LICM.cpp revision 9d1747c3cd709cd5bbc1a07074550862d188527e
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/AliasSetTracker.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ValueTracking.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/SSAUpdater.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Support/CFG.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
60STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
61STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
62STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
63STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
64
65static cl::opt<bool>
66DisablePromotion("disable-licm-promotion", cl::Hidden,
67                 cl::desc("Disable memory promotion in LICM pass"));
68
69namespace {
70  struct LICM : public LoopPass {
71    static char ID; // Pass identification, replacement for typeid
72    LICM() : LoopPass(ID) {
73      initializeLICMPass(*PassRegistry::getPassRegistry());
74    }
75
76    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
77
78    /// This transformation requires natural loop information & requires that
79    /// loop preheaders be inserted into the CFG...
80    ///
81    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82      AU.setPreservesCFG();
83      AU.addRequired<DominatorTree>();
84      AU.addRequired<LoopInfo>();
85      AU.addRequiredID(LoopSimplifyID);
86      AU.addRequired<AliasAnalysis>();
87      AU.addPreserved<AliasAnalysis>();
88      AU.addPreserved("scalar-evolution");
89      AU.addPreservedID(LoopSimplifyID);
90      AU.addRequired<TargetLibraryInfo>();
91    }
92
93    bool doFinalization() {
94      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
95      return false;
96    }
97
98  private:
99    AliasAnalysis *AA;       // Current AliasAnalysis information
100    LoopInfo      *LI;       // Current LoopInfo
101    DominatorTree *DT;       // Dominator Tree for the current Loop.
102
103    TargetData *TD;          // TargetData for constant folding.
104    TargetLibraryInfo *TLI;  // TargetLibraryInfo for constant folding.
105
106    // State that is updated as we process loops.
107    bool Changed;            // Set to true when we change anything.
108    BasicBlock *Preheader;   // The preheader block of the current loop...
109    Loop *CurLoop;           // The current loop we are working on...
110    AliasSetTracker *CurAST; // AliasSet information for the current loop...
111    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
112
113    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
114    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
115
116    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
117    /// set.
118    void deleteAnalysisValue(Value *V, Loop *L);
119
120    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
121    /// dominated by the specified block, and that are in the current loop) in
122    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
123    /// visit uses before definitions, allowing us to sink a loop body in one
124    /// pass without iteration.
125    ///
126    void SinkRegion(DomTreeNode *N);
127
128    /// HoistRegion - Walk the specified region of the CFG (defined by all
129    /// blocks dominated by the specified block, and that are in the current
130    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
131    /// visit definitions before uses, allowing us to hoist a loop body in one
132    /// pass without iteration.
133    ///
134    void HoistRegion(DomTreeNode *N);
135
136    /// inSubLoop - Little predicate that returns true if the specified basic
137    /// block is in a subloop of the current one, not the current one itself.
138    ///
139    bool inSubLoop(BasicBlock *BB) {
140      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
141      return LI->getLoopFor(BB) != CurLoop;
142    }
143
144    /// sink - When an instruction is found to only be used outside of the loop,
145    /// this function moves it to the exit blocks and patches up SSA form as
146    /// needed.
147    ///
148    void sink(Instruction &I);
149
150    /// hoist - When an instruction is found to only use loop invariant operands
151    /// that is safe to hoist, this instruction is called to do the dirty work.
152    ///
153    void hoist(Instruction &I);
154
155    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
156    /// is not a trapping instruction or if it is a trapping instruction and is
157    /// guaranteed to execute.
158    ///
159    bool isSafeToExecuteUnconditionally(Instruction &I);
160
161    /// isGuaranteedToExecute - Check that the instruction is guaranteed to
162    /// execute.
163    ///
164    bool isGuaranteedToExecute(Instruction &I);
165
166    /// pointerInvalidatedByLoop - Return true if the body of this loop may
167    /// store into the memory location pointed to by V.
168    ///
169    bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
170                                  const MDNode *TBAAInfo) {
171      // Check to see if any of the basic blocks in CurLoop invalidate *V.
172      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
173    }
174
175    bool canSinkOrHoistInst(Instruction &I);
176    bool isNotUsedInLoop(Instruction &I);
177
178    void PromoteAliasSet(AliasSet &AS,
179                         SmallVectorImpl<BasicBlock*> &ExitBlocks,
180                         SmallVectorImpl<Instruction*> &InsertPts);
181  };
182}
183
184char LICM::ID = 0;
185INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
186INITIALIZE_PASS_DEPENDENCY(DominatorTree)
187INITIALIZE_PASS_DEPENDENCY(LoopInfo)
188INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
189INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
190INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
191INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
192
193Pass *llvm::createLICMPass() { return new LICM(); }
194
195/// Hoist expressions out of the specified loop. Note, alias info for inner
196/// loop is not preserved so it is not a good idea to run LICM multiple
197/// times on one loop.
198///
199bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
200  Changed = false;
201
202  // Get our Loop and Alias Analysis information...
203  LI = &getAnalysis<LoopInfo>();
204  AA = &getAnalysis<AliasAnalysis>();
205  DT = &getAnalysis<DominatorTree>();
206
207  TD = getAnalysisIfAvailable<TargetData>();
208  TLI = &getAnalysis<TargetLibraryInfo>();
209
210  CurAST = new AliasSetTracker(*AA);
211  // Collect Alias info from subloops.
212  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
213       LoopItr != LoopItrE; ++LoopItr) {
214    Loop *InnerL = *LoopItr;
215    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
216    assert(InnerAST && "Where is my AST?");
217
218    // What if InnerLoop was modified by other passes ?
219    CurAST->add(*InnerAST);
220
221    // Once we've incorporated the inner loop's AST into ours, we don't need the
222    // subloop's anymore.
223    delete InnerAST;
224    LoopToAliasSetMap.erase(InnerL);
225  }
226
227  CurLoop = L;
228
229  // Get the preheader block to move instructions into...
230  Preheader = L->getLoopPreheader();
231
232  // Loop over the body of this loop, looking for calls, invokes, and stores.
233  // Because subloops have already been incorporated into AST, we skip blocks in
234  // subloops.
235  //
236  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
237       I != E; ++I) {
238    BasicBlock *BB = *I;
239    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
240      CurAST->add(*BB);                 // Incorporate the specified basic block
241  }
242
243  // We want to visit all of the instructions in this loop... that are not parts
244  // of our subloops (they have already had their invariants hoisted out of
245  // their loop, into this loop, so there is no need to process the BODIES of
246  // the subloops).
247  //
248  // Traverse the body of the loop in depth first order on the dominator tree so
249  // that we are guaranteed to see definitions before we see uses.  This allows
250  // us to sink instructions in one pass, without iteration.  After sinking
251  // instructions, we perform another pass to hoist them out of the loop.
252  //
253  if (L->hasDedicatedExits())
254    SinkRegion(DT->getNode(L->getHeader()));
255  if (Preheader)
256    HoistRegion(DT->getNode(L->getHeader()));
257
258  // Now that all loop invariants have been removed from the loop, promote any
259  // memory references to scalars that we can.
260  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
261    SmallVector<BasicBlock *, 8> ExitBlocks;
262    SmallVector<Instruction *, 8> InsertPts;
263
264    // Loop over all of the alias sets in the tracker object.
265    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
266         I != E; ++I)
267      PromoteAliasSet(*I, ExitBlocks, InsertPts);
268  }
269
270  // Clear out loops state information for the next iteration
271  CurLoop = 0;
272  Preheader = 0;
273
274  // If this loop is nested inside of another one, save the alias information
275  // for when we process the outer loop.
276  if (L->getParentLoop())
277    LoopToAliasSetMap[L] = CurAST;
278  else
279    delete CurAST;
280  return Changed;
281}
282
283/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
284/// dominated by the specified block, and that are in the current loop) in
285/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
286/// uses before definitions, allowing us to sink a loop body in one pass without
287/// iteration.
288///
289void LICM::SinkRegion(DomTreeNode *N) {
290  assert(N != 0 && "Null dominator tree node?");
291  BasicBlock *BB = N->getBlock();
292
293  // If this subregion is not in the top level loop at all, exit.
294  if (!CurLoop->contains(BB)) return;
295
296  // We are processing blocks in reverse dfo, so process children first.
297  const std::vector<DomTreeNode*> &Children = N->getChildren();
298  for (unsigned i = 0, e = Children.size(); i != e; ++i)
299    SinkRegion(Children[i]);
300
301  // Only need to process the contents of this block if it is not part of a
302  // subloop (which would already have been processed).
303  if (inSubLoop(BB)) return;
304
305  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
306    Instruction &I = *--II;
307
308    // If the instruction is dead, we would try to sink it because it isn't used
309    // in the loop, instead, just delete it.
310    if (isInstructionTriviallyDead(&I)) {
311      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
312      ++II;
313      CurAST->deleteValue(&I);
314      I.eraseFromParent();
315      Changed = true;
316      continue;
317    }
318
319    // Check to see if we can sink this instruction to the exit blocks
320    // of the loop.  We can do this if the all users of the instruction are
321    // outside of the loop.  In this case, it doesn't even matter if the
322    // operands of the instruction are loop invariant.
323    //
324    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
325      ++II;
326      sink(I);
327    }
328  }
329}
330
331/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
332/// dominated by the specified block, and that are in the current loop) in depth
333/// first order w.r.t the DominatorTree.  This allows us to visit definitions
334/// before uses, allowing us to hoist a loop body in one pass without iteration.
335///
336void LICM::HoistRegion(DomTreeNode *N) {
337  assert(N != 0 && "Null dominator tree node?");
338  BasicBlock *BB = N->getBlock();
339
340  // If this subregion is not in the top level loop at all, exit.
341  if (!CurLoop->contains(BB)) return;
342
343  // Only need to process the contents of this block if it is not part of a
344  // subloop (which would already have been processed).
345  if (!inSubLoop(BB))
346    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
347      Instruction &I = *II++;
348
349      // Try constant folding this instruction.  If all the operands are
350      // constants, it is technically hoistable, but it would be better to just
351      // fold it.
352      if (Constant *C = ConstantFoldInstruction(&I, TD, TLI)) {
353        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
354        CurAST->copyValue(&I, C);
355        CurAST->deleteValue(&I);
356        I.replaceAllUsesWith(C);
357        I.eraseFromParent();
358        continue;
359      }
360
361      // Try hoisting the instruction out to the preheader.  We can only do this
362      // if all of the operands of the instruction are loop invariant and if it
363      // is safe to hoist the instruction.
364      //
365      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
366          isSafeToExecuteUnconditionally(I))
367        hoist(I);
368    }
369
370  const std::vector<DomTreeNode*> &Children = N->getChildren();
371  for (unsigned i = 0, e = Children.size(); i != e; ++i)
372    HoistRegion(Children[i]);
373}
374
375/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
376/// instruction.
377///
378bool LICM::canSinkOrHoistInst(Instruction &I) {
379  // Loads have extra constraints we have to verify before we can hoist them.
380  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
381    if (!LI->isUnordered())
382      return false;        // Don't hoist volatile/atomic loads!
383
384    // Loads from constant memory are always safe to move, even if they end up
385    // in the same alias set as something that ends up being modified.
386    if (AA->pointsToConstantMemory(LI->getOperand(0)))
387      return true;
388    if (LI->getMetadata("invariant.load"))
389      return true;
390
391    // Don't hoist loads which have may-aliased stores in loop.
392    uint64_t Size = 0;
393    if (LI->getType()->isSized())
394      Size = AA->getTypeStoreSize(LI->getType());
395    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
396                                     LI->getMetadata(LLVMContext::MD_tbaa));
397  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
398    // Don't sink or hoist dbg info; it's legal, but not useful.
399    if (isa<DbgInfoIntrinsic>(I))
400      return false;
401
402    // Handle simple cases by querying alias analysis.
403    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
404    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
405      return true;
406    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
407      // If this call only reads from memory and there are no writes to memory
408      // in the loop, we can hoist or sink the call as appropriate.
409      bool FoundMod = false;
410      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
411           I != E; ++I) {
412        AliasSet &AS = *I;
413        if (!AS.isForwardingAliasSet() && AS.isMod()) {
414          FoundMod = true;
415          break;
416        }
417      }
418      if (!FoundMod) return true;
419    }
420
421    // FIXME: This should use mod/ref information to see if we can hoist or sink
422    // the call.
423
424    return false;
425  }
426
427  // Otherwise these instructions are hoistable/sinkable
428  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
429         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
430         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
431         isa<ShuffleVectorInst>(I);
432}
433
434/// isNotUsedInLoop - Return true if the only users of this instruction are
435/// outside of the loop.  If this is true, we can sink the instruction to the
436/// exit blocks of the loop.
437///
438bool LICM::isNotUsedInLoop(Instruction &I) {
439  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
440    Instruction *User = cast<Instruction>(*UI);
441    if (PHINode *PN = dyn_cast<PHINode>(User)) {
442      // PHI node uses occur in predecessor blocks!
443      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
444        if (PN->getIncomingValue(i) == &I)
445          if (CurLoop->contains(PN->getIncomingBlock(i)))
446            return false;
447    } else if (CurLoop->contains(User)) {
448      return false;
449    }
450  }
451  return true;
452}
453
454
455/// sink - When an instruction is found to only be used outside of the loop,
456/// this function moves it to the exit blocks and patches up SSA form as needed.
457/// This method is guaranteed to remove the original instruction from its
458/// position, and may either delete it or move it to outside of the loop.
459///
460void LICM::sink(Instruction &I) {
461  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
462
463  SmallVector<BasicBlock*, 8> ExitBlocks;
464  CurLoop->getUniqueExitBlocks(ExitBlocks);
465
466  if (isa<LoadInst>(I)) ++NumMovedLoads;
467  else if (isa<CallInst>(I)) ++NumMovedCalls;
468  ++NumSunk;
469  Changed = true;
470
471  // The case where there is only a single exit node of this loop is common
472  // enough that we handle it as a special (more efficient) case.  It is more
473  // efficient to handle because there are no PHI nodes that need to be placed.
474  if (ExitBlocks.size() == 1) {
475    if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
476      // Instruction is not used, just delete it.
477      CurAST->deleteValue(&I);
478      // If I has users in unreachable blocks, eliminate.
479      // If I is not void type then replaceAllUsesWith undef.
480      // This allows ValueHandlers and custom metadata to adjust itself.
481      if (!I.use_empty())
482        I.replaceAllUsesWith(UndefValue::get(I.getType()));
483      I.eraseFromParent();
484    } else {
485      // Move the instruction to the start of the exit block, after any PHI
486      // nodes in it.
487      I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
488
489      // This instruction is no longer in the AST for the current loop, because
490      // we just sunk it out of the loop.  If we just sunk it into an outer
491      // loop, we will rediscover the operation when we process it.
492      CurAST->deleteValue(&I);
493    }
494    return;
495  }
496
497  if (ExitBlocks.empty()) {
498    // The instruction is actually dead if there ARE NO exit blocks.
499    CurAST->deleteValue(&I);
500    // If I has users in unreachable blocks, eliminate.
501    // If I is not void type then replaceAllUsesWith undef.
502    // This allows ValueHandlers and custom metadata to adjust itself.
503    if (!I.use_empty())
504      I.replaceAllUsesWith(UndefValue::get(I.getType()));
505    I.eraseFromParent();
506    return;
507  }
508
509  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
510  // hard work of inserting PHI nodes as necessary.
511  SmallVector<PHINode*, 8> NewPHIs;
512  SSAUpdater SSA(&NewPHIs);
513
514  if (!I.use_empty())
515    SSA.Initialize(I.getType(), I.getName());
516
517  // Insert a copy of the instruction in each exit block of the loop that is
518  // dominated by the instruction.  Each exit block is known to only be in the
519  // ExitBlocks list once.
520  BasicBlock *InstOrigBB = I.getParent();
521  unsigned NumInserted = 0;
522
523  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
524    BasicBlock *ExitBlock = ExitBlocks[i];
525
526    if (!DT->dominates(InstOrigBB, ExitBlock))
527      continue;
528
529    // Insert the code after the last PHI node.
530    BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
531
532    // If this is the first exit block processed, just move the original
533    // instruction, otherwise clone the original instruction and insert
534    // the copy.
535    Instruction *New;
536    if (NumInserted++ == 0) {
537      I.moveBefore(InsertPt);
538      New = &I;
539    } else {
540      New = I.clone();
541      if (!I.getName().empty())
542        New->setName(I.getName()+".le");
543      ExitBlock->getInstList().insert(InsertPt, New);
544    }
545
546    // Now that we have inserted the instruction, inform SSAUpdater.
547    if (!I.use_empty())
548      SSA.AddAvailableValue(ExitBlock, New);
549  }
550
551  // If the instruction doesn't dominate any exit blocks, it must be dead.
552  if (NumInserted == 0) {
553    CurAST->deleteValue(&I);
554    if (!I.use_empty())
555      I.replaceAllUsesWith(UndefValue::get(I.getType()));
556    I.eraseFromParent();
557    return;
558  }
559
560  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
561  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
562    // Grab the use before incrementing the iterator.
563    Use &U = UI.getUse();
564    // Increment the iterator before removing the use from the list.
565    ++UI;
566    SSA.RewriteUseAfterInsertions(U);
567  }
568
569  // Update CurAST for NewPHIs if I had pointer type.
570  if (I.getType()->isPointerTy())
571    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
572      CurAST->copyValue(&I, NewPHIs[i]);
573
574  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
575  CurAST->deleteValue(&I);
576}
577
578/// hoist - When an instruction is found to only use loop invariant operands
579/// that is safe to hoist, this instruction is called to do the dirty work.
580///
581void LICM::hoist(Instruction &I) {
582  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
583        << I << "\n");
584
585  // Move the new node to the Preheader, before its terminator.
586  I.moveBefore(Preheader->getTerminator());
587
588  if (isa<LoadInst>(I)) ++NumMovedLoads;
589  else if (isa<CallInst>(I)) ++NumMovedCalls;
590  ++NumHoisted;
591  Changed = true;
592}
593
594/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
595/// not a trapping instruction or if it is a trapping instruction and is
596/// guaranteed to execute.
597///
598bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
599  // If it is not a trapping instruction, it is always safe to hoist.
600  if (isSafeToSpeculativelyExecute(&Inst))
601    return true;
602
603  return isGuaranteedToExecute(Inst);
604}
605
606bool LICM::isGuaranteedToExecute(Instruction &Inst) {
607  // Otherwise we have to check to make sure that the instruction dominates all
608  // of the exit blocks.  If it doesn't, then there is a path out of the loop
609  // which does not execute this instruction, so we can't hoist it.
610
611  // If the instruction is in the header block for the loop (which is very
612  // common), it is always guaranteed to dominate the exit blocks.  Since this
613  // is a common case, and can save some work, check it now.
614  if (Inst.getParent() == CurLoop->getHeader())
615    return true;
616
617  // Get the exit blocks for the current loop.
618  SmallVector<BasicBlock*, 8> ExitBlocks;
619  CurLoop->getExitBlocks(ExitBlocks);
620
621  // Verify that the block dominates each of the exit blocks of the loop.
622  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
623    if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
624      return false;
625
626  // As a degenerate case, if the loop is statically infinite then we haven't
627  // proven anything since there are no exit blocks.
628  if (ExitBlocks.empty())
629    return false;
630
631  return true;
632}
633
634namespace {
635  class LoopPromoter : public LoadAndStorePromoter {
636    Value *SomePtr;  // Designated pointer to store to.
637    SmallPtrSet<Value*, 4> &PointerMustAliases;
638    SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
639    SmallVectorImpl<Instruction*> &LoopInsertPts;
640    AliasSetTracker &AST;
641    DebugLoc DL;
642    int Alignment;
643  public:
644    LoopPromoter(Value *SP,
645                 const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
646                 SmallPtrSet<Value*, 4> &PMA,
647                 SmallVectorImpl<BasicBlock*> &LEB,
648                 SmallVectorImpl<Instruction*> &LIP,
649                 AliasSetTracker &ast, DebugLoc dl, int alignment)
650      : LoadAndStorePromoter(Insts, S), SomePtr(SP),
651        PointerMustAliases(PMA), LoopExitBlocks(LEB), LoopInsertPts(LIP),
652        AST(ast), DL(dl), Alignment(alignment) {}
653
654    virtual bool isInstInList(Instruction *I,
655                              const SmallVectorImpl<Instruction*> &) const {
656      Value *Ptr;
657      if (LoadInst *LI = dyn_cast<LoadInst>(I))
658        Ptr = LI->getOperand(0);
659      else
660        Ptr = cast<StoreInst>(I)->getPointerOperand();
661      return PointerMustAliases.count(Ptr);
662    }
663
664    virtual void doExtraRewritesBeforeFinalDeletion() const {
665      // Insert stores after in the loop exit blocks.  Each exit block gets a
666      // store of the live-out values that feed them.  Since we've already told
667      // the SSA updater about the defs in the loop and the preheader
668      // definition, it is all set and we can start using it.
669      for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
670        BasicBlock *ExitBlock = LoopExitBlocks[i];
671        Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
672        Instruction *InsertPos = LoopInsertPts[i];
673        StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
674        NewSI->setAlignment(Alignment);
675        NewSI->setDebugLoc(DL);
676      }
677    }
678
679    virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
680      // Update alias analysis.
681      AST.copyValue(LI, V);
682    }
683    virtual void instructionDeleted(Instruction *I) const {
684      AST.deleteValue(I);
685    }
686  };
687} // end anon namespace
688
689/// PromoteAliasSet - Try to promote memory values to scalars by sinking
690/// stores out of the loop and moving loads to before the loop.  We do this by
691/// looping over the stores in the loop, looking for stores to Must pointers
692/// which are loop invariant.
693///
694void LICM::PromoteAliasSet(AliasSet &AS,
695                           SmallVectorImpl<BasicBlock*> &ExitBlocks,
696                           SmallVectorImpl<Instruction*> &InsertPts) {
697  // We can promote this alias set if it has a store, if it is a "Must" alias
698  // set, if the pointer is loop invariant, and if we are not eliminating any
699  // volatile loads or stores.
700  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
701      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
702    return;
703
704  assert(!AS.empty() &&
705         "Must alias set should have at least one pointer element in it!");
706  Value *SomePtr = AS.begin()->getValue();
707
708  // It isn't safe to promote a load/store from the loop if the load/store is
709  // conditional.  For example, turning:
710  //
711  //    for () { if (c) *P += 1; }
712  //
713  // into:
714  //
715  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
716  //
717  // is not safe, because *P may only be valid to access if 'c' is true.
718  //
719  // It is safe to promote P if all uses are direct load/stores and if at
720  // least one is guaranteed to be executed.
721  bool GuaranteedToExecute = false;
722
723  SmallVector<Instruction*, 64> LoopUses;
724  SmallPtrSet<Value*, 4> PointerMustAliases;
725
726  // We start with an alignment of one and try to find instructions that allow
727  // us to prove better alignment.
728  unsigned Alignment = 1;
729
730  // Check that all of the pointers in the alias set have the same type.  We
731  // cannot (yet) promote a memory location that is loaded and stored in
732  // different sizes.
733  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
734    Value *ASIV = ASI->getValue();
735    PointerMustAliases.insert(ASIV);
736
737    // Check that all of the pointers in the alias set have the same type.  We
738    // cannot (yet) promote a memory location that is loaded and stored in
739    // different sizes.
740    if (SomePtr->getType() != ASIV->getType())
741      return;
742
743    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
744         UI != UE; ++UI) {
745      // Ignore instructions that are outside the loop.
746      Instruction *Use = dyn_cast<Instruction>(*UI);
747      if (!Use || !CurLoop->contains(Use))
748        continue;
749
750      // If there is an non-load/store instruction in the loop, we can't promote
751      // it.
752      if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
753        assert(!load->isVolatile() && "AST broken");
754        if (!load->isSimple())
755          return;
756      } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
757        // Stores *of* the pointer are not interesting, only stores *to* the
758        // pointer.
759        if (Use->getOperand(1) != ASIV)
760          continue;
761        assert(!store->isVolatile() && "AST broken");
762        if (!store->isSimple())
763          return;
764
765        // Note that we only check GuaranteedToExecute inside the store case
766        // so that we do not introduce stores where they did not exist before
767        // (which would break the LLVM concurrency model).
768
769        // If the alignment of this instruction allows us to specify a more
770        // restrictive (and performant) alignment and if we are sure this
771        // instruction will be executed, update the alignment.
772        // Larger is better, with the exception of 0 being the best alignment.
773        unsigned InstAlignment = store->getAlignment();
774        if ((InstAlignment > Alignment || InstAlignment == 0)
775            && (Alignment != 0))
776          if (isGuaranteedToExecute(*Use)) {
777            GuaranteedToExecute = true;
778            Alignment = InstAlignment;
779          }
780
781        if (!GuaranteedToExecute)
782          GuaranteedToExecute = isGuaranteedToExecute(*Use);
783
784      } else
785        return; // Not a load or store.
786
787      LoopUses.push_back(Use);
788    }
789  }
790
791  // If there isn't a guaranteed-to-execute instruction, we can't promote.
792  if (!GuaranteedToExecute)
793    return;
794
795  // Otherwise, this is safe to promote, lets do it!
796  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
797  Changed = true;
798  ++NumPromoted;
799
800  // Grab a debug location for the inserted loads/stores; given that the
801  // inserted loads/stores have little relation to the original loads/stores,
802  // this code just arbitrarily picks a location from one, since any debug
803  // location is better than none.
804  DebugLoc DL = LoopUses[0]->getDebugLoc();
805
806  // Figure out the loop exits and their insertion points, if this is the
807  // first promotion.
808  if (ExitBlocks.empty()) {
809    CurLoop->getUniqueExitBlocks(ExitBlocks);
810    InsertPts.resize(ExitBlocks.size());
811    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
812      InsertPts[i] = ExitBlocks[i]->getFirstInsertionPt();
813  }
814
815  // We use the SSAUpdater interface to insert phi nodes as required.
816  SmallVector<PHINode*, 16> NewPHIs;
817  SSAUpdater SSA(&NewPHIs);
818  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
819                        InsertPts, *CurAST, DL, Alignment);
820
821  // Set up the preheader to have a definition of the value.  It is the live-out
822  // value from the preheader that uses in the loop will use.
823  LoadInst *PreheaderLoad =
824    new LoadInst(SomePtr, SomePtr->getName()+".promoted",
825                 Preheader->getTerminator());
826  PreheaderLoad->setAlignment(Alignment);
827  PreheaderLoad->setDebugLoc(DL);
828  SSA.AddAvailableValue(Preheader, PreheaderLoad);
829
830  // Rewrite all the loads in the loop and remember all the definitions from
831  // stores in the loop.
832  Promoter.run(LoopUses);
833
834  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
835  if (PreheaderLoad->use_empty())
836    PreheaderLoad->eraseFromParent();
837}
838
839
840/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
841void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
842  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
843  if (!AST)
844    return;
845
846  AST->copyValue(From, To);
847}
848
849/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
850/// set.
851void LICM::deleteAnalysisValue(Value *V, Loop *L) {
852  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
853  if (!AST)
854    return;
855
856  AST->deleteValue(V);
857}
858