LICM.cpp revision 96b651c627160e1ea0f1bb86d352d697e6c1972d
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/PromoteMemToReg.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61namespace {
62  cl::opt<bool>
63  DisablePromotion("disable-licm-promotion", cl::Hidden,
64                   cl::desc("Disable memory promotion in LICM pass"));
65
66  struct VISIBILITY_HIDDEN LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass((intptr_t)&ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequiredID(LoopSimplifyID);
78      AU.addRequired<LoopInfo>();
79      AU.addRequired<DominatorTree>();
80      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<ScalarEvolution>();
83      AU.addPreserved<DominanceFrontier>();
84    }
85
86    bool doFinalization() {
87      LoopToAliasMap.clear();
88      return false;
89    }
90
91  private:
92    // Various analyses that we use...
93    AliasAnalysis *AA;       // Current AliasAnalysis information
94    LoopInfo      *LI;       // Current LoopInfo
95    DominatorTree *DT;       // Dominator Tree for the current Loop...
96    DominanceFrontier *DF;   // Current Dominance Frontier
97
98    // State that is updated as we process loops
99    bool Changed;            // Set to true when we change anything.
100    BasicBlock *Preheader;   // The preheader block of the current loop...
101    Loop *CurLoop;           // The current loop we are working on...
102    AliasSetTracker *CurAST; // AliasSet information for the current loop...
103    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
104
105    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
106    /// dominated by the specified block, and that are in the current loop) in
107    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
108    /// visit uses before definitions, allowing us to sink a loop body in one
109    /// pass without iteration.
110    ///
111    void SinkRegion(DomTreeNode *N);
112
113    /// HoistRegion - Walk the specified region of the CFG (defined by all
114    /// blocks dominated by the specified block, and that are in the current
115    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
116    /// visit definitions before uses, allowing us to hoist a loop body in one
117    /// pass without iteration.
118    ///
119    void HoistRegion(DomTreeNode *N);
120
121    /// inSubLoop - Little predicate that returns true if the specified basic
122    /// block is in a subloop of the current one, not the current one itself.
123    ///
124    bool inSubLoop(BasicBlock *BB) {
125      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
126      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
127        if ((*I)->contains(BB))
128          return true;  // A subloop actually contains this block!
129      return false;
130    }
131
132    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
133    /// specified exit block of the loop is dominated by the specified block
134    /// that is in the body of the loop.  We use these constraints to
135    /// dramatically limit the amount of the dominator tree that needs to be
136    /// searched.
137    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
138                                           BasicBlock *BlockInLoop) const {
139      // If the block in the loop is the loop header, it must be dominated!
140      BasicBlock *LoopHeader = CurLoop->getHeader();
141      if (BlockInLoop == LoopHeader)
142        return true;
143
144      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
145      DomTreeNode *IDom            = DT->getNode(ExitBlock);
146
147      // Because the exit block is not in the loop, we know we have to get _at
148      // least_ its immediate dominator.
149      do {
150        // Get next Immediate Dominator.
151        IDom = IDom->getIDom();
152
153        // If we have got to the header of the loop, then the instructions block
154        // did not dominate the exit node, so we can't hoist it.
155        if (IDom->getBlock() == LoopHeader)
156          return false;
157
158      } while (IDom != BlockInLoopNode);
159
160      return true;
161    }
162
163    /// sink - When an instruction is found to only be used outside of the loop,
164    /// this function moves it to the exit blocks and patches up SSA form as
165    /// needed.
166    ///
167    void sink(Instruction &I);
168
169    /// hoist - When an instruction is found to only use loop invariant operands
170    /// that is safe to hoist, this instruction is called to do the dirty work.
171    ///
172    void hoist(Instruction &I);
173
174    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
175    /// is not a trapping instruction or if it is a trapping instruction and is
176    /// guaranteed to execute.
177    ///
178    bool isSafeToExecuteUnconditionally(Instruction &I);
179
180    /// pointerInvalidatedByLoop - Return true if the body of this loop may
181    /// store into the memory location pointed to by V.
182    ///
183    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
184      // Check to see if any of the basic blocks in CurLoop invalidate *V.
185      return CurAST->getAliasSetForPointer(V, Size).isMod();
186    }
187
188    bool canSinkOrHoistInst(Instruction &I);
189    bool isLoopInvariantInst(Instruction &I);
190    bool isNotUsedInLoop(Instruction &I);
191
192    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
193    /// to scalars as we can.
194    ///
195    void PromoteValuesInLoop();
196
197    /// FindPromotableValuesInLoop - Check the current loop for stores to
198    /// definite pointers, which are not loaded and stored through may aliases.
199    /// If these are found, create an alloca for the value, add it to the
200    /// PromotedValues list, and keep track of the mapping from value to
201    /// alloca...
202    ///
203    void FindPromotableValuesInLoop(
204                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
205                                    std::map<Value*, AllocaInst*> &Val2AlMap);
206  };
207
208  char LICM::ID = 0;
209  RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
210}
211
212LoopPass *llvm::createLICMPass() { return new LICM(); }
213
214/// Hoist expressions out of the specified loop...
215///
216bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
217  Changed = false;
218
219  // Get our Loop and Alias Analysis information...
220  LI = &getAnalysis<LoopInfo>();
221  AA = &getAnalysis<AliasAnalysis>();
222  DF = &getAnalysis<DominanceFrontier>();
223  DT = &getAnalysis<DominatorTree>();
224
225  CurAST = new AliasSetTracker(*AA);
226  // Collect Alias info from subloops
227  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
228       LoopItr != LoopItrE; ++LoopItr) {
229    Loop *InnerL = *LoopItr;
230    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
231    assert (InnerAST && "Where is my AST?");
232
233    // What if InnerLoop was modified by other passes ?
234    CurAST->add(*InnerAST);
235  }
236
237  CurLoop = L;
238
239  // Get the preheader block to move instructions into...
240  Preheader = L->getLoopPreheader();
241  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
242
243  // Loop over the body of this loop, looking for calls, invokes, and stores.
244  // Because subloops have already been incorporated into AST, we skip blocks in
245  // subloops.
246  //
247  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
248         E = L->getBlocks().end(); I != E; ++I)
249    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
250      CurAST->add(**I);                 // Incorporate the specified basic block
251
252  // We want to visit all of the instructions in this loop... that are not parts
253  // of our subloops (they have already had their invariants hoisted out of
254  // their loop, into this loop, so there is no need to process the BODIES of
255  // the subloops).
256  //
257  // Traverse the body of the loop in depth first order on the dominator tree so
258  // that we are guaranteed to see definitions before we see uses.  This allows
259  // us to sink instructions in one pass, without iteration.  AFter sinking
260  // instructions, we perform another pass to hoist them out of the loop.
261  //
262  SinkRegion(DT->getNode(L->getHeader()));
263  HoistRegion(DT->getNode(L->getHeader()));
264
265  // Now that all loop invariants have been removed from the loop, promote any
266  // memory references to scalars that we can...
267  if (!DisablePromotion)
268    PromoteValuesInLoop();
269
270  // Clear out loops state information for the next iteration
271  CurLoop = 0;
272  Preheader = 0;
273
274  LoopToAliasMap[L] = CurAST;
275  return Changed;
276}
277
278/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
279/// dominated by the specified block, and that are in the current loop) in
280/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
281/// uses before definitions, allowing us to sink a loop body in one pass without
282/// iteration.
283///
284void LICM::SinkRegion(DomTreeNode *N) {
285  assert(N != 0 && "Null dominator tree node?");
286  BasicBlock *BB = N->getBlock();
287
288  // If this subregion is not in the top level loop at all, exit.
289  if (!CurLoop->contains(BB)) return;
290
291  // We are processing blocks in reverse dfo, so process children first...
292  const std::vector<DomTreeNode*> &Children = N->getChildren();
293  for (unsigned i = 0, e = Children.size(); i != e; ++i)
294    SinkRegion(Children[i]);
295
296  // Only need to process the contents of this block if it is not part of a
297  // subloop (which would already have been processed).
298  if (inSubLoop(BB)) return;
299
300  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
301    Instruction &I = *--II;
302
303    // Check to see if we can sink this instruction to the exit blocks
304    // of the loop.  We can do this if the all users of the instruction are
305    // outside of the loop.  In this case, it doesn't even matter if the
306    // operands of the instruction are loop invariant.
307    //
308    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
309      ++II;
310      sink(I);
311    }
312  }
313}
314
315
316/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
317/// dominated by the specified block, and that are in the current loop) in depth
318/// first order w.r.t the DominatorTree.  This allows us to visit definitions
319/// before uses, allowing us to hoist a loop body in one pass without iteration.
320///
321void LICM::HoistRegion(DomTreeNode *N) {
322  assert(N != 0 && "Null dominator tree node?");
323  BasicBlock *BB = N->getBlock();
324
325  // If this subregion is not in the top level loop at all, exit.
326  if (!CurLoop->contains(BB)) return;
327
328  // Only need to process the contents of this block if it is not part of a
329  // subloop (which would already have been processed).
330  if (!inSubLoop(BB))
331    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
332      Instruction &I = *II++;
333
334      // Try hoisting the instruction out to the preheader.  We can only do this
335      // if all of the operands of the instruction are loop invariant and if it
336      // is safe to hoist the instruction.
337      //
338      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
339          isSafeToExecuteUnconditionally(I))
340        hoist(I);
341      }
342
343  const std::vector<DomTreeNode*> &Children = N->getChildren();
344  for (unsigned i = 0, e = Children.size(); i != e; ++i)
345    HoistRegion(Children[i]);
346}
347
348/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
349/// instruction.
350///
351bool LICM::canSinkOrHoistInst(Instruction &I) {
352  // Loads have extra constraints we have to verify before we can hoist them.
353  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
354    if (LI->isVolatile())
355      return false;        // Don't hoist volatile loads!
356
357    // Don't hoist loads which have may-aliased stores in loop.
358    unsigned Size = 0;
359    if (LI->getType()->isSized())
360      Size = AA->getTargetData().getTypeSize(LI->getType());
361    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
362  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
363    // Handle obvious cases efficiently.
364    if (Function *Callee = CI->getCalledFunction()) {
365      AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
366      if (Behavior == AliasAnalysis::DoesNotAccessMemory)
367        return true;
368      else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
369        // If this call only reads from memory and there are no writes to memory
370        // in the loop, we can hoist or sink the call as appropriate.
371        bool FoundMod = false;
372        for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
373             I != E; ++I) {
374          AliasSet &AS = *I;
375          if (!AS.isForwardingAliasSet() && AS.isMod()) {
376            FoundMod = true;
377            break;
378          }
379        }
380        if (!FoundMod) return true;
381      }
382    }
383
384    // FIXME: This should use mod/ref information to see if we can hoist or sink
385    // the call.
386
387    return false;
388  }
389
390  // Otherwise these instructions are hoistable/sinkable
391  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
392         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
393         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
394         isa<ShuffleVectorInst>(I);
395}
396
397/// isNotUsedInLoop - Return true if the only users of this instruction are
398/// outside of the loop.  If this is true, we can sink the instruction to the
399/// exit blocks of the loop.
400///
401bool LICM::isNotUsedInLoop(Instruction &I) {
402  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
403    Instruction *User = cast<Instruction>(*UI);
404    if (PHINode *PN = dyn_cast<PHINode>(User)) {
405      // PHI node uses occur in predecessor blocks!
406      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
407        if (PN->getIncomingValue(i) == &I)
408          if (CurLoop->contains(PN->getIncomingBlock(i)))
409            return false;
410    } else if (CurLoop->contains(User->getParent())) {
411      return false;
412    }
413  }
414  return true;
415}
416
417
418/// isLoopInvariantInst - Return true if all operands of this instruction are
419/// loop invariant.  We also filter out non-hoistable instructions here just for
420/// efficiency.
421///
422bool LICM::isLoopInvariantInst(Instruction &I) {
423  // The instruction is loop invariant if all of its operands are loop-invariant
424  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
425    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
426      return false;
427
428  // If we got this far, the instruction is loop invariant!
429  return true;
430}
431
432/// sink - When an instruction is found to only be used outside of the loop,
433/// this function moves it to the exit blocks and patches up SSA form as needed.
434/// This method is guaranteed to remove the original instruction from its
435/// position, and may either delete it or move it to outside of the loop.
436///
437void LICM::sink(Instruction &I) {
438  DOUT << "LICM sinking instruction: " << I;
439
440  std::vector<BasicBlock*> ExitBlocks;
441  CurLoop->getExitBlocks(ExitBlocks);
442
443  if (isa<LoadInst>(I)) ++NumMovedLoads;
444  else if (isa<CallInst>(I)) ++NumMovedCalls;
445  ++NumSunk;
446  Changed = true;
447
448  // The case where there is only a single exit node of this loop is common
449  // enough that we handle it as a special (more efficient) case.  It is more
450  // efficient to handle because there are no PHI nodes that need to be placed.
451  if (ExitBlocks.size() == 1) {
452    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
453      // Instruction is not used, just delete it.
454      CurAST->deleteValue(&I);
455      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
456        I.replaceAllUsesWith(UndefValue::get(I.getType()));
457      I.eraseFromParent();
458    } else {
459      // Move the instruction to the start of the exit block, after any PHI
460      // nodes in it.
461      I.removeFromParent();
462
463      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
464      while (isa<PHINode>(InsertPt)) ++InsertPt;
465      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
466    }
467  } else if (ExitBlocks.size() == 0) {
468    // The instruction is actually dead if there ARE NO exit blocks.
469    CurAST->deleteValue(&I);
470    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
471      I.replaceAllUsesWith(UndefValue::get(I.getType()));
472    I.eraseFromParent();
473  } else {
474    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
475    // do all of the hard work of inserting PHI nodes as necessary.  We convert
476    // the value into a stack object to get it to do this.
477
478    // Firstly, we create a stack object to hold the value...
479    AllocaInst *AI = 0;
480
481    if (I.getType() != Type::VoidTy) {
482      AI = new AllocaInst(I.getType(), 0, I.getName(),
483                          I.getParent()->getParent()->getEntryBlock().begin());
484      CurAST->add(AI);
485    }
486
487    // Secondly, insert load instructions for each use of the instruction
488    // outside of the loop.
489    while (!I.use_empty()) {
490      Instruction *U = cast<Instruction>(I.use_back());
491
492      // If the user is a PHI Node, we actually have to insert load instructions
493      // in all predecessor blocks, not in the PHI block itself!
494      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
495        // Only insert into each predecessor once, so that we don't have
496        // different incoming values from the same block!
497        std::map<BasicBlock*, Value*> InsertedBlocks;
498        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
499          if (UPN->getIncomingValue(i) == &I) {
500            BasicBlock *Pred = UPN->getIncomingBlock(i);
501            Value *&PredVal = InsertedBlocks[Pred];
502            if (!PredVal) {
503              // Insert a new load instruction right before the terminator in
504              // the predecessor block.
505              PredVal = new LoadInst(AI, "", Pred->getTerminator());
506              CurAST->add(cast<LoadInst>(PredVal));
507            }
508
509            UPN->setIncomingValue(i, PredVal);
510          }
511
512      } else {
513        LoadInst *L = new LoadInst(AI, "", U);
514        U->replaceUsesOfWith(&I, L);
515        CurAST->add(L);
516      }
517    }
518
519    // Thirdly, insert a copy of the instruction in each exit block of the loop
520    // that is dominated by the instruction, storing the result into the memory
521    // location.  Be careful not to insert the instruction into any particular
522    // basic block more than once.
523    std::set<BasicBlock*> InsertedBlocks;
524    BasicBlock *InstOrigBB = I.getParent();
525
526    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
527      BasicBlock *ExitBlock = ExitBlocks[i];
528
529      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
530        // If we haven't already processed this exit block, do so now.
531        if (InsertedBlocks.insert(ExitBlock).second) {
532          // Insert the code after the last PHI node...
533          BasicBlock::iterator InsertPt = ExitBlock->begin();
534          while (isa<PHINode>(InsertPt)) ++InsertPt;
535
536          // If this is the first exit block processed, just move the original
537          // instruction, otherwise clone the original instruction and insert
538          // the copy.
539          Instruction *New;
540          if (InsertedBlocks.size() == 1) {
541            I.removeFromParent();
542            ExitBlock->getInstList().insert(InsertPt, &I);
543            New = &I;
544          } else {
545            New = I.clone();
546            CurAST->copyValue(&I, New);
547            if (!I.getName().empty())
548              New->setName(I.getName()+".le");
549            ExitBlock->getInstList().insert(InsertPt, New);
550          }
551
552          // Now that we have inserted the instruction, store it into the alloca
553          if (AI) new StoreInst(New, AI, InsertPt);
554        }
555      }
556    }
557
558    // If the instruction doesn't dominate any exit blocks, it must be dead.
559    if (InsertedBlocks.empty()) {
560      CurAST->deleteValue(&I);
561      I.eraseFromParent();
562    }
563
564    // Finally, promote the fine value to SSA form.
565    if (AI) {
566      std::vector<AllocaInst*> Allocas;
567      Allocas.push_back(AI);
568      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
569    }
570  }
571}
572
573/// hoist - When an instruction is found to only use loop invariant operands
574/// that is safe to hoist, this instruction is called to do the dirty work.
575///
576void LICM::hoist(Instruction &I) {
577  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
578
579  // Remove the instruction from its current basic block... but don't delete the
580  // instruction.
581  I.removeFromParent();
582
583  // Insert the new node in Preheader, before the terminator.
584  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
585
586  if (isa<LoadInst>(I)) ++NumMovedLoads;
587  else if (isa<CallInst>(I)) ++NumMovedCalls;
588  ++NumHoisted;
589  Changed = true;
590}
591
592/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
593/// not a trapping instruction or if it is a trapping instruction and is
594/// guaranteed to execute.
595///
596bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
597  // If it is not a trapping instruction, it is always safe to hoist.
598  if (!Inst.isTrapping()) return true;
599
600  // Otherwise we have to check to make sure that the instruction dominates all
601  // of the exit blocks.  If it doesn't, then there is a path out of the loop
602  // which does not execute this instruction, so we can't hoist it.
603
604  // If the instruction is in the header block for the loop (which is very
605  // common), it is always guaranteed to dominate the exit blocks.  Since this
606  // is a common case, and can save some work, check it now.
607  if (Inst.getParent() == CurLoop->getHeader())
608    return true;
609
610  // It's always safe to load from a global or alloca.
611  if (isa<LoadInst>(Inst))
612    if (isa<AllocationInst>(Inst.getOperand(0)) ||
613        isa<GlobalVariable>(Inst.getOperand(0)))
614      return true;
615
616  // Get the exit blocks for the current loop.
617  std::vector<BasicBlock*> ExitBlocks;
618  CurLoop->getExitBlocks(ExitBlocks);
619
620  // For each exit block, get the DT node and walk up the DT until the
621  // instruction's basic block is found or we exit the loop.
622  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
623    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
624      return false;
625
626  return true;
627}
628
629
630/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
631/// stores out of the loop and moving loads to before the loop.  We do this by
632/// looping over the stores in the loop, looking for stores to Must pointers
633/// which are loop invariant.  We promote these memory locations to use allocas
634/// instead.  These allocas can easily be raised to register values by the
635/// PromoteMem2Reg functionality.
636///
637void LICM::PromoteValuesInLoop() {
638  // PromotedValues - List of values that are promoted out of the loop.  Each
639  // value has an alloca instruction for it, and a canonical version of the
640  // pointer.
641  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
642  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
643
644  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
645  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
646
647  Changed = true;
648  NumPromoted += PromotedValues.size();
649
650  std::vector<Value*> PointerValueNumbers;
651
652  // Emit a copy from the value into the alloca'd value in the loop preheader
653  TerminatorInst *LoopPredInst = Preheader->getTerminator();
654  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
655    Value *Ptr = PromotedValues[i].second;
656
657    // If we are promoting a pointer value, update alias information for the
658    // inserted load.
659    Value *LoadValue = 0;
660    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
661      // Locate a load or store through the pointer, and assign the same value
662      // to LI as we are loading or storing.  Since we know that the value is
663      // stored in this loop, this will always succeed.
664      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
665           UI != E; ++UI)
666        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
667          LoadValue = LI;
668          break;
669        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
670          if (SI->getOperand(1) == Ptr) {
671            LoadValue = SI->getOperand(0);
672            break;
673          }
674        }
675      assert(LoadValue && "No store through the pointer found!");
676      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
677    }
678
679    // Load from the memory we are promoting.
680    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
681
682    if (LoadValue) CurAST->copyValue(LoadValue, LI);
683
684    // Store into the temporary alloca.
685    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
686  }
687
688  // Scan the basic blocks in the loop, replacing uses of our pointers with
689  // uses of the allocas in question.
690  //
691  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
692  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
693         E = LoopBBs.end(); I != E; ++I) {
694    // Rewrite all loads and stores in the block of the pointer...
695    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
696         II != E; ++II) {
697      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
698        std::map<Value*, AllocaInst*>::iterator
699          I = ValueToAllocaMap.find(L->getOperand(0));
700        if (I != ValueToAllocaMap.end())
701          L->setOperand(0, I->second);    // Rewrite load instruction...
702      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
703        std::map<Value*, AllocaInst*>::iterator
704          I = ValueToAllocaMap.find(S->getOperand(1));
705        if (I != ValueToAllocaMap.end())
706          S->setOperand(1, I->second);    // Rewrite store instruction...
707      }
708    }
709  }
710
711  // Now that the body of the loop uses the allocas instead of the original
712  // memory locations, insert code to copy the alloca value back into the
713  // original memory location on all exits from the loop.  Note that we only
714  // want to insert one copy of the code in each exit block, though the loop may
715  // exit to the same block more than once.
716  //
717  std::set<BasicBlock*> ProcessedBlocks;
718
719  std::vector<BasicBlock*> ExitBlocks;
720  CurLoop->getExitBlocks(ExitBlocks);
721  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
722    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
723      // Copy all of the allocas into their memory locations.
724      BasicBlock::iterator BI = ExitBlocks[i]->begin();
725      while (isa<PHINode>(*BI))
726        ++BI;             // Skip over all of the phi nodes in the block.
727      Instruction *InsertPos = BI;
728      unsigned PVN = 0;
729      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
730        // Load from the alloca.
731        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
732
733        // If this is a pointer type, update alias info appropriately.
734        if (isa<PointerType>(LI->getType()))
735          CurAST->copyValue(PointerValueNumbers[PVN++], LI);
736
737        // Store into the memory we promoted.
738        new StoreInst(LI, PromotedValues[i].second, InsertPos);
739      }
740    }
741
742  // Now that we have done the deed, use the mem2reg functionality to promote
743  // all of the new allocas we just created into real SSA registers.
744  //
745  std::vector<AllocaInst*> PromotedAllocas;
746  PromotedAllocas.reserve(PromotedValues.size());
747  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
748    PromotedAllocas.push_back(PromotedValues[i].first);
749  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
750}
751
752/// FindPromotableValuesInLoop - Check the current loop for stores to definite
753/// pointers, which are not loaded and stored through may aliases.  If these are
754/// found, create an alloca for the value, add it to the PromotedValues list,
755/// and keep track of the mapping from value to alloca.
756///
757void LICM::FindPromotableValuesInLoop(
758                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
759                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
760  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
761
762  // Loop over all of the alias sets in the tracker object.
763  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
764       I != E; ++I) {
765    AliasSet &AS = *I;
766    // We can promote this alias set if it has a store, if it is a "Must" alias
767    // set, if the pointer is loop invariant, and if we are not eliminating any
768    // volatile loads or stores.
769    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
770        !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
771      assert(AS.begin() != AS.end() &&
772             "Must alias set should have at least one pointer element in it!");
773      Value *V = AS.begin()->first;
774
775      // Check that all of the pointers in the alias set have the same type.  We
776      // cannot (yet) promote a memory location that is loaded and stored in
777      // different sizes.
778      bool PointerOk = true;
779      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
780        if (V->getType() != I->first->getType()) {
781          PointerOk = false;
782          break;
783        }
784
785      if (PointerOk) {
786        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
787        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
788        PromotedValues.push_back(std::make_pair(AI, V));
789
790        // Update the AST and alias analysis.
791        CurAST->copyValue(V, AI);
792
793        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
794          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
795
796        DOUT << "LICM: Promoting value: " << *V << "\n";
797      }
798    }
799  }
800}
801