LICM.cpp revision 85dadecbd664f60f0c7e4fbb44f083d43d01cfb7
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/AliasSetTracker.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Target/TargetLibraryInfo.h"
50#include "llvm/Support/CFG.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/ADT/Statistic.h"
55#include <algorithm>
56using namespace llvm;
57
58STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
59STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
60STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
61STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
62STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
63
64static cl::opt<bool>
65DisablePromotion("disable-licm-promotion", cl::Hidden,
66                 cl::desc("Disable memory promotion in LICM pass"));
67
68namespace {
69  struct LICM : public LoopPass {
70    static char ID; // Pass identification, replacement for typeid
71    LICM() : LoopPass(ID) {
72      initializeLICMPass(*PassRegistry::getPassRegistry());
73    }
74
75    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
76
77    /// This transformation requires natural loop information & requires that
78    /// loop preheaders be inserted into the CFG...
79    ///
80    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
81      AU.setPreservesCFG();
82      AU.addRequired<DominatorTree>();
83      AU.addRequired<LoopInfo>();
84      AU.addRequiredID(LoopSimplifyID);
85      AU.addRequired<AliasAnalysis>();
86      AU.addPreserved<AliasAnalysis>();
87      AU.addPreserved("scalar-evolution");
88      AU.addPreservedID(LoopSimplifyID);
89      AU.addRequired<TargetLibraryInfo>();
90    }
91
92    bool doFinalization() {
93      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
94      return false;
95    }
96
97  private:
98    AliasAnalysis *AA;       // Current AliasAnalysis information
99    LoopInfo      *LI;       // Current LoopInfo
100    DominatorTree *DT;       // Dominator Tree for the current Loop.
101
102    TargetData *TD;          // TargetData for constant folding.
103    TargetLibraryInfo *TLI;  // TargetLibraryInfo for constant folding.
104
105    // State that is updated as we process loops.
106    bool Changed;            // Set to true when we change anything.
107    BasicBlock *Preheader;   // The preheader block of the current loop...
108    Loop *CurLoop;           // The current loop we are working on...
109    AliasSetTracker *CurAST; // AliasSet information for the current loop...
110    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
111
112    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
113    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
114
115    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
116    /// set.
117    void deleteAnalysisValue(Value *V, Loop *L);
118
119    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
120    /// dominated by the specified block, and that are in the current loop) in
121    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
122    /// visit uses before definitions, allowing us to sink a loop body in one
123    /// pass without iteration.
124    ///
125    void SinkRegion(DomTreeNode *N);
126
127    /// HoistRegion - Walk the specified region of the CFG (defined by all
128    /// blocks dominated by the specified block, and that are in the current
129    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
130    /// visit definitions before uses, allowing us to hoist a loop body in one
131    /// pass without iteration.
132    ///
133    void HoistRegion(DomTreeNode *N);
134
135    /// inSubLoop - Little predicate that returns true if the specified basic
136    /// block is in a subloop of the current one, not the current one itself.
137    ///
138    bool inSubLoop(BasicBlock *BB) {
139      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
140      return LI->getLoopFor(BB) != CurLoop;
141    }
142
143    /// sink - When an instruction is found to only be used outside of the loop,
144    /// this function moves it to the exit blocks and patches up SSA form as
145    /// needed.
146    ///
147    void sink(Instruction &I);
148
149    /// hoist - When an instruction is found to only use loop invariant operands
150    /// that is safe to hoist, this instruction is called to do the dirty work.
151    ///
152    void hoist(Instruction &I);
153
154    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
155    /// is not a trapping instruction or if it is a trapping instruction and is
156    /// guaranteed to execute.
157    ///
158    bool isSafeToExecuteUnconditionally(Instruction &I);
159
160    /// isGuaranteedToExecute - Check that the instruction is guaranteed to
161    /// execute.
162    ///
163    bool isGuaranteedToExecute(Instruction &I);
164
165    /// pointerInvalidatedByLoop - Return true if the body of this loop may
166    /// store into the memory location pointed to by V.
167    ///
168    bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
169                                  const MDNode *TBAAInfo) {
170      // Check to see if any of the basic blocks in CurLoop invalidate *V.
171      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
172    }
173
174    bool canSinkOrHoistInst(Instruction &I);
175    bool isNotUsedInLoop(Instruction &I);
176
177    void PromoteAliasSet(AliasSet &AS);
178  };
179}
180
181char LICM::ID = 0;
182INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
183INITIALIZE_PASS_DEPENDENCY(DominatorTree)
184INITIALIZE_PASS_DEPENDENCY(LoopInfo)
185INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
186INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
187INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
188INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
189
190Pass *llvm::createLICMPass() { return new LICM(); }
191
192/// Hoist expressions out of the specified loop. Note, alias info for inner
193/// loop is not preserved so it is not a good idea to run LICM multiple
194/// times on one loop.
195///
196bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
197  Changed = false;
198
199  // Get our Loop and Alias Analysis information...
200  LI = &getAnalysis<LoopInfo>();
201  AA = &getAnalysis<AliasAnalysis>();
202  DT = &getAnalysis<DominatorTree>();
203
204  TD = getAnalysisIfAvailable<TargetData>();
205  TLI = &getAnalysis<TargetLibraryInfo>();
206
207  CurAST = new AliasSetTracker(*AA);
208  // Collect Alias info from subloops.
209  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
210       LoopItr != LoopItrE; ++LoopItr) {
211    Loop *InnerL = *LoopItr;
212    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
213    assert(InnerAST && "Where is my AST?");
214
215    // What if InnerLoop was modified by other passes ?
216    CurAST->add(*InnerAST);
217
218    // Once we've incorporated the inner loop's AST into ours, we don't need the
219    // subloop's anymore.
220    delete InnerAST;
221    LoopToAliasSetMap.erase(InnerL);
222  }
223
224  CurLoop = L;
225
226  // Get the preheader block to move instructions into...
227  Preheader = L->getLoopPreheader();
228
229  // Loop over the body of this loop, looking for calls, invokes, and stores.
230  // Because subloops have already been incorporated into AST, we skip blocks in
231  // subloops.
232  //
233  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
234       I != E; ++I) {
235    BasicBlock *BB = *I;
236    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
237      CurAST->add(*BB);                 // Incorporate the specified basic block
238  }
239
240  // We want to visit all of the instructions in this loop... that are not parts
241  // of our subloops (they have already had their invariants hoisted out of
242  // their loop, into this loop, so there is no need to process the BODIES of
243  // the subloops).
244  //
245  // Traverse the body of the loop in depth first order on the dominator tree so
246  // that we are guaranteed to see definitions before we see uses.  This allows
247  // us to sink instructions in one pass, without iteration.  After sinking
248  // instructions, we perform another pass to hoist them out of the loop.
249  //
250  if (L->hasDedicatedExits())
251    SinkRegion(DT->getNode(L->getHeader()));
252  if (Preheader)
253    HoistRegion(DT->getNode(L->getHeader()));
254
255  // Now that all loop invariants have been removed from the loop, promote any
256  // memory references to scalars that we can.
257  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
258    // Loop over all of the alias sets in the tracker object.
259    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
260         I != E; ++I)
261      PromoteAliasSet(*I);
262  }
263
264  // Clear out loops state information for the next iteration
265  CurLoop = 0;
266  Preheader = 0;
267
268  // If this loop is nested inside of another one, save the alias information
269  // for when we process the outer loop.
270  if (L->getParentLoop())
271    LoopToAliasSetMap[L] = CurAST;
272  else
273    delete CurAST;
274  return Changed;
275}
276
277/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
278/// dominated by the specified block, and that are in the current loop) in
279/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
280/// uses before definitions, allowing us to sink a loop body in one pass without
281/// iteration.
282///
283void LICM::SinkRegion(DomTreeNode *N) {
284  assert(N != 0 && "Null dominator tree node?");
285  BasicBlock *BB = N->getBlock();
286
287  // If this subregion is not in the top level loop at all, exit.
288  if (!CurLoop->contains(BB)) return;
289
290  // We are processing blocks in reverse dfo, so process children first.
291  const std::vector<DomTreeNode*> &Children = N->getChildren();
292  for (unsigned i = 0, e = Children.size(); i != e; ++i)
293    SinkRegion(Children[i]);
294
295  // Only need to process the contents of this block if it is not part of a
296  // subloop (which would already have been processed).
297  if (inSubLoop(BB)) return;
298
299  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
300    Instruction &I = *--II;
301
302    // If the instruction is dead, we would try to sink it because it isn't used
303    // in the loop, instead, just delete it.
304    if (isInstructionTriviallyDead(&I)) {
305      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
306      ++II;
307      CurAST->deleteValue(&I);
308      I.eraseFromParent();
309      Changed = true;
310      continue;
311    }
312
313    // Check to see if we can sink this instruction to the exit blocks
314    // of the loop.  We can do this if the all users of the instruction are
315    // outside of the loop.  In this case, it doesn't even matter if the
316    // operands of the instruction are loop invariant.
317    //
318    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
319      ++II;
320      sink(I);
321    }
322  }
323}
324
325/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
326/// dominated by the specified block, and that are in the current loop) in depth
327/// first order w.r.t the DominatorTree.  This allows us to visit definitions
328/// before uses, allowing us to hoist a loop body in one pass without iteration.
329///
330void LICM::HoistRegion(DomTreeNode *N) {
331  assert(N != 0 && "Null dominator tree node?");
332  BasicBlock *BB = N->getBlock();
333
334  // If this subregion is not in the top level loop at all, exit.
335  if (!CurLoop->contains(BB)) return;
336
337  // Only need to process the contents of this block if it is not part of a
338  // subloop (which would already have been processed).
339  if (!inSubLoop(BB))
340    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
341      Instruction &I = *II++;
342
343      // Try constant folding this instruction.  If all the operands are
344      // constants, it is technically hoistable, but it would be better to just
345      // fold it.
346      if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
347        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
348        CurAST->copyValue(&I, C);
349        CurAST->deleteValue(&I);
350        I.replaceAllUsesWith(C);
351        I.eraseFromParent();
352        continue;
353      }
354
355      // Try hoisting the instruction out to the preheader.  We can only do this
356      // if all of the operands of the instruction are loop invariant and if it
357      // is safe to hoist the instruction.
358      //
359      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
360          isSafeToExecuteUnconditionally(I))
361        hoist(I);
362    }
363
364  const std::vector<DomTreeNode*> &Children = N->getChildren();
365  for (unsigned i = 0, e = Children.size(); i != e; ++i)
366    HoistRegion(Children[i]);
367}
368
369/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
370/// instruction.
371///
372bool LICM::canSinkOrHoistInst(Instruction &I) {
373  // Loads have extra constraints we have to verify before we can hoist them.
374  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
375    if (!LI->isUnordered())
376      return false;        // Don't hoist volatile/atomic loads!
377
378    // Loads from constant memory are always safe to move, even if they end up
379    // in the same alias set as something that ends up being modified.
380    if (AA->pointsToConstantMemory(LI->getOperand(0)))
381      return true;
382    if (LI->getMetadata("invariant.load"))
383      return true;
384
385    // Don't hoist loads which have may-aliased stores in loop.
386    uint64_t Size = 0;
387    if (LI->getType()->isSized())
388      Size = AA->getTypeStoreSize(LI->getType());
389    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
390                                     LI->getMetadata(LLVMContext::MD_tbaa));
391  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
392    // Don't sink or hoist dbg info; it's legal, but not useful.
393    if (isa<DbgInfoIntrinsic>(I))
394      return false;
395
396    // Handle simple cases by querying alias analysis.
397    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
398    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
399      return true;
400    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
401      // If this call only reads from memory and there are no writes to memory
402      // in the loop, we can hoist or sink the call as appropriate.
403      bool FoundMod = false;
404      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
405           I != E; ++I) {
406        AliasSet &AS = *I;
407        if (!AS.isForwardingAliasSet() && AS.isMod()) {
408          FoundMod = true;
409          break;
410        }
411      }
412      if (!FoundMod) return true;
413    }
414
415    // FIXME: This should use mod/ref information to see if we can hoist or sink
416    // the call.
417
418    return false;
419  }
420
421  // Otherwise these instructions are hoistable/sinkable
422  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
423         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
424         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
425         isa<ShuffleVectorInst>(I);
426}
427
428/// isNotUsedInLoop - Return true if the only users of this instruction are
429/// outside of the loop.  If this is true, we can sink the instruction to the
430/// exit blocks of the loop.
431///
432bool LICM::isNotUsedInLoop(Instruction &I) {
433  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
434    Instruction *User = cast<Instruction>(*UI);
435    if (PHINode *PN = dyn_cast<PHINode>(User)) {
436      // PHI node uses occur in predecessor blocks!
437      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
438        if (PN->getIncomingValue(i) == &I)
439          if (CurLoop->contains(PN->getIncomingBlock(i)))
440            return false;
441    } else if (CurLoop->contains(User)) {
442      return false;
443    }
444  }
445  return true;
446}
447
448
449/// sink - When an instruction is found to only be used outside of the loop,
450/// this function moves it to the exit blocks and patches up SSA form as needed.
451/// This method is guaranteed to remove the original instruction from its
452/// position, and may either delete it or move it to outside of the loop.
453///
454void LICM::sink(Instruction &I) {
455  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
456
457  SmallVector<BasicBlock*, 8> ExitBlocks;
458  CurLoop->getUniqueExitBlocks(ExitBlocks);
459
460  if (isa<LoadInst>(I)) ++NumMovedLoads;
461  else if (isa<CallInst>(I)) ++NumMovedCalls;
462  ++NumSunk;
463  Changed = true;
464
465  // The case where there is only a single exit node of this loop is common
466  // enough that we handle it as a special (more efficient) case.  It is more
467  // efficient to handle because there are no PHI nodes that need to be placed.
468  if (ExitBlocks.size() == 1) {
469    if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
470      // Instruction is not used, just delete it.
471      CurAST->deleteValue(&I);
472      // If I has users in unreachable blocks, eliminate.
473      // If I is not void type then replaceAllUsesWith undef.
474      // This allows ValueHandlers and custom metadata to adjust itself.
475      if (!I.use_empty())
476        I.replaceAllUsesWith(UndefValue::get(I.getType()));
477      I.eraseFromParent();
478    } else {
479      // Move the instruction to the start of the exit block, after any PHI
480      // nodes in it.
481      I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
482
483      // This instruction is no longer in the AST for the current loop, because
484      // we just sunk it out of the loop.  If we just sunk it into an outer
485      // loop, we will rediscover the operation when we process it.
486      CurAST->deleteValue(&I);
487    }
488    return;
489  }
490
491  if (ExitBlocks.empty()) {
492    // The instruction is actually dead if there ARE NO exit blocks.
493    CurAST->deleteValue(&I);
494    // If I has users in unreachable blocks, eliminate.
495    // If I is not void type then replaceAllUsesWith undef.
496    // This allows ValueHandlers and custom metadata to adjust itself.
497    if (!I.use_empty())
498      I.replaceAllUsesWith(UndefValue::get(I.getType()));
499    I.eraseFromParent();
500    return;
501  }
502
503  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
504  // hard work of inserting PHI nodes as necessary.
505  SmallVector<PHINode*, 8> NewPHIs;
506  SSAUpdater SSA(&NewPHIs);
507
508  if (!I.use_empty())
509    SSA.Initialize(I.getType(), I.getName());
510
511  // Insert a copy of the instruction in each exit block of the loop that is
512  // dominated by the instruction.  Each exit block is known to only be in the
513  // ExitBlocks list once.
514  BasicBlock *InstOrigBB = I.getParent();
515  unsigned NumInserted = 0;
516
517  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
518    BasicBlock *ExitBlock = ExitBlocks[i];
519
520    if (!DT->dominates(InstOrigBB, ExitBlock))
521      continue;
522
523    // Insert the code after the last PHI node.
524    BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
525
526    // If this is the first exit block processed, just move the original
527    // instruction, otherwise clone the original instruction and insert
528    // the copy.
529    Instruction *New;
530    if (NumInserted++ == 0) {
531      I.moveBefore(InsertPt);
532      New = &I;
533    } else {
534      New = I.clone();
535      if (!I.getName().empty())
536        New->setName(I.getName()+".le");
537      ExitBlock->getInstList().insert(InsertPt, New);
538    }
539
540    // Now that we have inserted the instruction, inform SSAUpdater.
541    if (!I.use_empty())
542      SSA.AddAvailableValue(ExitBlock, New);
543  }
544
545  // If the instruction doesn't dominate any exit blocks, it must be dead.
546  if (NumInserted == 0) {
547    CurAST->deleteValue(&I);
548    if (!I.use_empty())
549      I.replaceAllUsesWith(UndefValue::get(I.getType()));
550    I.eraseFromParent();
551    return;
552  }
553
554  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
555  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
556    // Grab the use before incrementing the iterator.
557    Use &U = UI.getUse();
558    // Increment the iterator before removing the use from the list.
559    ++UI;
560    SSA.RewriteUseAfterInsertions(U);
561  }
562
563  // Update CurAST for NewPHIs if I had pointer type.
564  if (I.getType()->isPointerTy())
565    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
566      CurAST->copyValue(&I, NewPHIs[i]);
567
568  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
569  CurAST->deleteValue(&I);
570}
571
572/// hoist - When an instruction is found to only use loop invariant operands
573/// that is safe to hoist, this instruction is called to do the dirty work.
574///
575void LICM::hoist(Instruction &I) {
576  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
577        << I << "\n");
578
579  // Move the new node to the Preheader, before its terminator.
580  I.moveBefore(Preheader->getTerminator());
581
582  if (isa<LoadInst>(I)) ++NumMovedLoads;
583  else if (isa<CallInst>(I)) ++NumMovedCalls;
584  ++NumHoisted;
585  Changed = true;
586}
587
588/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
589/// not a trapping instruction or if it is a trapping instruction and is
590/// guaranteed to execute.
591///
592bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
593  // If it is not a trapping instruction, it is always safe to hoist.
594  if (Inst.isSafeToSpeculativelyExecute())
595    return true;
596
597  return isGuaranteedToExecute(Inst);
598}
599
600bool LICM::isGuaranteedToExecute(Instruction &Inst) {
601  // Otherwise we have to check to make sure that the instruction dominates all
602  // of the exit blocks.  If it doesn't, then there is a path out of the loop
603  // which does not execute this instruction, so we can't hoist it.
604
605  // If the instruction is in the header block for the loop (which is very
606  // common), it is always guaranteed to dominate the exit blocks.  Since this
607  // is a common case, and can save some work, check it now.
608  if (Inst.getParent() == CurLoop->getHeader())
609    return true;
610
611  // Get the exit blocks for the current loop.
612  SmallVector<BasicBlock*, 8> ExitBlocks;
613  CurLoop->getExitBlocks(ExitBlocks);
614
615  // Verify that the block dominates each of the exit blocks of the loop.
616  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
617    if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
618      return false;
619
620  return true;
621}
622
623namespace {
624  class LoopPromoter : public LoadAndStorePromoter {
625    Value *SomePtr;  // Designated pointer to store to.
626    SmallPtrSet<Value*, 4> &PointerMustAliases;
627    SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
628    AliasSetTracker &AST;
629    DebugLoc DL;
630    int Alignment;
631  public:
632    LoopPromoter(Value *SP,
633                 const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
634                 SmallPtrSet<Value*, 4> &PMA,
635                 SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
636                 DebugLoc dl, int alignment)
637      : LoadAndStorePromoter(Insts, S), SomePtr(SP),
638        PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
639        Alignment(alignment) {}
640
641    virtual bool isInstInList(Instruction *I,
642                              const SmallVectorImpl<Instruction*> &) const {
643      Value *Ptr;
644      if (LoadInst *LI = dyn_cast<LoadInst>(I))
645        Ptr = LI->getOperand(0);
646      else
647        Ptr = cast<StoreInst>(I)->getPointerOperand();
648      return PointerMustAliases.count(Ptr);
649    }
650
651    virtual void doExtraRewritesBeforeFinalDeletion() const {
652      // Insert stores after in the loop exit blocks.  Each exit block gets a
653      // store of the live-out values that feed them.  Since we've already told
654      // the SSA updater about the defs in the loop and the preheader
655      // definition, it is all set and we can start using it.
656      for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
657        BasicBlock *ExitBlock = LoopExitBlocks[i];
658        Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
659        Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
660        StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
661        NewSI->setAlignment(Alignment);
662        NewSI->setDebugLoc(DL);
663      }
664    }
665
666    virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
667      // Update alias analysis.
668      AST.copyValue(LI, V);
669    }
670    virtual void instructionDeleted(Instruction *I) const {
671      AST.deleteValue(I);
672    }
673  };
674} // end anon namespace
675
676/// PromoteAliasSet - Try to promote memory values to scalars by sinking
677/// stores out of the loop and moving loads to before the loop.  We do this by
678/// looping over the stores in the loop, looking for stores to Must pointers
679/// which are loop invariant.
680///
681void LICM::PromoteAliasSet(AliasSet &AS) {
682  // We can promote this alias set if it has a store, if it is a "Must" alias
683  // set, if the pointer is loop invariant, and if we are not eliminating any
684  // volatile loads or stores.
685  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
686      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
687    return;
688
689  assert(!AS.empty() &&
690         "Must alias set should have at least one pointer element in it!");
691  Value *SomePtr = AS.begin()->getValue();
692
693  // It isn't safe to promote a load/store from the loop if the load/store is
694  // conditional.  For example, turning:
695  //
696  //    for () { if (c) *P += 1; }
697  //
698  // into:
699  //
700  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
701  //
702  // is not safe, because *P may only be valid to access if 'c' is true.
703  //
704  // It is safe to promote P if all uses are direct load/stores and if at
705  // least one is guaranteed to be executed.
706  bool GuaranteedToExecute = false;
707
708  SmallVector<Instruction*, 64> LoopUses;
709  SmallPtrSet<Value*, 4> PointerMustAliases;
710
711  // We start with an alignment of one and try to find instructions that allow
712  // us to prove better alignment.
713  unsigned Alignment = 1;
714
715  // Check that all of the pointers in the alias set have the same type.  We
716  // cannot (yet) promote a memory location that is loaded and stored in
717  // different sizes.
718  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
719    Value *ASIV = ASI->getValue();
720    PointerMustAliases.insert(ASIV);
721
722    // Check that all of the pointers in the alias set have the same type.  We
723    // cannot (yet) promote a memory location that is loaded and stored in
724    // different sizes.
725    if (SomePtr->getType() != ASIV->getType())
726      return;
727
728    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
729         UI != UE; ++UI) {
730      // Ignore instructions that are outside the loop.
731      Instruction *Use = dyn_cast<Instruction>(*UI);
732      if (!Use || !CurLoop->contains(Use))
733        continue;
734
735      // If there is an non-load/store instruction in the loop, we can't promote
736      // it.
737      if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
738        assert(!load->isVolatile() && "AST broken");
739        if (!load->isSimple())
740          return;
741      } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
742        // Stores *of* the pointer are not interesting, only stores *to* the
743        // pointer.
744        if (Use->getOperand(1) != ASIV)
745          continue;
746        assert(!store->isVolatile() && "AST broken");
747        if (!store->isSimple())
748          return;
749
750        // Note that we only check GuaranteedToExecute inside the store case
751        // so that we do not introduce stores where they did not exist before
752        // (which would break the LLVM concurrency model).
753
754        // If the alignment of this instruction allows us to specify a more
755        // restrictive (and performant) alignment and if we are sure this
756        // instruction will be executed, update the alignment.
757        // Larger is better, with the exception of 0 being the best alignment.
758        unsigned InstAlignment = store->getAlignment();
759        if ((InstAlignment > Alignment || InstAlignment == 0)
760            && (Alignment != 0))
761          if (isGuaranteedToExecute(*Use)) {
762            GuaranteedToExecute = true;
763            Alignment = InstAlignment;
764          }
765
766        if (!GuaranteedToExecute)
767          GuaranteedToExecute = isGuaranteedToExecute(*Use);
768
769      } else
770        return; // Not a load or store.
771
772      LoopUses.push_back(Use);
773    }
774  }
775
776  // If there isn't a guaranteed-to-execute instruction, we can't promote.
777  if (!GuaranteedToExecute)
778    return;
779
780  // Otherwise, this is safe to promote, lets do it!
781  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
782  Changed = true;
783  ++NumPromoted;
784
785  // Grab a debug location for the inserted loads/stores; given that the
786  // inserted loads/stores have little relation to the original loads/stores,
787  // this code just arbitrarily picks a location from one, since any debug
788  // location is better than none.
789  DebugLoc DL = LoopUses[0]->getDebugLoc();
790
791  SmallVector<BasicBlock*, 8> ExitBlocks;
792  CurLoop->getUniqueExitBlocks(ExitBlocks);
793
794  // We use the SSAUpdater interface to insert phi nodes as required.
795  SmallVector<PHINode*, 16> NewPHIs;
796  SSAUpdater SSA(&NewPHIs);
797  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
798                        *CurAST, DL, Alignment);
799
800  // Set up the preheader to have a definition of the value.  It is the live-out
801  // value from the preheader that uses in the loop will use.
802  LoadInst *PreheaderLoad =
803    new LoadInst(SomePtr, SomePtr->getName()+".promoted",
804                 Preheader->getTerminator());
805  PreheaderLoad->setAlignment(Alignment);
806  PreheaderLoad->setDebugLoc(DL);
807  SSA.AddAvailableValue(Preheader, PreheaderLoad);
808
809  // Rewrite all the loads in the loop and remember all the definitions from
810  // stores in the loop.
811  Promoter.run(LoopUses);
812
813  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
814  if (PreheaderLoad->use_empty())
815    PreheaderLoad->eraseFromParent();
816}
817
818
819/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
820void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
821  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
822  if (!AST)
823    return;
824
825  AST->copyValue(From, To);
826}
827
828/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
829/// set.
830void LICM::deleteAnalysisValue(Value *V, Loop *L) {
831  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
832  if (!AST)
833    return;
834
835  AST->deleteValue(V);
836}
837