LICM.cpp revision adc581f5cb6bdb929b1c6a155c330151ebd3bf72
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/AliasSetTracker.h"
41#include "llvm/Analysis/ConstantFolding.h"
42#include "llvm/Analysis/LoopInfo.h"
43#include "llvm/Analysis/LoopPass.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66namespace {
67  struct LICM : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LICM() : LoopPass(ID) {}
70
71    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
72
73    /// This transformation requires natural loop information & requires that
74    /// loop preheaders be inserted into the CFG...
75    ///
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<LoopInfo>();
80      AU.addRequiredID(LoopSimplifyID);
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<AliasAnalysis>();
83      AU.addPreserved<ScalarEvolution>();
84      AU.addPreservedID(LoopSimplifyID);
85    }
86
87    bool doFinalization() {
88      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
89      return false;
90    }
91
92  private:
93    AliasAnalysis *AA;       // Current AliasAnalysis information
94    LoopInfo      *LI;       // Current LoopInfo
95    DominatorTree *DT;       // Dominator Tree for the current Loop.
96
97    // State that is updated as we process loops.
98    bool Changed;            // Set to true when we change anything.
99    BasicBlock *Preheader;   // The preheader block of the current loop...
100    Loop *CurLoop;           // The current loop we are working on...
101    AliasSetTracker *CurAST; // AliasSet information for the current loop...
102    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
103
104    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
105    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
106
107    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
108    /// set.
109    void deleteAnalysisValue(Value *V, Loop *L);
110
111    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
112    /// dominated by the specified block, and that are in the current loop) in
113    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
114    /// visit uses before definitions, allowing us to sink a loop body in one
115    /// pass without iteration.
116    ///
117    void SinkRegion(DomTreeNode *N);
118
119    /// HoistRegion - Walk the specified region of the CFG (defined by all
120    /// blocks dominated by the specified block, and that are in the current
121    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
122    /// visit definitions before uses, allowing us to hoist a loop body in one
123    /// pass without iteration.
124    ///
125    void HoistRegion(DomTreeNode *N);
126
127    /// inSubLoop - Little predicate that returns true if the specified basic
128    /// block is in a subloop of the current one, not the current one itself.
129    ///
130    bool inSubLoop(BasicBlock *BB) {
131      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
132      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
133        if ((*I)->contains(BB))
134          return true;  // A subloop actually contains this block!
135      return false;
136    }
137
138    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
139    /// specified exit block of the loop is dominated by the specified block
140    /// that is in the body of the loop.  We use these constraints to
141    /// dramatically limit the amount of the dominator tree that needs to be
142    /// searched.
143    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
144                                           BasicBlock *BlockInLoop) const {
145      // If the block in the loop is the loop header, it must be dominated!
146      BasicBlock *LoopHeader = CurLoop->getHeader();
147      if (BlockInLoop == LoopHeader)
148        return true;
149
150      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
151      DomTreeNode *IDom            = DT->getNode(ExitBlock);
152
153      // Because the exit block is not in the loop, we know we have to get _at
154      // least_ its immediate dominator.
155      IDom = IDom->getIDom();
156
157      while (IDom && IDom != BlockInLoopNode) {
158        // If we have got to the header of the loop, then the instructions block
159        // did not dominate the exit node, so we can't hoist it.
160        if (IDom->getBlock() == LoopHeader)
161          return false;
162
163        // Get next Immediate Dominator.
164        IDom = IDom->getIDom();
165      };
166
167      return true;
168    }
169
170    /// sink - When an instruction is found to only be used outside of the loop,
171    /// this function moves it to the exit blocks and patches up SSA form as
172    /// needed.
173    ///
174    void sink(Instruction &I);
175
176    /// hoist - When an instruction is found to only use loop invariant operands
177    /// that is safe to hoist, this instruction is called to do the dirty work.
178    ///
179    void hoist(Instruction &I);
180
181    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
182    /// is not a trapping instruction or if it is a trapping instruction and is
183    /// guaranteed to execute.
184    ///
185    bool isSafeToExecuteUnconditionally(Instruction &I);
186
187    /// pointerInvalidatedByLoop - Return true if the body of this loop may
188    /// store into the memory location pointed to by V.
189    ///
190    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
191      // Check to see if any of the basic blocks in CurLoop invalidate *V.
192      return CurAST->getAliasSetForPointer(V, Size).isMod();
193    }
194
195    bool canSinkOrHoistInst(Instruction &I);
196    bool isLoopInvariantInst(Instruction &I);
197    bool isNotUsedInLoop(Instruction &I);
198
199    void PromoteAliasSet(AliasSet &AS);
200  };
201}
202
203char LICM::ID = 0;
204INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
205
206Pass *llvm::createLICMPass() { return new LICM(); }
207
208/// Hoist expressions out of the specified loop. Note, alias info for inner
209/// loop is not preserved so it is not a good idea to run LICM multiple
210/// times on one loop.
211///
212bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
213  Changed = false;
214
215  // Get our Loop and Alias Analysis information...
216  LI = &getAnalysis<LoopInfo>();
217  AA = &getAnalysis<AliasAnalysis>();
218  DT = &getAnalysis<DominatorTree>();
219
220  CurAST = new AliasSetTracker(*AA);
221  // Collect Alias info from subloops.
222  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
223       LoopItr != LoopItrE; ++LoopItr) {
224    Loop *InnerL = *LoopItr;
225    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
226    assert(InnerAST && "Where is my AST?");
227
228    // What if InnerLoop was modified by other passes ?
229    CurAST->add(*InnerAST);
230
231    // Once we've incorporated the inner loop's AST into ours, we don't need the
232    // subloop's anymore.
233    delete InnerAST;
234    LoopToAliasSetMap.erase(InnerL);
235  }
236
237  CurLoop = L;
238
239  // Get the preheader block to move instructions into...
240  Preheader = L->getLoopPreheader();
241
242  // Loop over the body of this loop, looking for calls, invokes, and stores.
243  // Because subloops have already been incorporated into AST, we skip blocks in
244  // subloops.
245  //
246  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
247       I != E; ++I) {
248    BasicBlock *BB = *I;
249    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
250      CurAST->add(*BB);                 // Incorporate the specified basic block
251  }
252
253  // We want to visit all of the instructions in this loop... that are not parts
254  // of our subloops (they have already had their invariants hoisted out of
255  // their loop, into this loop, so there is no need to process the BODIES of
256  // the subloops).
257  //
258  // Traverse the body of the loop in depth first order on the dominator tree so
259  // that we are guaranteed to see definitions before we see uses.  This allows
260  // us to sink instructions in one pass, without iteration.  After sinking
261  // instructions, we perform another pass to hoist them out of the loop.
262  //
263  if (L->hasDedicatedExits())
264    SinkRegion(DT->getNode(L->getHeader()));
265  if (Preheader)
266    HoistRegion(DT->getNode(L->getHeader()));
267
268  // Now that all loop invariants have been removed from the loop, promote any
269  // memory references to scalars that we can.
270  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
271    // Loop over all of the alias sets in the tracker object.
272    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
273         I != E; ++I)
274      PromoteAliasSet(*I);
275  }
276
277  // Clear out loops state information for the next iteration
278  CurLoop = 0;
279  Preheader = 0;
280
281  // If this loop is nested inside of another one, save the alias information
282  // for when we process the outer loop.
283  if (L->getParentLoop())
284    LoopToAliasSetMap[L] = CurAST;
285  else
286    delete CurAST;
287  return Changed;
288}
289
290/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
291/// dominated by the specified block, and that are in the current loop) in
292/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
293/// uses before definitions, allowing us to sink a loop body in one pass without
294/// iteration.
295///
296void LICM::SinkRegion(DomTreeNode *N) {
297  assert(N != 0 && "Null dominator tree node?");
298  BasicBlock *BB = N->getBlock();
299
300  // If this subregion is not in the top level loop at all, exit.
301  if (!CurLoop->contains(BB)) return;
302
303  // We are processing blocks in reverse dfo, so process children first.
304  const std::vector<DomTreeNode*> &Children = N->getChildren();
305  for (unsigned i = 0, e = Children.size(); i != e; ++i)
306    SinkRegion(Children[i]);
307
308  // Only need to process the contents of this block if it is not part of a
309  // subloop (which would already have been processed).
310  if (inSubLoop(BB)) return;
311
312  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
313    Instruction &I = *--II;
314
315    // If the instruction is dead, we would try to sink it because it isn't used
316    // in the loop, instead, just delete it.
317    if (isInstructionTriviallyDead(&I)) {
318      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
319      ++II;
320      CurAST->deleteValue(&I);
321      I.eraseFromParent();
322      Changed = true;
323      continue;
324    }
325
326    // Check to see if we can sink this instruction to the exit blocks
327    // of the loop.  We can do this if the all users of the instruction are
328    // outside of the loop.  In this case, it doesn't even matter if the
329    // operands of the instruction are loop invariant.
330    //
331    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
332      ++II;
333      sink(I);
334    }
335  }
336}
337
338/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
339/// dominated by the specified block, and that are in the current loop) in depth
340/// first order w.r.t the DominatorTree.  This allows us to visit definitions
341/// before uses, allowing us to hoist a loop body in one pass without iteration.
342///
343void LICM::HoistRegion(DomTreeNode *N) {
344  assert(N != 0 && "Null dominator tree node?");
345  BasicBlock *BB = N->getBlock();
346
347  // If this subregion is not in the top level loop at all, exit.
348  if (!CurLoop->contains(BB)) return;
349
350  // Only need to process the contents of this block if it is not part of a
351  // subloop (which would already have been processed).
352  if (!inSubLoop(BB))
353    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
354      Instruction &I = *II++;
355
356      // Try constant folding this instruction.  If all the operands are
357      // constants, it is technically hoistable, but it would be better to just
358      // fold it.
359      if (Constant *C = ConstantFoldInstruction(&I)) {
360        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
361        CurAST->copyValue(&I, C);
362        CurAST->deleteValue(&I);
363        I.replaceAllUsesWith(C);
364        I.eraseFromParent();
365        continue;
366      }
367
368      // Try hoisting the instruction out to the preheader.  We can only do this
369      // if all of the operands of the instruction are loop invariant and if it
370      // is safe to hoist the instruction.
371      //
372      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
373          isSafeToExecuteUnconditionally(I))
374        hoist(I);
375    }
376
377  const std::vector<DomTreeNode*> &Children = N->getChildren();
378  for (unsigned i = 0, e = Children.size(); i != e; ++i)
379    HoistRegion(Children[i]);
380}
381
382/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
383/// instruction.
384///
385bool LICM::canSinkOrHoistInst(Instruction &I) {
386  // Loads have extra constraints we have to verify before we can hoist them.
387  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
388    if (LI->isVolatile())
389      return false;        // Don't hoist volatile loads!
390
391    // Loads from constant memory are always safe to move, even if they end up
392    // in the same alias set as something that ends up being modified.
393    if (AA->pointsToConstantMemory(LI->getOperand(0)))
394      return true;
395
396    // Don't hoist loads which have may-aliased stores in loop.
397    unsigned Size = 0;
398    if (LI->getType()->isSized())
399      Size = AA->getTypeStoreSize(LI->getType());
400    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
401  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
402    // Handle obvious cases efficiently.
403    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
404    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
405      return true;
406    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
407      // If this call only reads from memory and there are no writes to memory
408      // in the loop, we can hoist or sink the call as appropriate.
409      bool FoundMod = false;
410      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
411           I != E; ++I) {
412        AliasSet &AS = *I;
413        if (!AS.isForwardingAliasSet() && AS.isMod()) {
414          FoundMod = true;
415          break;
416        }
417      }
418      if (!FoundMod) return true;
419    }
420
421    // FIXME: This should use mod/ref information to see if we can hoist or sink
422    // the call.
423
424    return false;
425  }
426
427  // Otherwise these instructions are hoistable/sinkable
428  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
429         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
430         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
431         isa<ShuffleVectorInst>(I);
432}
433
434/// isNotUsedInLoop - Return true if the only users of this instruction are
435/// outside of the loop.  If this is true, we can sink the instruction to the
436/// exit blocks of the loop.
437///
438bool LICM::isNotUsedInLoop(Instruction &I) {
439  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
440    Instruction *User = cast<Instruction>(*UI);
441    if (PHINode *PN = dyn_cast<PHINode>(User)) {
442      // PHI node uses occur in predecessor blocks!
443      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
444        if (PN->getIncomingValue(i) == &I)
445          if (CurLoop->contains(PN->getIncomingBlock(i)))
446            return false;
447    } else if (CurLoop->contains(User)) {
448      return false;
449    }
450  }
451  return true;
452}
453
454
455/// isLoopInvariantInst - Return true if all operands of this instruction are
456/// loop invariant.  We also filter out non-hoistable instructions here just for
457/// efficiency.
458///
459bool LICM::isLoopInvariantInst(Instruction &I) {
460  // The instruction is loop invariant if all of its operands are loop-invariant
461  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
462    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
463      return false;
464
465  // If we got this far, the instruction is loop invariant!
466  return true;
467}
468
469/// sink - When an instruction is found to only be used outside of the loop,
470/// this function moves it to the exit blocks and patches up SSA form as needed.
471/// This method is guaranteed to remove the original instruction from its
472/// position, and may either delete it or move it to outside of the loop.
473///
474void LICM::sink(Instruction &I) {
475  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
476
477  SmallVector<BasicBlock*, 8> ExitBlocks;
478  CurLoop->getUniqueExitBlocks(ExitBlocks);
479
480  if (isa<LoadInst>(I)) ++NumMovedLoads;
481  else if (isa<CallInst>(I)) ++NumMovedCalls;
482  ++NumSunk;
483  Changed = true;
484
485  // The case where there is only a single exit node of this loop is common
486  // enough that we handle it as a special (more efficient) case.  It is more
487  // efficient to handle because there are no PHI nodes that need to be placed.
488  if (ExitBlocks.size() == 1) {
489    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
490      // Instruction is not used, just delete it.
491      CurAST->deleteValue(&I);
492      // If I has users in unreachable blocks, eliminate.
493      // If I is not void type then replaceAllUsesWith undef.
494      // This allows ValueHandlers and custom metadata to adjust itself.
495      if (!I.use_empty())
496        I.replaceAllUsesWith(UndefValue::get(I.getType()));
497      I.eraseFromParent();
498    } else {
499      // Move the instruction to the start of the exit block, after any PHI
500      // nodes in it.
501      I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
502
503      // This instruction is no longer in the AST for the current loop, because
504      // we just sunk it out of the loop.  If we just sunk it into an outer
505      // loop, we will rediscover the operation when we process it.
506      CurAST->deleteValue(&I);
507    }
508    return;
509  }
510
511  if (ExitBlocks.empty()) {
512    // The instruction is actually dead if there ARE NO exit blocks.
513    CurAST->deleteValue(&I);
514    // If I has users in unreachable blocks, eliminate.
515    // If I is not void type then replaceAllUsesWith undef.
516    // This allows ValueHandlers and custom metadata to adjust itself.
517    if (!I.use_empty())
518      I.replaceAllUsesWith(UndefValue::get(I.getType()));
519    I.eraseFromParent();
520    return;
521  }
522
523  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
524  // hard work of inserting PHI nodes as necessary.
525  SmallVector<PHINode*, 8> NewPHIs;
526  SSAUpdater SSA(&NewPHIs);
527
528  if (!I.use_empty())
529    SSA.Initialize(&I);
530
531  // Insert a copy of the instruction in each exit block of the loop that is
532  // dominated by the instruction.  Each exit block is known to only be in the
533  // ExitBlocks list once.
534  BasicBlock *InstOrigBB = I.getParent();
535  unsigned NumInserted = 0;
536
537  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
538    BasicBlock *ExitBlock = ExitBlocks[i];
539
540    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
541      continue;
542
543    // Insert the code after the last PHI node.
544    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
545
546    // If this is the first exit block processed, just move the original
547    // instruction, otherwise clone the original instruction and insert
548    // the copy.
549    Instruction *New;
550    if (NumInserted++ == 0) {
551      I.moveBefore(InsertPt);
552      New = &I;
553    } else {
554      New = I.clone();
555      if (!I.getName().empty())
556        New->setName(I.getName()+".le");
557      ExitBlock->getInstList().insert(InsertPt, New);
558    }
559
560    // Now that we have inserted the instruction, inform SSAUpdater.
561    if (!I.use_empty())
562      SSA.AddAvailableValue(ExitBlock, New);
563  }
564
565  // If the instruction doesn't dominate any exit blocks, it must be dead.
566  if (NumInserted == 0) {
567    CurAST->deleteValue(&I);
568    if (!I.use_empty())
569      I.replaceAllUsesWith(UndefValue::get(I.getType()));
570    I.eraseFromParent();
571    return;
572  }
573
574  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
575  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
576    // Grab the use before incrementing the iterator.
577    Use &U = UI.getUse();
578    // Increment the iterator before removing the use from the list.
579    ++UI;
580    SSA.RewriteUseAfterInsertions(U);
581  }
582
583  // Update CurAST for NewPHIs if I had pointer type.
584  if (I.getType()->isPointerTy())
585    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
586      CurAST->copyValue(NewPHIs[i], &I);
587
588  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
589  CurAST->deleteValue(&I);
590}
591
592/// hoist - When an instruction is found to only use loop invariant operands
593/// that is safe to hoist, this instruction is called to do the dirty work.
594///
595void LICM::hoist(Instruction &I) {
596  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
597        << I << "\n");
598
599  // Move the new node to the Preheader, before its terminator.
600  I.moveBefore(Preheader->getTerminator());
601
602  if (isa<LoadInst>(I)) ++NumMovedLoads;
603  else if (isa<CallInst>(I)) ++NumMovedCalls;
604  ++NumHoisted;
605  Changed = true;
606}
607
608/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
609/// not a trapping instruction or if it is a trapping instruction and is
610/// guaranteed to execute.
611///
612bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
613  // If it is not a trapping instruction, it is always safe to hoist.
614  if (Inst.isSafeToSpeculativelyExecute())
615    return true;
616
617  // Otherwise we have to check to make sure that the instruction dominates all
618  // of the exit blocks.  If it doesn't, then there is a path out of the loop
619  // which does not execute this instruction, so we can't hoist it.
620
621  // If the instruction is in the header block for the loop (which is very
622  // common), it is always guaranteed to dominate the exit blocks.  Since this
623  // is a common case, and can save some work, check it now.
624  if (Inst.getParent() == CurLoop->getHeader())
625    return true;
626
627  // Get the exit blocks for the current loop.
628  SmallVector<BasicBlock*, 8> ExitBlocks;
629  CurLoop->getExitBlocks(ExitBlocks);
630
631  // For each exit block, get the DT node and walk up the DT until the
632  // instruction's basic block is found or we exit the loop.
633  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
634    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
635      return false;
636
637  return true;
638}
639
640/// PromoteAliasSet - Try to promote memory values to scalars by sinking
641/// stores out of the loop and moving loads to before the loop.  We do this by
642/// looping over the stores in the loop, looking for stores to Must pointers
643/// which are loop invariant.
644///
645void LICM::PromoteAliasSet(AliasSet &AS) {
646  // We can promote this alias set if it has a store, if it is a "Must" alias
647  // set, if the pointer is loop invariant, and if we are not eliminating any
648  // volatile loads or stores.
649  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
650      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
651    return;
652
653  assert(!AS.empty() &&
654         "Must alias set should have at least one pointer element in it!");
655  Value *SomePtr = AS.begin()->getValue();
656
657  // It isn't safe to promote a load/store from the loop if the load/store is
658  // conditional.  For example, turning:
659  //
660  //    for () { if (c) *P += 1; }
661  //
662  // into:
663  //
664  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
665  //
666  // is not safe, because *P may only be valid to access if 'c' is true.
667  //
668  // It is safe to promote P if all uses are direct load/stores and if at
669  // least one is guaranteed to be executed.
670  bool GuaranteedToExecute = false;
671
672  SmallVector<Instruction*, 64> LoopUses;
673  SmallPtrSet<Value*, 4> PointerMustAliases;
674
675  // Check that all of the pointers in the alias set have the same type.  We
676  // cannot (yet) promote a memory location that is loaded and stored in
677  // different sizes.
678  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
679    Value *ASIV = ASI->getValue();
680    PointerMustAliases.insert(ASIV);
681
682    // Check that all of the pointers in the alias set have the same type.  We
683    // cannot (yet) promote a memory location that is loaded and stored in
684    // different sizes.
685    if (SomePtr->getType() != ASIV->getType())
686      return;
687
688    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
689         UI != UE; ++UI) {
690      // Ignore instructions that are outside the loop.
691      Instruction *Use = dyn_cast<Instruction>(*UI);
692      if (!Use || !CurLoop->contains(Use))
693        continue;
694
695      // If there is an non-load/store instruction in the loop, we can't promote
696      // it.
697      if (isa<LoadInst>(Use))
698        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
699      else if (isa<StoreInst>(Use))
700        assert(!cast<StoreInst>(Use)->isVolatile() &&
701               Use->getOperand(0) != ASIV && "AST broken");
702      else
703        return; // Not a load or store.
704
705      if (!GuaranteedToExecute)
706        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
707
708      LoopUses.push_back(Use);
709    }
710  }
711
712  // If there isn't a guaranteed-to-execute instruction, we can't promote.
713  if (!GuaranteedToExecute)
714    return;
715
716  // Otherwise, this is safe to promote, lets do it!
717  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
718  Changed = true;
719  ++NumPromoted;
720
721  // We use the SSAUpdater interface to insert phi nodes as required.
722  SmallVector<PHINode*, 16> NewPHIs;
723  SSAUpdater SSA(&NewPHIs);
724
725  // It wants to know some value of the same type as what we'll be inserting.
726  Value *SomeValue;
727  if (isa<LoadInst>(LoopUses[0]))
728    SomeValue = LoopUses[0];
729  else
730    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
731  SSA.Initialize(SomeValue);
732
733  // First step: bucket up uses of the pointers by the block they occur in.
734  // This is important because we have to handle multiple defs/uses in a block
735  // ourselves: SSAUpdater is purely for cross-block references.
736  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
737  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
738  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
739    Instruction *User = LoopUses[i];
740    UsesByBlock[User->getParent()].push_back(User);
741  }
742
743  // Okay, now we can iterate over all the blocks in the loop with uses,
744  // processing them.  Keep track of which loads are loading a live-in value.
745  SmallVector<LoadInst*, 32> LiveInLoads;
746
747  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
748    Instruction *User = LoopUses[LoopUse];
749    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
750
751    // If this block has already been processed, ignore this repeat use.
752    if (BlockUses.empty()) continue;
753
754    // Okay, this is the first use in the block.  If this block just has a
755    // single user in it, we can rewrite it trivially.
756    if (BlockUses.size() == 1) {
757      // If it is a store, it is a trivial def of the value in the block.
758      if (isa<StoreInst>(User)) {
759        SSA.AddAvailableValue(User->getParent(),
760                              cast<StoreInst>(User)->getOperand(0));
761      } else {
762        // Otherwise it is a load, queue it to rewrite as a live-in load.
763        LiveInLoads.push_back(cast<LoadInst>(User));
764      }
765      BlockUses.clear();
766      continue;
767    }
768
769    // Otherwise, check to see if this block is all loads.  If so, we can queue
770    // them all as live in loads.
771    bool HasStore = false;
772    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
773      if (isa<StoreInst>(BlockUses[i])) {
774        HasStore = true;
775        break;
776      }
777    }
778
779    if (!HasStore) {
780      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
781        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
782      BlockUses.clear();
783      continue;
784    }
785
786    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
787    // Since SSAUpdater is purely for cross-block values, we need to determine
788    // the order of these instructions in the block.  If the first use in the
789    // block is a load, then it uses the live in value.  The last store defines
790    // the live out value.  We handle this by doing a linear scan of the block.
791    BasicBlock *BB = User->getParent();
792    Value *StoredValue = 0;
793    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
794      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
795        // If this is a load to an unrelated pointer, ignore it.
796        if (!PointerMustAliases.count(L->getOperand(0))) continue;
797
798        // If we haven't seen a store yet, this is a live in use, otherwise
799        // use the stored value.
800        if (StoredValue)
801          L->replaceAllUsesWith(StoredValue);
802        else
803          LiveInLoads.push_back(L);
804        continue;
805      }
806
807      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
808        // If this is a store to an unrelated pointer, ignore it.
809        if (!PointerMustAliases.count(S->getOperand(1))) continue;
810
811        // Remember that this is the active value in the block.
812        StoredValue = S->getOperand(0);
813      }
814    }
815
816    // The last stored value that happened is the live-out for the block.
817    assert(StoredValue && "Already checked that there is a store in block");
818    SSA.AddAvailableValue(BB, StoredValue);
819    BlockUses.clear();
820  }
821
822  // Now that all the intra-loop values are classified, set up the preheader.
823  // It gets a load of the pointer we're promoting, and it is the live-out value
824  // from the preheader.
825  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
826                                         Preheader->getTerminator());
827  SSA.AddAvailableValue(Preheader, PreheaderLoad);
828
829  // Now that the preheader is good to go, set up the exit blocks.  Each exit
830  // block gets a store of the live-out values that feed them.  Since we've
831  // already told the SSA updater about the defs in the loop and the preheader
832  // definition, it is all set and we can start using it.
833  SmallVector<BasicBlock*, 8> ExitBlocks;
834  CurLoop->getUniqueExitBlocks(ExitBlocks);
835  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
836    BasicBlock *ExitBlock = ExitBlocks[i];
837    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
838    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
839    new StoreInst(LiveInValue, SomePtr, InsertPos);
840  }
841
842  // Okay, now we rewrite all loads that use live-in values in the loop,
843  // inserting PHI nodes as necessary.
844  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
845    LoadInst *ALoad = LiveInLoads[i];
846    ALoad->replaceAllUsesWith(SSA.GetValueInMiddleOfBlock(ALoad->getParent()));
847  }
848
849  // Now that everything is rewritten, delete the old instructions from the body
850  // of the loop.  They should all be dead now.
851  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
852    Instruction *User = LoopUses[i];
853    CurAST->deleteValue(User);
854    User->eraseFromParent();
855  }
856
857  // If the preheader load is itself a pointer, we need to tell alias analysis
858  // about the new pointer we created in the preheader block and about any PHI
859  // nodes that just got inserted.
860  if (PreheaderLoad->getType()->isPointerTy()) {
861    // Copy any value stored to or loaded from a must-alias of the pointer.
862    CurAST->copyValue(SomeValue, PreheaderLoad);
863
864    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
865      CurAST->copyValue(SomeValue, NewPHIs[i]);
866  }
867
868  // fwew, we're done!
869}
870
871
872/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
873void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
874  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
875  if (!AST)
876    return;
877
878  AST->copyValue(From, To);
879}
880
881/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
882/// set.
883void LICM::deleteAnalysisValue(Value *V, Loop *L) {
884  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
885  if (!AST)
886    return;
887
888  AST->deleteValue(V);
889}
890