LICM.cpp revision 3e8b6631e67e01e4960a7ba4668a50c596607473
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/LoopPass.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/AliasSetTracker.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ScalarEvolution.h"
47#include "llvm/Transforms/Utils/PromoteMemToReg.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66// This feature is currently disabled by default because CodeGen is not yet
67// capable of rematerializing these constants in PIC mode, so it can lead to
68// degraded performance. Compile test/CodeGen/X86/remat-constant.ll with
69// -relocation-model=pic to see an example of this.
70static cl::opt<bool>
71EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden,
72                         cl::desc("Enable hoisting/sinking of constant "
73                                  "global variables"));
74
75namespace {
76  struct LICM : public LoopPass {
77    static char ID; // Pass identification, replacement for typeid
78    LICM() : LoopPass(&ID) {}
79
80    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
82    /// This transformation requires natural loop information & requires that
83    /// loop preheaders be inserted into the CFG...
84    ///
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesCFG();
87      AU.addRequiredID(LoopSimplifyID);
88      AU.addRequired<LoopInfo>();
89      AU.addRequired<DominatorTree>();
90      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
91      AU.addRequired<AliasAnalysis>();
92      AU.addPreserved<ScalarEvolution>();
93      AU.addPreserved<DominanceFrontier>();
94    }
95
96    bool doFinalization() {
97      // Free the values stored in the map
98      for (std::map<Loop *, AliasSetTracker *>::iterator
99             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
100        delete I->second;
101
102      LoopToAliasMap.clear();
103      return false;
104    }
105
106  private:
107    // Various analyses that we use...
108    AliasAnalysis *AA;       // Current AliasAnalysis information
109    LoopInfo      *LI;       // Current LoopInfo
110    DominatorTree *DT;       // Dominator Tree for the current Loop...
111    DominanceFrontier *DF;   // Current Dominance Frontier
112
113    // State that is updated as we process loops
114    bool Changed;            // Set to true when we change anything.
115    BasicBlock *Preheader;   // The preheader block of the current loop...
116    Loop *CurLoop;           // The current loop we are working on...
117    AliasSetTracker *CurAST; // AliasSet information for the current loop...
118    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
119
120    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
121    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
122
123    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
124    /// set.
125    void deleteAnalysisValue(Value *V, Loop *L);
126
127    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
128    /// dominated by the specified block, and that are in the current loop) in
129    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
130    /// visit uses before definitions, allowing us to sink a loop body in one
131    /// pass without iteration.
132    ///
133    void SinkRegion(DomTreeNode *N);
134
135    /// HoistRegion - Walk the specified region of the CFG (defined by all
136    /// blocks dominated by the specified block, and that are in the current
137    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
138    /// visit definitions before uses, allowing us to hoist a loop body in one
139    /// pass without iteration.
140    ///
141    void HoistRegion(DomTreeNode *N);
142
143    /// inSubLoop - Little predicate that returns true if the specified basic
144    /// block is in a subloop of the current one, not the current one itself.
145    ///
146    bool inSubLoop(BasicBlock *BB) {
147      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
148      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
149        if ((*I)->contains(BB))
150          return true;  // A subloop actually contains this block!
151      return false;
152    }
153
154    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
155    /// specified exit block of the loop is dominated by the specified block
156    /// that is in the body of the loop.  We use these constraints to
157    /// dramatically limit the amount of the dominator tree that needs to be
158    /// searched.
159    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
160                                           BasicBlock *BlockInLoop) const {
161      // If the block in the loop is the loop header, it must be dominated!
162      BasicBlock *LoopHeader = CurLoop->getHeader();
163      if (BlockInLoop == LoopHeader)
164        return true;
165
166      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
167      DomTreeNode *IDom            = DT->getNode(ExitBlock);
168
169      // Because the exit block is not in the loop, we know we have to get _at
170      // least_ its immediate dominator.
171      do {
172        // Get next Immediate Dominator.
173        IDom = IDom->getIDom();
174
175        // If we have got to the header of the loop, then the instructions block
176        // did not dominate the exit node, so we can't hoist it.
177        if (IDom->getBlock() == LoopHeader)
178          return false;
179
180      } while (IDom != BlockInLoopNode);
181
182      return true;
183    }
184
185    /// sink - When an instruction is found to only be used outside of the loop,
186    /// this function moves it to the exit blocks and patches up SSA form as
187    /// needed.
188    ///
189    void sink(Instruction &I);
190
191    /// hoist - When an instruction is found to only use loop invariant operands
192    /// that is safe to hoist, this instruction is called to do the dirty work.
193    ///
194    void hoist(Instruction &I);
195
196    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
197    /// is not a trapping instruction or if it is a trapping instruction and is
198    /// guaranteed to execute.
199    ///
200    bool isSafeToExecuteUnconditionally(Instruction &I);
201
202    /// pointerInvalidatedByLoop - Return true if the body of this loop may
203    /// store into the memory location pointed to by V.
204    ///
205    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
206      // Check to see if any of the basic blocks in CurLoop invalidate *V.
207      return CurAST->getAliasSetForPointer(V, Size).isMod();
208    }
209
210    bool canSinkOrHoistInst(Instruction &I);
211    bool isLoopInvariantInst(Instruction &I);
212    bool isNotUsedInLoop(Instruction &I);
213
214    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
215    /// to scalars as we can.
216    ///
217    void PromoteValuesInLoop();
218
219    /// FindPromotableValuesInLoop - Check the current loop for stores to
220    /// definite pointers, which are not loaded and stored through may aliases.
221    /// If these are found, create an alloca for the value, add it to the
222    /// PromotedValues list, and keep track of the mapping from value to
223    /// alloca...
224    ///
225    void FindPromotableValuesInLoop(
226                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
227                                    std::map<Value*, AllocaInst*> &Val2AlMap);
228  };
229}
230
231char LICM::ID = 0;
232static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
233
234Pass *llvm::createLICMPass() { return new LICM(); }
235
236/// Hoist expressions out of the specified loop. Note, alias info for inner
237/// loop is not preserved so it is not a good idea to run LICM multiple
238/// times on one loop.
239///
240bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
241  Changed = false;
242
243  // Get our Loop and Alias Analysis information...
244  LI = &getAnalysis<LoopInfo>();
245  AA = &getAnalysis<AliasAnalysis>();
246  DF = &getAnalysis<DominanceFrontier>();
247  DT = &getAnalysis<DominatorTree>();
248
249  CurAST = new AliasSetTracker(*AA);
250  // Collect Alias info from subloops
251  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
252       LoopItr != LoopItrE; ++LoopItr) {
253    Loop *InnerL = *LoopItr;
254    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
255    assert (InnerAST && "Where is my AST?");
256
257    // What if InnerLoop was modified by other passes ?
258    CurAST->add(*InnerAST);
259  }
260
261  CurLoop = L;
262
263  // Get the preheader block to move instructions into...
264  Preheader = L->getLoopPreheader();
265  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
266
267  // Loop over the body of this loop, looking for calls, invokes, and stores.
268  // Because subloops have already been incorporated into AST, we skip blocks in
269  // subloops.
270  //
271  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
272       I != E; ++I) {
273    BasicBlock *BB = *I;
274    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
275      CurAST->add(*BB);                 // Incorporate the specified basic block
276  }
277
278  // We want to visit all of the instructions in this loop... that are not parts
279  // of our subloops (they have already had their invariants hoisted out of
280  // their loop, into this loop, so there is no need to process the BODIES of
281  // the subloops).
282  //
283  // Traverse the body of the loop in depth first order on the dominator tree so
284  // that we are guaranteed to see definitions before we see uses.  This allows
285  // us to sink instructions in one pass, without iteration.  After sinking
286  // instructions, we perform another pass to hoist them out of the loop.
287  //
288  SinkRegion(DT->getNode(L->getHeader()));
289  HoistRegion(DT->getNode(L->getHeader()));
290
291  // Now that all loop invariants have been removed from the loop, promote any
292  // memory references to scalars that we can...
293  if (!DisablePromotion)
294    PromoteValuesInLoop();
295
296  // Clear out loops state information for the next iteration
297  CurLoop = 0;
298  Preheader = 0;
299
300  LoopToAliasMap[L] = CurAST;
301  return Changed;
302}
303
304/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
305/// dominated by the specified block, and that are in the current loop) in
306/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
307/// uses before definitions, allowing us to sink a loop body in one pass without
308/// iteration.
309///
310void LICM::SinkRegion(DomTreeNode *N) {
311  assert(N != 0 && "Null dominator tree node?");
312  BasicBlock *BB = N->getBlock();
313
314  // If this subregion is not in the top level loop at all, exit.
315  if (!CurLoop->contains(BB)) return;
316
317  // We are processing blocks in reverse dfo, so process children first...
318  const std::vector<DomTreeNode*> &Children = N->getChildren();
319  for (unsigned i = 0, e = Children.size(); i != e; ++i)
320    SinkRegion(Children[i]);
321
322  // Only need to process the contents of this block if it is not part of a
323  // subloop (which would already have been processed).
324  if (inSubLoop(BB)) return;
325
326  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
327    Instruction &I = *--II;
328
329    // Check to see if we can sink this instruction to the exit blocks
330    // of the loop.  We can do this if the all users of the instruction are
331    // outside of the loop.  In this case, it doesn't even matter if the
332    // operands of the instruction are loop invariant.
333    //
334    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
335      ++II;
336      sink(I);
337    }
338  }
339}
340
341
342/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
343/// dominated by the specified block, and that are in the current loop) in depth
344/// first order w.r.t the DominatorTree.  This allows us to visit definitions
345/// before uses, allowing us to hoist a loop body in one pass without iteration.
346///
347void LICM::HoistRegion(DomTreeNode *N) {
348  assert(N != 0 && "Null dominator tree node?");
349  BasicBlock *BB = N->getBlock();
350
351  // If this subregion is not in the top level loop at all, exit.
352  if (!CurLoop->contains(BB)) return;
353
354  // Only need to process the contents of this block if it is not part of a
355  // subloop (which would already have been processed).
356  if (!inSubLoop(BB))
357    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
358      Instruction &I = *II++;
359
360      // Try hoisting the instruction out to the preheader.  We can only do this
361      // if all of the operands of the instruction are loop invariant and if it
362      // is safe to hoist the instruction.
363      //
364      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
365          isSafeToExecuteUnconditionally(I))
366        hoist(I);
367      }
368
369  const std::vector<DomTreeNode*> &Children = N->getChildren();
370  for (unsigned i = 0, e = Children.size(); i != e; ++i)
371    HoistRegion(Children[i]);
372}
373
374/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
375/// instruction.
376///
377bool LICM::canSinkOrHoistInst(Instruction &I) {
378  // Loads have extra constraints we have to verify before we can hoist them.
379  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
380    if (LI->isVolatile())
381      return false;        // Don't hoist volatile loads!
382
383    // Loads from constant memory are always safe to move, even if they end up
384    // in the same alias set as something that ends up being modified.
385    if (EnableLICMConstantMotion &&
386        AA->pointsToConstantMemory(LI->getOperand(0)))
387      return true;
388
389    // Don't hoist loads which have may-aliased stores in loop.
390    unsigned Size = 0;
391    if (LI->getType()->isSized())
392      Size = AA->getTypeStoreSize(LI->getType());
393    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
394  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
395    // Handle obvious cases efficiently.
396    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
397    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
398      return true;
399    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
400      // If this call only reads from memory and there are no writes to memory
401      // in the loop, we can hoist or sink the call as appropriate.
402      bool FoundMod = false;
403      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
404           I != E; ++I) {
405        AliasSet &AS = *I;
406        if (!AS.isForwardingAliasSet() && AS.isMod()) {
407          FoundMod = true;
408          break;
409        }
410      }
411      if (!FoundMod) return true;
412    }
413
414    // FIXME: This should use mod/ref information to see if we can hoist or sink
415    // the call.
416
417    return false;
418  }
419
420  // Otherwise these instructions are hoistable/sinkable
421  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
422         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
423         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
424         isa<ShuffleVectorInst>(I);
425}
426
427/// isNotUsedInLoop - Return true if the only users of this instruction are
428/// outside of the loop.  If this is true, we can sink the instruction to the
429/// exit blocks of the loop.
430///
431bool LICM::isNotUsedInLoop(Instruction &I) {
432  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
433    Instruction *User = cast<Instruction>(*UI);
434    if (PHINode *PN = dyn_cast<PHINode>(User)) {
435      // PHI node uses occur in predecessor blocks!
436      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
437        if (PN->getIncomingValue(i) == &I)
438          if (CurLoop->contains(PN->getIncomingBlock(i)))
439            return false;
440    } else if (CurLoop->contains(User->getParent())) {
441      return false;
442    }
443  }
444  return true;
445}
446
447
448/// isLoopInvariantInst - Return true if all operands of this instruction are
449/// loop invariant.  We also filter out non-hoistable instructions here just for
450/// efficiency.
451///
452bool LICM::isLoopInvariantInst(Instruction &I) {
453  // The instruction is loop invariant if all of its operands are loop-invariant
454  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
455    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
456      return false;
457
458  // If we got this far, the instruction is loop invariant!
459  return true;
460}
461
462/// sink - When an instruction is found to only be used outside of the loop,
463/// this function moves it to the exit blocks and patches up SSA form as needed.
464/// This method is guaranteed to remove the original instruction from its
465/// position, and may either delete it or move it to outside of the loop.
466///
467void LICM::sink(Instruction &I) {
468  DEBUG(errs() << "LICM sinking instruction: " << I);
469
470  SmallVector<BasicBlock*, 8> ExitBlocks;
471  CurLoop->getExitBlocks(ExitBlocks);
472
473  if (isa<LoadInst>(I)) ++NumMovedLoads;
474  else if (isa<CallInst>(I)) ++NumMovedCalls;
475  ++NumSunk;
476  Changed = true;
477
478  LLVMContext &Context = I.getContext();
479
480  // The case where there is only a single exit node of this loop is common
481  // enough that we handle it as a special (more efficient) case.  It is more
482  // efficient to handle because there are no PHI nodes that need to be placed.
483  if (ExitBlocks.size() == 1) {
484    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
485      // Instruction is not used, just delete it.
486      CurAST->deleteValue(&I);
487      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
488        I.replaceAllUsesWith(UndefValue::get(I.getType()));
489      I.eraseFromParent();
490    } else {
491      // Move the instruction to the start of the exit block, after any PHI
492      // nodes in it.
493      I.removeFromParent();
494
495      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
496      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
497    }
498  } else if (ExitBlocks.empty()) {
499    // The instruction is actually dead if there ARE NO exit blocks.
500    CurAST->deleteValue(&I);
501    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
502      I.replaceAllUsesWith(UndefValue::get(I.getType()));
503    I.eraseFromParent();
504  } else {
505    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
506    // do all of the hard work of inserting PHI nodes as necessary.  We convert
507    // the value into a stack object to get it to do this.
508
509    // Firstly, we create a stack object to hold the value...
510    AllocaInst *AI = 0;
511
512    if (I.getType() != Type::getVoidTy(I.getContext())) {
513      AI = new AllocaInst(I.getType(), 0, I.getName(),
514                          I.getParent()->getParent()->getEntryBlock().begin());
515      CurAST->add(AI);
516    }
517
518    // Secondly, insert load instructions for each use of the instruction
519    // outside of the loop.
520    while (!I.use_empty()) {
521      Instruction *U = cast<Instruction>(I.use_back());
522
523      // If the user is a PHI Node, we actually have to insert load instructions
524      // in all predecessor blocks, not in the PHI block itself!
525      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
526        // Only insert into each predecessor once, so that we don't have
527        // different incoming values from the same block!
528        std::map<BasicBlock*, Value*> InsertedBlocks;
529        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
530          if (UPN->getIncomingValue(i) == &I) {
531            BasicBlock *Pred = UPN->getIncomingBlock(i);
532            Value *&PredVal = InsertedBlocks[Pred];
533            if (!PredVal) {
534              // Insert a new load instruction right before the terminator in
535              // the predecessor block.
536              PredVal = new LoadInst(AI, "", Pred->getTerminator());
537              CurAST->add(cast<LoadInst>(PredVal));
538            }
539
540            UPN->setIncomingValue(i, PredVal);
541          }
542
543      } else {
544        LoadInst *L = new LoadInst(AI, "", U);
545        U->replaceUsesOfWith(&I, L);
546        CurAST->add(L);
547      }
548    }
549
550    // Thirdly, insert a copy of the instruction in each exit block of the loop
551    // that is dominated by the instruction, storing the result into the memory
552    // location.  Be careful not to insert the instruction into any particular
553    // basic block more than once.
554    std::set<BasicBlock*> InsertedBlocks;
555    BasicBlock *InstOrigBB = I.getParent();
556
557    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
558      BasicBlock *ExitBlock = ExitBlocks[i];
559
560      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
561        // If we haven't already processed this exit block, do so now.
562        if (InsertedBlocks.insert(ExitBlock).second) {
563          // Insert the code after the last PHI node...
564          BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
565
566          // If this is the first exit block processed, just move the original
567          // instruction, otherwise clone the original instruction and insert
568          // the copy.
569          Instruction *New;
570          if (InsertedBlocks.size() == 1) {
571            I.removeFromParent();
572            ExitBlock->getInstList().insert(InsertPt, &I);
573            New = &I;
574          } else {
575            New = I.clone(Context);
576            CurAST->copyValue(&I, New);
577            if (!I.getName().empty())
578              New->setName(I.getName()+".le");
579            ExitBlock->getInstList().insert(InsertPt, New);
580          }
581
582          // Now that we have inserted the instruction, store it into the alloca
583          if (AI) new StoreInst(New, AI, InsertPt);
584        }
585      }
586    }
587
588    // If the instruction doesn't dominate any exit blocks, it must be dead.
589    if (InsertedBlocks.empty()) {
590      CurAST->deleteValue(&I);
591      I.eraseFromParent();
592    }
593
594    // Finally, promote the fine value to SSA form.
595    if (AI) {
596      std::vector<AllocaInst*> Allocas;
597      Allocas.push_back(AI);
598      PromoteMemToReg(Allocas, *DT, *DF, Context, CurAST);
599    }
600  }
601}
602
603/// hoist - When an instruction is found to only use loop invariant operands
604/// that is safe to hoist, this instruction is called to do the dirty work.
605///
606void LICM::hoist(Instruction &I) {
607  DEBUG(errs() << "LICM hoisting to " << Preheader->getName() << ": " << I);
608
609  // Remove the instruction from its current basic block... but don't delete the
610  // instruction.
611  I.removeFromParent();
612
613  // Insert the new node in Preheader, before the terminator.
614  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
615
616  if (isa<LoadInst>(I)) ++NumMovedLoads;
617  else if (isa<CallInst>(I)) ++NumMovedCalls;
618  ++NumHoisted;
619  Changed = true;
620}
621
622/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
623/// not a trapping instruction or if it is a trapping instruction and is
624/// guaranteed to execute.
625///
626bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
627  // If it is not a trapping instruction, it is always safe to hoist.
628  if (Inst.isSafeToSpeculativelyExecute())
629    return true;
630
631  // Otherwise we have to check to make sure that the instruction dominates all
632  // of the exit blocks.  If it doesn't, then there is a path out of the loop
633  // which does not execute this instruction, so we can't hoist it.
634
635  // If the instruction is in the header block for the loop (which is very
636  // common), it is always guaranteed to dominate the exit blocks.  Since this
637  // is a common case, and can save some work, check it now.
638  if (Inst.getParent() == CurLoop->getHeader())
639    return true;
640
641  // Get the exit blocks for the current loop.
642  SmallVector<BasicBlock*, 8> ExitBlocks;
643  CurLoop->getExitBlocks(ExitBlocks);
644
645  // For each exit block, get the DT node and walk up the DT until the
646  // instruction's basic block is found or we exit the loop.
647  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
648    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
649      return false;
650
651  return true;
652}
653
654
655/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
656/// stores out of the loop and moving loads to before the loop.  We do this by
657/// looping over the stores in the loop, looking for stores to Must pointers
658/// which are loop invariant.  We promote these memory locations to use allocas
659/// instead.  These allocas can easily be raised to register values by the
660/// PromoteMem2Reg functionality.
661///
662void LICM::PromoteValuesInLoop() {
663  // PromotedValues - List of values that are promoted out of the loop.  Each
664  // value has an alloca instruction for it, and a canonical version of the
665  // pointer.
666  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
667  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
668
669  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
670  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
671
672  Changed = true;
673  NumPromoted += PromotedValues.size();
674
675  std::vector<Value*> PointerValueNumbers;
676
677  // Emit a copy from the value into the alloca'd value in the loop preheader
678  TerminatorInst *LoopPredInst = Preheader->getTerminator();
679  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
680    Value *Ptr = PromotedValues[i].second;
681
682    // If we are promoting a pointer value, update alias information for the
683    // inserted load.
684    Value *LoadValue = 0;
685    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
686      // Locate a load or store through the pointer, and assign the same value
687      // to LI as we are loading or storing.  Since we know that the value is
688      // stored in this loop, this will always succeed.
689      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
690           UI != E; ++UI)
691        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
692          LoadValue = LI;
693          break;
694        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
695          if (SI->getOperand(1) == Ptr) {
696            LoadValue = SI->getOperand(0);
697            break;
698          }
699        }
700      assert(LoadValue && "No store through the pointer found!");
701      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
702    }
703
704    // Load from the memory we are promoting.
705    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
706
707    if (LoadValue) CurAST->copyValue(LoadValue, LI);
708
709    // Store into the temporary alloca.
710    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
711  }
712
713  // Scan the basic blocks in the loop, replacing uses of our pointers with
714  // uses of the allocas in question.
715  //
716  for (Loop::block_iterator I = CurLoop->block_begin(),
717         E = CurLoop->block_end(); I != E; ++I) {
718    BasicBlock *BB = *I;
719    // Rewrite all loads and stores in the block of the pointer...
720    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
721      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
722        std::map<Value*, AllocaInst*>::iterator
723          I = ValueToAllocaMap.find(L->getOperand(0));
724        if (I != ValueToAllocaMap.end())
725          L->setOperand(0, I->second);    // Rewrite load instruction...
726      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
727        std::map<Value*, AllocaInst*>::iterator
728          I = ValueToAllocaMap.find(S->getOperand(1));
729        if (I != ValueToAllocaMap.end())
730          S->setOperand(1, I->second);    // Rewrite store instruction...
731      }
732    }
733  }
734
735  // Now that the body of the loop uses the allocas instead of the original
736  // memory locations, insert code to copy the alloca value back into the
737  // original memory location on all exits from the loop.  Note that we only
738  // want to insert one copy of the code in each exit block, though the loop may
739  // exit to the same block more than once.
740  //
741  SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
742
743  SmallVector<BasicBlock*, 8> ExitBlocks;
744  CurLoop->getExitBlocks(ExitBlocks);
745  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
746    if (!ProcessedBlocks.insert(ExitBlocks[i]))
747      continue;
748
749    // Copy all of the allocas into their memory locations.
750    BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
751    Instruction *InsertPos = BI;
752    unsigned PVN = 0;
753    for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
754      // Load from the alloca.
755      LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
756
757      // If this is a pointer type, update alias info appropriately.
758      if (isa<PointerType>(LI->getType()))
759        CurAST->copyValue(PointerValueNumbers[PVN++], LI);
760
761      // Store into the memory we promoted.
762      new StoreInst(LI, PromotedValues[i].second, InsertPos);
763    }
764  }
765
766  // Now that we have done the deed, use the mem2reg functionality to promote
767  // all of the new allocas we just created into real SSA registers.
768  //
769  std::vector<AllocaInst*> PromotedAllocas;
770  PromotedAllocas.reserve(PromotedValues.size());
771  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
772    PromotedAllocas.push_back(PromotedValues[i].first);
773  PromoteMemToReg(PromotedAllocas, *DT, *DF, Preheader->getContext(), CurAST);
774}
775
776/// FindPromotableValuesInLoop - Check the current loop for stores to definite
777/// pointers, which are not loaded and stored through may aliases and are safe
778/// for promotion.  If these are found, create an alloca for the value, add it
779/// to the PromotedValues list, and keep track of the mapping from value to
780/// alloca.
781void LICM::FindPromotableValuesInLoop(
782                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
783                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
784  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
785
786  // Loop over all of the alias sets in the tracker object.
787  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
788       I != E; ++I) {
789    AliasSet &AS = *I;
790    // We can promote this alias set if it has a store, if it is a "Must" alias
791    // set, if the pointer is loop invariant, and if we are not eliminating any
792    // volatile loads or stores.
793    if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
794        AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
795      continue;
796
797    assert(!AS.empty() &&
798           "Must alias set should have at least one pointer element in it!");
799    Value *V = AS.begin()->getValue();
800
801    // Check that all of the pointers in the alias set have the same type.  We
802    // cannot (yet) promote a memory location that is loaded and stored in
803    // different sizes.
804    {
805      bool PointerOk = true;
806      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
807        if (V->getType() != I->getValue()->getType()) {
808          PointerOk = false;
809          break;
810        }
811      if (!PointerOk)
812        continue;
813    }
814
815    // It isn't safe to promote a load/store from the loop if the load/store is
816    // conditional.  For example, turning:
817    //
818    //    for () { if (c) *P += 1; }
819    //
820    // into:
821    //
822    //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
823    //
824    // is not safe, because *P may only be valid to access if 'c' is true.
825    //
826    // It is safe to promote P if all uses are direct load/stores and if at
827    // least one is guaranteed to be executed.
828    bool GuaranteedToExecute = false;
829    bool InvalidInst = false;
830    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
831         UI != UE; ++UI) {
832      // Ignore instructions not in this loop.
833      Instruction *Use = dyn_cast<Instruction>(*UI);
834      if (!Use || !CurLoop->contains(Use->getParent()))
835        continue;
836
837      if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
838        InvalidInst = true;
839        break;
840      }
841
842      if (!GuaranteedToExecute)
843        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
844    }
845
846    // If there is an non-load/store instruction in the loop, we can't promote
847    // it.  If there isn't a guaranteed-to-execute instruction, we can't
848    // promote.
849    if (InvalidInst || !GuaranteedToExecute)
850      continue;
851
852    const Type *Ty = cast<PointerType>(V->getType())->getElementType();
853    AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
854    PromotedValues.push_back(std::make_pair(AI, V));
855
856    // Update the AST and alias analysis.
857    CurAST->copyValue(V, AI);
858
859    for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
860      ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
861
862    DEBUG(errs() << "LICM: Promoting value: " << *V << "\n");
863  }
864}
865
866/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
867void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
868  AliasSetTracker *AST = LoopToAliasMap[L];
869  if (!AST)
870    return;
871
872  AST->copyValue(From, To);
873}
874
875/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
876/// set.
877void LICM::deleteAnalysisValue(Value *V, Loop *L) {
878  AliasSetTracker *AST = LoopToAliasMap[L];
879  if (!AST)
880    return;
881
882  AST->deleteValue(V);
883}
884