LICM.cpp revision 7d3ced934f1bb2c6845676c7333ef879d5219e88
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads out of loops.  If we can determine that a
19//     load inside of a loop never aliases anything stored to, we can hoist it
20//     or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/AliasSetTracker.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Instructions.h"
42#include "llvm/DerivedTypes.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Support/CFG.h"
45#include "Support/CommandLine.h"
46#include "Support/Debug.h"
47#include "Support/Statistic.h"
48#include "llvm/Assembly/Writer.h"
49#include <algorithm>
50using namespace llvm;
51
52namespace {
53  cl::opt<bool>
54  DisablePromotion("disable-licm-promotion", cl::Hidden,
55                   cl::desc("Disable memory promotion in LICM pass"));
56
57  Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
58  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
59  Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
60  Statistic<> NumPromoted("licm",
61                          "Number of memory locations promoted to registers");
62
63  struct LICM : public FunctionPass {
64    virtual bool runOnFunction(Function &F);
65
66    /// This transformation requires natural loop information & requires that
67    /// loop preheaders be inserted into the CFG...
68    ///
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.setPreservesCFG();
71      AU.addRequiredID(LoopSimplifyID);
72      AU.addRequired<LoopInfo>();
73      AU.addRequired<DominatorTree>();
74      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
75      AU.addRequired<AliasAnalysis>();
76    }
77
78  private:
79    // Various analyses that we use...
80    AliasAnalysis *AA;       // Current AliasAnalysis information
81    LoopInfo      *LI;       // Current LoopInfo
82    DominatorTree *DT;       // Dominator Tree for the current Loop...
83    DominanceFrontier *DF;   // Current Dominance Frontier
84
85    // State that is updated as we process loops
86    bool Changed;            // Set to true when we change anything.
87    BasicBlock *Preheader;   // The preheader block of the current loop...
88    Loop *CurLoop;           // The current loop we are working on...
89    AliasSetTracker *CurAST; // AliasSet information for the current loop...
90
91    /// visitLoop - Hoist expressions out of the specified loop...
92    ///
93    void visitLoop(Loop *L, AliasSetTracker &AST);
94
95    /// HoistRegion - Walk the specified region of the CFG (defined by all
96    /// blocks dominated by the specified block, and that are in the current
97    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
98    /// visit definitions before uses, allowing us to hoist a loop body in one
99    /// pass without iteration.
100    ///
101    void HoistRegion(DominatorTree::Node *N);
102
103    /// inSubLoop - Little predicate that returns true if the specified basic
104    /// block is in a subloop of the current one, not the current one itself.
105    ///
106    bool inSubLoop(BasicBlock *BB) {
107      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
108      for (unsigned i = 0, e = CurLoop->getSubLoops().size(); i != e; ++i)
109        if (CurLoop->getSubLoops()[i]->contains(BB))
110          return true;  // A subloop actually contains this block!
111      return false;
112    }
113
114    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
115    /// specified exit block of the loop is dominated by the specified block
116    /// that is in the body of the loop.  We use these constraints to
117    /// dramatically limit the amount of the dominator tree that needs to be
118    /// searched.
119    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
120                                           BasicBlock *BlockInLoop) const {
121      // If the block in the loop is the loop header, it must be dominated!
122      BasicBlock *LoopHeader = CurLoop->getHeader();
123      if (BlockInLoop == LoopHeader)
124        return true;
125
126      DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
127      DominatorTree::Node *IDom            = DT->getNode(ExitBlock);
128
129      // Because the exit block is not in the loop, we know we have to get _at
130      // least_ it's immediate dominator.
131      do {
132        // Get next Immediate Dominator.
133        IDom = IDom->getIDom();
134
135        // If we have got to the header of the loop, then the instructions block
136        // did not dominate the exit node, so we can't hoist it.
137        if (IDom->getBlock() == LoopHeader)
138          return false;
139
140      } while (IDom != BlockInLoopNode);
141
142      return true;
143    }
144
145    /// sink - When an instruction is found to only be used outside of the loop,
146    /// this function moves it to the exit blocks and patches up SSA form as
147    /// needed.
148    ///
149    void sink(Instruction &I);
150
151    /// hoist - When an instruction is found to only use loop invariant operands
152    /// that is safe to hoist, this instruction is called to do the dirty work.
153    ///
154    void hoist(Instruction &I);
155
156    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
157    /// is not a trapping instruction or if it is a trapping instruction and is
158    /// guaranteed to execute.
159    ///
160    bool isSafeToExecuteUnconditionally(Instruction &I);
161
162    /// pointerInvalidatedByLoop - Return true if the body of this loop may
163    /// store into the memory location pointed to by V.
164    ///
165    bool pointerInvalidatedByLoop(Value *V) {
166      // Check to see if any of the basic blocks in CurLoop invalidate *V.
167      return CurAST->getAliasSetForPointer(V, 0).isMod();
168    }
169
170    /// isLoopInvariant - Return true if the specified value is loop invariant
171    ///
172    inline bool isLoopInvariant(Value *V) {
173      if (Instruction *I = dyn_cast<Instruction>(V))
174        return !CurLoop->contains(I->getParent());
175      return true;  // All non-instructions are loop invariant
176    }
177
178    bool canSinkOrHoistInst(Instruction &I);
179    bool isLoopInvariantInst(Instruction &I);
180    bool isNotUsedInLoop(Instruction &I);
181
182    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
183    /// to scalars as we can.
184    ///
185    void PromoteValuesInLoop();
186
187    /// findPromotableValuesInLoop - Check the current loop for stores to
188    /// definite pointers, which are not loaded and stored through may aliases.
189    /// If these are found, create an alloca for the value, add it to the
190    /// PromotedValues list, and keep track of the mapping from value to
191    /// alloca...
192    ///
193    void findPromotableValuesInLoop(
194                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
195                                    std::map<Value*, AllocaInst*> &Val2AlMap);
196  };
197
198  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
199}
200
201FunctionPass *llvm::createLICMPass() { return new LICM(); }
202
203/// runOnFunction - For LICM, this simply traverses the loop structure of the
204/// function, hoisting expressions out of loops if possible.
205///
206bool LICM::runOnFunction(Function &) {
207  Changed = false;
208
209  // Get our Loop and Alias Analysis information...
210  LI = &getAnalysis<LoopInfo>();
211  AA = &getAnalysis<AliasAnalysis>();
212  DF = &getAnalysis<DominanceFrontier>();
213  DT = &getAnalysis<DominatorTree>();
214
215  // Hoist expressions out of all of the top-level loops.
216  const std::vector<Loop*> &TopLevelLoops = LI->getTopLevelLoops();
217  for (std::vector<Loop*>::const_iterator I = TopLevelLoops.begin(),
218         E = TopLevelLoops.end(); I != E; ++I) {
219    AliasSetTracker AST(*AA);
220    visitLoop(*I, AST);
221  }
222  return Changed;
223}
224
225
226/// visitLoop - Hoist expressions out of the specified loop...
227///
228void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
229  // Recurse through all subloops before we process this loop...
230  for (std::vector<Loop*>::const_iterator I = L->getSubLoops().begin(),
231         E = L->getSubLoops().end(); I != E; ++I) {
232    AliasSetTracker SubAST(*AA);
233    visitLoop(*I, SubAST);
234
235    // Incorporate information about the subloops into this loop...
236    AST.add(SubAST);
237  }
238  CurLoop = L;
239  CurAST = &AST;
240
241  // Get the preheader block to move instructions into...
242  Preheader = L->getLoopPreheader();
243  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
244
245  // Loop over the body of this loop, looking for calls, invokes, and stores.
246  // Because subloops have already been incorporated into AST, we skip blocks in
247  // subloops.
248  //
249  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
250         E = L->getBlocks().end(); I != E; ++I)
251    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
252      AST.add(**I);                     // Incorporate the specified basic block
253
254  // We want to visit all of the instructions in this loop... that are not parts
255  // of our subloops (they have already had their invariants hoisted out of
256  // their loop, into this loop, so there is no need to process the BODIES of
257  // the subloops).
258  //
259  // Traverse the body of the loop in depth first order on the dominator tree so
260  // that we are guaranteed to see definitions before we see uses.  This allows
261  // us to perform the LICM transformation in one pass, without iteration.
262  //
263  HoistRegion(DT->getNode(L->getHeader()));
264
265  // Now that all loop invariants have been removed from the loop, promote any
266  // memory references to scalars that we can...
267  if (!DisablePromotion)
268    PromoteValuesInLoop();
269
270  // Clear out loops state information for the next iteration
271  CurLoop = 0;
272  Preheader = 0;
273}
274
275/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
276/// dominated by the specified block, and that are in the current loop) in depth
277/// first order w.r.t the DominatorTree.  This allows us to visit definitions
278/// before uses, allowing us to hoist a loop body in one pass without iteration.
279///
280void LICM::HoistRegion(DominatorTree::Node *N) {
281  assert(N != 0 && "Null dominator tree node?");
282  BasicBlock *BB = N->getBlock();
283
284  // If this subregion is not in the top level loop at all, exit.
285  if (!CurLoop->contains(BB)) return;
286
287  // Only need to process the contents of this block if it is not part of a
288  // subloop (which would already have been processed).
289  if (!inSubLoop(BB))
290    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
291      Instruction &I = *II++;
292
293      // We can only handle simple expressions and loads with this code.
294      if (canSinkOrHoistInst(I)) {
295        // First check to see if we can sink this instruction to the exit blocks
296        // of the loop.  We can do this if the only users of the instruction are
297        // outside of the loop.  In this case, it doesn't even matter if the
298        // operands of the instruction are loop invariant.
299        //
300        if (isNotUsedInLoop(I))
301          sink(I);
302
303        // If we can't sink the instruction, try hoisting it out to the
304        // preheader.  We can only do this if all of the operands of the
305        // instruction are loop invariant and if it is safe to hoist the
306        // instruction.
307        //
308        else if (isLoopInvariantInst(I) && isSafeToExecuteUnconditionally(I))
309          hoist(I);
310      }
311    }
312
313  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
314  for (unsigned i = 0, e = Children.size(); i != e; ++i)
315    HoistRegion(Children[i]);
316}
317
318/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
319/// instruction.
320///
321bool LICM::canSinkOrHoistInst(Instruction &I) {
322  // Loads have extra constraints we have to verify before we can hoist them.
323  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
324    if (LI->isVolatile())
325      return false;        // Don't hoist volatile loads!
326
327    // Don't hoist loads which have may-aliased stores in loop.
328    return !pointerInvalidatedByLoop(LI->getOperand(0));
329  }
330
331  return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
332         isa<GetElementPtrInst>(I) || isa<VANextInst>(I) || isa<VAArgInst>(I);
333}
334
335/// isNotUsedInLoop - Return true if the only users of this instruction are
336/// outside of the loop.  If this is true, we can sink the instruction to the
337/// exit blocks of the loop.
338///
339bool LICM::isNotUsedInLoop(Instruction &I) {
340  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
341    if (CurLoop->contains(cast<Instruction>(*UI)->getParent()))
342      return false;
343  return true;
344}
345
346
347/// isLoopInvariantInst - Return true if all operands of this instruction are
348/// loop invariant.  We also filter out non-hoistable instructions here just for
349/// efficiency.
350///
351bool LICM::isLoopInvariantInst(Instruction &I) {
352  // The instruction is loop invariant if all of its operands are loop-invariant
353  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
354    if (!isLoopInvariant(I.getOperand(i)))
355      return false;
356
357  // If we got this far, the instruction is loop invariant!
358  return true;
359}
360
361/// sink - When an instruction is found to only be used outside of the loop,
362/// this function moves it to the exit blocks and patches up SSA form as
363/// needed.
364///
365void LICM::sink(Instruction &I) {
366  DEBUG(std::cerr << "LICM sinking instruction: " << I);
367
368  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
369  std::vector<Value*> Operands(I.op_begin(), I.op_end());
370
371  if (isa<LoadInst>(I)) ++NumMovedLoads;
372  ++NumSunk;
373  Changed = true;
374
375  // The case where there is only a single exit node of this loop is common
376  // enough that we handle it as a special (more efficient) case.  It is more
377  // efficient to handle because there are no PHI nodes that need to be placed.
378  if (ExitBlocks.size() == 1) {
379    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
380      // Instruction is not used, just delete it.
381      I.getParent()->getInstList().erase(&I);
382    } else {
383      // Move the instruction to the start of the exit block, after any PHI
384      // nodes in it.
385      I.getParent()->getInstList().remove(&I);
386
387      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
388      while (isa<PHINode>(InsertPt)) ++InsertPt;
389      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
390    }
391  } else if (ExitBlocks.size() == 0) {
392    // The instruction is actually dead if there ARE NO exit blocks.
393    I.getParent()->getInstList().erase(&I);
394  } else {
395    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
396    // do all of the hard work of inserting PHI nodes as necessary.  We convert
397    // the value into a stack object to get it to do this.
398
399    // Firstly, we create a stack object to hold the value...
400    AllocaInst *AI = new AllocaInst(I.getType(), 0, I.getName(),
401                                   I.getParent()->getParent()->front().begin());
402
403    // Secondly, insert load instructions for each use of the instruction
404    // outside of the loop.
405    while (!I.use_empty()) {
406      Instruction *U = cast<Instruction>(I.use_back());
407
408      // If the user is a PHI Node, we actually have to insert load instructions
409      // in all predecessor blocks, not in the PHI block itself!
410      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
411        // Only insert into each predecessor once, so that we don't have
412        // different incoming values from the same block!
413        std::map<BasicBlock*, Value*> InsertedBlocks;
414        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
415          if (UPN->getIncomingValue(i) == &I) {
416            BasicBlock *Pred = UPN->getIncomingBlock(i);
417            Value *&PredVal = InsertedBlocks[Pred];
418            if (!PredVal) {
419              // Insert a new load instruction right before the terminator in
420              // the predecessor block.
421              PredVal = new LoadInst(AI, "", Pred->getTerminator());
422            }
423
424            UPN->setIncomingValue(i, PredVal);
425          }
426
427      } else {
428        LoadInst *L = new LoadInst(AI, "", U);
429        U->replaceUsesOfWith(&I, L);
430      }
431    }
432
433    // Thirdly, insert a copy of the instruction in each exit block of the loop
434    // that is dominated by the instruction, storing the result into the memory
435    // location.  Be careful not to insert the instruction into any particular
436    // basic block more than once.
437    std::set<BasicBlock*> InsertedBlocks;
438    BasicBlock *InstOrigBB = I.getParent();
439
440    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
441      BasicBlock *ExitBlock = ExitBlocks[i];
442
443      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
444        // If we haven't already processed this exit block, do so now.
445        if (InsertedBlocks.insert(ExitBlock).second) {
446          // Insert the code after the last PHI node...
447          BasicBlock::iterator InsertPt = ExitBlock->begin();
448          while (isa<PHINode>(InsertPt)) ++InsertPt;
449
450          // If this is the first exit block processed, just move the original
451          // instruction, otherwise clone the original instruction and insert
452          // the copy.
453          Instruction *New;
454          if (InsertedBlocks.size() == 1) {
455            I.getParent()->getInstList().remove(&I);
456            ExitBlock->getInstList().insert(InsertPt, &I);
457            New = &I;
458          } else {
459            New = I.clone();
460            New->setName(I.getName()+".le");
461            ExitBlock->getInstList().insert(InsertPt, New);
462          }
463
464          // Now that we have inserted the instruction, store it into the alloca
465          new StoreInst(New, AI, InsertPt);
466        }
467      }
468    }
469
470    // Finally, promote the fine value to SSA form.
471    std::vector<AllocaInst*> Allocas;
472    Allocas.push_back(AI);
473    PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData());
474  }
475
476  // Since we just sunk an instruction, check to see if any other instructions
477  // used by this instruction are now sinkable.  If so, sink them too.
478  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
479    if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
480      if (CurLoop->contains(OpI->getParent()) && canSinkOrHoistInst(*OpI) &&
481          isNotUsedInLoop(*OpI) && isSafeToExecuteUnconditionally(*OpI))
482        sink(*OpI);
483}
484
485/// hoist - When an instruction is found to only use loop invariant operands
486/// that is safe to hoist, this instruction is called to do the dirty work.
487///
488void LICM::hoist(Instruction &I) {
489  DEBUG(std::cerr << "LICM hoisting to";
490        WriteAsOperand(std::cerr, Preheader, false);
491        std::cerr << ": " << I);
492
493  // Remove the instruction from its current basic block... but don't delete the
494  // instruction.
495  I.getParent()->getInstList().remove(&I);
496
497  // Insert the new node in Preheader, before the terminator.
498  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
499
500  if (isa<LoadInst>(I)) ++NumMovedLoads;
501  ++NumHoisted;
502  Changed = true;
503}
504
505/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
506/// not a trapping instruction or if it is a trapping instruction and is
507/// guaranteed to execute.
508///
509bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
510  // If it is not a trapping instruction, it is always safe to hoist.
511  if (!Inst.isTrapping()) return true;
512
513  // Otherwise we have to check to make sure that the instruction dominates all
514  // of the exit blocks.  If it doesn't, then there is a path out of the loop
515  // which does not execute this instruction, so we can't hoist it.
516
517  // If the instruction is in the header block for the loop (which is very
518  // common), it is always guaranteed to dominate the exit blocks.  Since this
519  // is a common case, and can save some work, check it now.
520  if (Inst.getParent() == CurLoop->getHeader())
521    return true;
522
523  // Get the exit blocks for the current loop.
524  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
525
526  // For each exit block, get the DT node and walk up the DT until the
527  // instruction's basic block is found or we exit the loop.
528  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
529    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
530      return false;
531
532  return true;
533}
534
535
536/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
537/// stores out of the loop and moving loads to before the loop.  We do this by
538/// looping over the stores in the loop, looking for stores to Must pointers
539/// which are loop invariant.  We promote these memory locations to use allocas
540/// instead.  These allocas can easily be raised to register values by the
541/// PromoteMem2Reg functionality.
542///
543void LICM::PromoteValuesInLoop() {
544  // PromotedValues - List of values that are promoted out of the loop.  Each
545  // value has an alloca instruction for it, and a canonical version of the
546  // pointer.
547  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
548  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
549
550  findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
551  if (ValueToAllocaMap.empty()) return;   // If there are values to promote...
552
553  Changed = true;
554  NumPromoted += PromotedValues.size();
555
556  // Emit a copy from the value into the alloca'd value in the loop preheader
557  TerminatorInst *LoopPredInst = Preheader->getTerminator();
558  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
559    // Load from the memory we are promoting...
560    LoadInst *LI = new LoadInst(PromotedValues[i].second,
561                                PromotedValues[i].second->getName()+".promoted",
562                                LoopPredInst);
563    // Store into the temporary alloca...
564    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
565  }
566
567  // Scan the basic blocks in the loop, replacing uses of our pointers with
568  // uses of the allocas in question.
569  //
570  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
571  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
572         E = LoopBBs.end(); I != E; ++I) {
573    // Rewrite all loads and stores in the block of the pointer...
574    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
575         II != E; ++II) {
576      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
577        std::map<Value*, AllocaInst*>::iterator
578          I = ValueToAllocaMap.find(L->getOperand(0));
579        if (I != ValueToAllocaMap.end())
580          L->setOperand(0, I->second);    // Rewrite load instruction...
581      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
582        std::map<Value*, AllocaInst*>::iterator
583          I = ValueToAllocaMap.find(S->getOperand(1));
584        if (I != ValueToAllocaMap.end())
585          S->setOperand(1, I->second);    // Rewrite store instruction...
586      }
587    }
588  }
589
590  // Now that the body of the loop uses the allocas instead of the original
591  // memory locations, insert code to copy the alloca value back into the
592  // original memory location on all exits from the loop.  Note that we only
593  // want to insert one copy of the code in each exit block, though the loop may
594  // exit to the same block more than once.
595  //
596  std::set<BasicBlock*> ProcessedBlocks;
597
598  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
599  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
600    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
601      // Copy all of the allocas into their memory locations...
602      BasicBlock::iterator BI = ExitBlocks[i]->begin();
603      while (isa<PHINode>(*BI))
604        ++BI;             // Skip over all of the phi nodes in the block...
605      Instruction *InsertPos = BI;
606      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
607        // Load from the alloca...
608        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
609        // Store into the memory we promoted...
610        new StoreInst(LI, PromotedValues[i].second, InsertPos);
611      }
612    }
613
614  // Now that we have done the deed, use the mem2reg functionality to promote
615  // all of the new allocas we just created into real SSA registers...
616  //
617  std::vector<AllocaInst*> PromotedAllocas;
618  PromotedAllocas.reserve(PromotedValues.size());
619  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
620    PromotedAllocas.push_back(PromotedValues[i].first);
621  PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData());
622}
623
624/// findPromotableValuesInLoop - Check the current loop for stores to definite
625/// pointers, which are not loaded and stored through may aliases.  If these are
626/// found, create an alloca for the value, add it to the PromotedValues list,
627/// and keep track of the mapping from value to alloca...
628///
629void LICM::findPromotableValuesInLoop(
630                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
631                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
632  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
633
634  // Loop over all of the alias sets in the tracker object...
635  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
636       I != E; ++I) {
637    AliasSet &AS = *I;
638    // We can promote this alias set if it has a store, if it is a "Must" alias
639    // set, and if the pointer is loop invariant.
640    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
641        isLoopInvariant(AS.begin()->first)) {
642      assert(AS.begin() != AS.end() &&
643             "Must alias set should have at least one pointer element in it!");
644      Value *V = AS.begin()->first;
645
646      // Check that all of the pointers in the alias set have the same type.  We
647      // cannot (yet) promote a memory location that is loaded and stored in
648      // different sizes.
649      bool PointerOk = true;
650      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
651        if (V->getType() != I->first->getType()) {
652          PointerOk = false;
653          break;
654        }
655
656      if (PointerOk) {
657        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
658        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
659        PromotedValues.push_back(std::make_pair(AI, V));
660
661        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
662          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
663
664        DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
665      }
666    }
667  }
668}
669