Pred = UPN->getIncomingBlock(i);
483            Value *&PredVal = InsertedBlocks[Pred];
484            if (!PredVal) {
485              // Insert a new load instruction right before the terminator in
486              // the predecessor block.
487              PredVal = new LoadInst(AI, "", Pred->getTerminator());
488            }
489
490            UPN->setIncomingValue(i, PredVal);
491          }
492
493      } else {
494        LoadInst *L = new LoadInst(AI, "", U);
495        U->replaceUsesOfWith(&I, L);
496      }
497    }
498
499    // Thirdly, insert a copy of the instruction in each exit block of the loop
500    // that is dominated by the instruction, storing the result into the memory
501    // location.  Be careful not to insert the instruction into any particular
502    // basic block more than once.
503    std::set<BasicBlock*> InsertedBlocks;
504    BasicBlock *InstOrigBB = I.getParent();
505
506    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
507      BasicBlock *ExitBlock = ExitBlocks[i];
508
509      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
510        // If we haven't already processed this exit block, do so now.
511        if (InsertedBlocks.insert(ExitBlock).second) {
512          // Insert the code after the last PHI node...
513          BasicBlock::iterator InsertPt = ExitBlock->begin();
514          while (isa<PHINode>(InsertPt)) ++InsertPt;
515
516          // If this is the first exit block processed, just move the original
517          // instruction, otherwise clone the original instruction and insert
518          // the copy.
519          Instruction *New;
520          if (InsertedBlocks.size() == 1) {
521            I.getParent()->getInstList().remove(&I);
522            ExitBlock->getInstList().insert(InsertPt, &I);
523            New = &I;
524          } else {
525            New = I.clone();
526            New->setName(I.getName()+".le");
527            ExitBlock->getInstList().insert(InsertPt, New);
528          }
529
530          // Now that we have inserted the instruction, store it into the alloca
531          new StoreInst(New, AI, InsertPt);
532        }
533      }
534    }
535
536    // If the instruction doesn't dominate any exit blocks, it must be dead.
537    if (InsertedBlocks.empty()) {
538      CurAST->remove(&I);
539      I.getParent()->getInstList().erase(&I);
540    }
541
542    // Finally, promote the fine value to SSA form.
543    std::vector<AllocaInst*> Allocas;
544    Allocas.push_back(AI);
545    PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData());
546  }
547}
548
549/// hoist - When an instruction is found to only use loop invariant operands
550/// that is safe to hoist, this instruction is called to do the dirty work.
551///
552void LICM::hoist(Instruction &I) {
553  DEBUG(std::cerr << "LICM hoisting to";
554        WriteAsOperand(std::cerr, Preheader, false);
555        std::cerr << ": " << I);
556
557  // Remove the instruction from its current basic block... but don't delete the
558  // instruction.
559  I.getParent()->getInstList().remove(&I);
560
561  // Insert the new node in Preheader, before the terminator.
562  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
563
564  if (isa<LoadInst>(I)) ++NumMovedLoads;
565  else if (isa<CallInst>(I)) ++NumMovedCalls;
566  ++NumHoisted;
567  Changed = true;
568}
569
570/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
571/// not a trapping instruction or if it is a trapping instruction and is
572/// guaranteed to execute.
573///
574bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
575  // If it is not a trapping instruction, it is always safe to hoist.
576  if (!Inst.isTrapping()) return true;
577
578  // Otherwise we have to check to make sure that the instruction dominates all
579  // of the exit blocks.  If it doesn't, then there is a path out of the loop
580  // which does not execute this instruction, so we can't hoist it.
581
582  // If the instruction is in the header block for the loop (which is very
583  // common), it is always guaranteed to dominate the exit blocks.  Since this
584  // is a common case, and can save some work, check it now.
585  if (Inst.getParent() == CurLoop->getHeader())
586    return true;
587
588  // Get the exit blocks for the current loop.
589  std::vector<BasicBlock*> ExitBlocks;
590  CurLoop->getExitBlocks(ExitBlocks);
591
592  // For each exit block, get the DT node and walk up the DT until the
593  // instruction's basic block is found or we exit the loop.
594  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
595    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
596      return false;
597
598  return true;
599}
600
601
602/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
603/// stores out of the loop and moving loads to before the loop.  We do this by
604/// looping over the stores in the loop, looking for stores to Must pointers
605/// which are loop invariant.  We promote these memory locations to use allocas
606/// instead.  These allocas can easily be raised to register values by the
607/// PromoteMem2Reg functionality.
608///
609void LICM::PromoteValuesInLoop() {
610  // PromotedValues - List of values that are promoted out of the loop.  Each
611  // value has an alloca instruction for it, and a canonical version of the
612  // pointer.
613  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
614  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
615
616  findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
617  if (ValueToAllocaMap.empty()) return;   // If there are values to promote...
618
619  Changed = true;
620  NumPromoted += PromotedValues.size();
621
622  // Emit a copy from the value into the alloca'd value in the loop preheader
623  TerminatorInst *LoopPredInst = Preheader->getTerminator();
624  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
625    // Load from the memory we are promoting...
626    LoadInst *LI = new LoadInst(PromotedValues[i].second,
627                                PromotedValues[i].second->getName()+".promoted",
628                                LoopPredInst);
629    // Store into the temporary alloca...
630    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
631  }
632
633  // Scan the basic blocks in the loop, replacing uses of our pointers with
634  // uses of the allocas in question.
635  //
636  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
637  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
638         E = LoopBBs.end(); I != E; ++I) {
639    // Rewrite all loads and stores in the block of the pointer...
640    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
641         II != E; ++II) {
642      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
643        std::map<Value*, AllocaInst*>::iterator
644          I = ValueToAllocaMap.find(L->getOperand(0));
645        if (I != ValueToAllocaMap.end())
646          L->setOperand(0, I->second);    // Rewrite load instruction...
647      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
648        std::map<Value*, AllocaInst*>::iterator
649          I = ValueToAllocaMap.find(S->getOperand(1));
650        if (I != ValueToAllocaMap.end())
651          S->setOperand(1, I->second);    // Rewrite store instruction...
652      }
653    }
654  }
655
656  // Now that the body of the loop uses the allocas instead of the original
657  // memory locations, insert code to copy the alloca value back into the
658  // original memory location on all exits from the loop.  Note that we only
659  // want to insert one copy of the code in each exit block, though the loop may
660  // exit to the same block more than once.
661  //
662  std::set<BasicBlock*> ProcessedBlocks;
663
664  std::vector<BasicBlock*> ExitBlocks;
665  CurLoop->getExitBlocks(ExitBlocks);
666  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
667    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
668      // Copy all of the allocas into their memory locations...
669      BasicBlock::iterator BI = ExitBlocks[i]->begin();
670      while (isa<PHINode>(*BI))
671        ++BI;             // Skip over all of the phi nodes in the block...
672      Instruction *InsertPos = BI;
673      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
674        // Load from the alloca...
675        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
676        // Store into the memory we promoted...
677        new StoreInst(LI, PromotedValues[i].second, InsertPos);
678      }
679    }
680
681  // Now that we have done the deed, use the mem2reg functionality to promote
682  // all of the new allocas we just created into real SSA registers...
683  //
684  std::vector<AllocaInst*> PromotedAllocas;
685  PromotedAllocas.reserve(PromotedValues.size());
686  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
687    PromotedAllocas.push_back(PromotedValues[i].first);
688  PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData());
689}
690
691/// findPromotableValuesInLoop - Check the current loop for stores to definite
692/// pointers, which are not loaded and stored through may aliases.  If these are
693/// found, create an alloca for the value, add it to the PromotedValues list,
694/// and keep track of the mapping from value to alloca...
695///
696void LICM::findPromotableValuesInLoop(
697                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
698                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
699  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
700
701  // Loop over all of the alias sets in the tracker object...
702  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
703       I != E; ++I) {
704    AliasSet &AS = *I;
705    // We can promote this alias set if it has a store, if it is a "Must" alias
706    // set, if the pointer is loop invariant, if if we are not eliminating any
707    // volatile loads or stores.
708    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
709        !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
710      assert(AS.begin() != AS.end() &&
711             "Must alias set should have at least one pointer element in it!");
712      Value *V = AS.begin()->first;
713
714      // Check that all of the pointers in the alias set have the same type.  We
715      // cannot (yet) promote a memory location that is loaded and stored in
716      // different sizes.
717      bool PointerOk = true;
718      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
719        if (V->getType() != I->first->getType()) {
720          PointerOk = false;
721          break;
722        }
723
724      if (PointerOk) {
725        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
726        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
727        PromotedValues.push_back(std::make_pair(AI, V));
728
729        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
730          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
731
732        DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
733      }
734    }
735  }
736}
737