LICM.cpp revision d0ffa73924adb07dacfd560f7943a2433689497f
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/PromoteMemToReg.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61static cl::opt<bool>
62DisablePromotion("disable-licm-promotion", cl::Hidden,
63                 cl::desc("Disable memory promotion in LICM pass"));
64
65// This feature is currently disabled by default because CodeGen is not yet capable
66// of rematerializing these constants in PIC mode, so it can lead to degraded
67// performance. Compile test/CodeGen/X86/remat-constant.ll with
68// -relocation-model=pic to see an example of this.
69static cl::opt<bool>
70EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden,
71                         cl::desc("Enable hoisting/sinking of constant "
72                                  "global variables"));
73
74namespace {
75  struct VISIBILITY_HIDDEN LICM : public LoopPass {
76    static char ID; // Pass identification, replacement for typeid
77    LICM() : LoopPass(&ID) {}
78
79    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
80
81    /// This transformation requires natural loop information & requires that
82    /// loop preheaders be inserted into the CFG...
83    ///
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.setPreservesCFG();
86      AU.addRequiredID(LoopSimplifyID);
87      AU.addRequired<LoopInfo>();
88      AU.addRequired<DominatorTree>();
89      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
90      AU.addRequired<AliasAnalysis>();
91      AU.addPreserved<ScalarEvolution>();
92      AU.addPreserved<DominanceFrontier>();
93    }
94
95    bool doFinalization() {
96      // Free the values stored in the map
97      for (std::map<Loop *, AliasSetTracker *>::iterator
98             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
99        delete I->second;
100
101      LoopToAliasMap.clear();
102      return false;
103    }
104
105  private:
106    // Various analyses that we use...
107    AliasAnalysis *AA;       // Current AliasAnalysis information
108    LoopInfo      *LI;       // Current LoopInfo
109    DominatorTree *DT;       // Dominator Tree for the current Loop...
110    DominanceFrontier *DF;   // Current Dominance Frontier
111
112    // State that is updated as we process loops
113    bool Changed;            // Set to true when we change anything.
114    BasicBlock *Preheader;   // The preheader block of the current loop...
115    Loop *CurLoop;           // The current loop we are working on...
116    AliasSetTracker *CurAST; // AliasSet information for the current loop...
117    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
118
119    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
120    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
121
122    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
123    /// set.
124    void deleteAnalysisValue(Value *V, Loop *L);
125
126    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
127    /// dominated by the specified block, and that are in the current loop) in
128    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
129    /// visit uses before definitions, allowing us to sink a loop body in one
130    /// pass without iteration.
131    ///
132    void SinkRegion(DomTreeNode *N);
133
134    /// HoistRegion - Walk the specified region of the CFG (defined by all
135    /// blocks dominated by the specified block, and that are in the current
136    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
137    /// visit definitions before uses, allowing us to hoist a loop body in one
138    /// pass without iteration.
139    ///
140    void HoistRegion(DomTreeNode *N);
141
142    /// inSubLoop - Little predicate that returns true if the specified basic
143    /// block is in a subloop of the current one, not the current one itself.
144    ///
145    bool inSubLoop(BasicBlock *BB) {
146      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
147      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
148        if ((*I)->contains(BB))
149          return true;  // A subloop actually contains this block!
150      return false;
151    }
152
153    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
154    /// specified exit block of the loop is dominated by the specified block
155    /// that is in the body of the loop.  We use these constraints to
156    /// dramatically limit the amount of the dominator tree that needs to be
157    /// searched.
158    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
159                                           BasicBlock *BlockInLoop) const {
160      // If the block in the loop is the loop header, it must be dominated!
161      BasicBlock *LoopHeader = CurLoop->getHeader();
162      if (BlockInLoop == LoopHeader)
163        return true;
164
165      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
166      DomTreeNode *IDom            = DT->getNode(ExitBlock);
167
168      // Because the exit block is not in the loop, we know we have to get _at
169      // least_ its immediate dominator.
170      do {
171        // Get next Immediate Dominator.
172        IDom = IDom->getIDom();
173
174        // If we have got to the header of the loop, then the instructions block
175        // did not dominate the exit node, so we can't hoist it.
176        if (IDom->getBlock() == LoopHeader)
177          return false;
178
179      } while (IDom != BlockInLoopNode);
180
181      return true;
182    }
183
184    /// sink - When an instruction is found to only be used outside of the loop,
185    /// this function moves it to the exit blocks and patches up SSA form as
186    /// needed.
187    ///
188    void sink(Instruction &I);
189
190    /// hoist - When an instruction is found to only use loop invariant operands
191    /// that is safe to hoist, this instruction is called to do the dirty work.
192    ///
193    void hoist(Instruction &I);
194
195    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
196    /// is not a trapping instruction or if it is a trapping instruction and is
197    /// guaranteed to execute.
198    ///
199    bool isSafeToExecuteUnconditionally(Instruction &I);
200
201    /// pointerInvalidatedByLoop - Return true if the body of this loop may
202    /// store into the memory location pointed to by V.
203    ///
204    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
205      // Check to see if any of the basic blocks in CurLoop invalidate *V.
206      return CurAST->getAliasSetForPointer(V, Size).isMod();
207    }
208
209    bool canSinkOrHoistInst(Instruction &I);
210    bool isLoopInvariantInst(Instruction &I);
211    bool isNotUsedInLoop(Instruction &I);
212
213    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
214    /// to scalars as we can.
215    ///
216    void PromoteValuesInLoop();
217
218    /// FindPromotableValuesInLoop - Check the current loop for stores to
219    /// definite pointers, which are not loaded and stored through may aliases.
220    /// If these are found, create an alloca for the value, add it to the
221    /// PromotedValues list, and keep track of the mapping from value to
222    /// alloca...
223    ///
224    void FindPromotableValuesInLoop(
225                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
226                                    std::map<Value*, AllocaInst*> &Val2AlMap);
227  };
228}
229
230char LICM::ID = 0;
231static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
232
233Pass *llvm::createLICMPass() { return new LICM(); }
234
235/// Hoist expressions out of the specified loop. Note, alias info for inner
236/// loop is not preserved so it is not a good idea to run LICM multiple
237/// times on one loop.
238///
239bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
240  Changed = false;
241
242  // Get our Loop and Alias Analysis information...
243  LI = &getAnalysis<LoopInfo>();
244  AA = &getAnalysis<AliasAnalysis>();
245  DF = &getAnalysis<DominanceFrontier>();
246  DT = &getAnalysis<DominatorTree>();
247
248  CurAST = new AliasSetTracker(*AA);
249  // Collect Alias info from subloops
250  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
251       LoopItr != LoopItrE; ++LoopItr) {
252    Loop *InnerL = *LoopItr;
253    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
254    assert (InnerAST && "Where is my AST?");
255
256    // What if InnerLoop was modified by other passes ?
257    CurAST->add(*InnerAST);
258  }
259
260  CurLoop = L;
261
262  // Get the preheader block to move instructions into...
263  Preheader = L->getLoopPreheader();
264  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
265
266  // Loop over the body of this loop, looking for calls, invokes, and stores.
267  // Because subloops have already been incorporated into AST, we skip blocks in
268  // subloops.
269  //
270  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
271       I != E; ++I) {
272    BasicBlock *BB = *I;
273    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
274      CurAST->add(*BB);                 // Incorporate the specified basic block
275  }
276
277  // We want to visit all of the instructions in this loop... that are not parts
278  // of our subloops (they have already had their invariants hoisted out of
279  // their loop, into this loop, so there is no need to process the BODIES of
280  // the subloops).
281  //
282  // Traverse the body of the loop in depth first order on the dominator tree so
283  // that we are guaranteed to see definitions before we see uses.  This allows
284  // us to sink instructions in one pass, without iteration.  After sinking
285  // instructions, we perform another pass to hoist them out of the loop.
286  //
287  SinkRegion(DT->getNode(L->getHeader()));
288  HoistRegion(DT->getNode(L->getHeader()));
289
290  // Now that all loop invariants have been removed from the loop, promote any
291  // memory references to scalars that we can...
292  if (!DisablePromotion)
293    PromoteValuesInLoop();
294
295  // Clear out loops state information for the next iteration
296  CurLoop = 0;
297  Preheader = 0;
298
299  LoopToAliasMap[L] = CurAST;
300  return Changed;
301}
302
303/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
304/// dominated by the specified block, and that are in the current loop) in
305/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
306/// uses before definitions, allowing us to sink a loop body in one pass without
307/// iteration.
308///
309void LICM::SinkRegion(DomTreeNode *N) {
310  assert(N != 0 && "Null dominator tree node?");
311  BasicBlock *BB = N->getBlock();
312
313  // If this subregion is not in the top level loop at all, exit.
314  if (!CurLoop->contains(BB)) return;
315
316  // We are processing blocks in reverse dfo, so process children first...
317  const std::vector<DomTreeNode*> &Children = N->getChildren();
318  for (unsigned i = 0, e = Children.size(); i != e; ++i)
319    SinkRegion(Children[i]);
320
321  // Only need to process the contents of this block if it is not part of a
322  // subloop (which would already have been processed).
323  if (inSubLoop(BB)) return;
324
325  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
326    Instruction &I = *--II;
327
328    // Check to see if we can sink this instruction to the exit blocks
329    // of the loop.  We can do this if the all users of the instruction are
330    // outside of the loop.  In this case, it doesn't even matter if the
331    // operands of the instruction are loop invariant.
332    //
333    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
334      ++II;
335      sink(I);
336    }
337  }
338}
339
340
341/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
342/// dominated by the specified block, and that are in the current loop) in depth
343/// first order w.r.t the DominatorTree.  This allows us to visit definitions
344/// before uses, allowing us to hoist a loop body in one pass without iteration.
345///
346void LICM::HoistRegion(DomTreeNode *N) {
347  assert(N != 0 && "Null dominator tree node?");
348  BasicBlock *BB = N->getBlock();
349
350  // If this subregion is not in the top level loop at all, exit.
351  if (!CurLoop->contains(BB)) return;
352
353  // Only need to process the contents of this block if it is not part of a
354  // subloop (which would already have been processed).
355  if (!inSubLoop(BB))
356    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
357      Instruction &I = *II++;
358
359      // Try hoisting the instruction out to the preheader.  We can only do this
360      // if all of the operands of the instruction are loop invariant and if it
361      // is safe to hoist the instruction.
362      //
363      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
364          isSafeToExecuteUnconditionally(I))
365        hoist(I);
366      }
367
368  const std::vector<DomTreeNode*> &Children = N->getChildren();
369  for (unsigned i = 0, e = Children.size(); i != e; ++i)
370    HoistRegion(Children[i]);
371}
372
373/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
374/// instruction.
375///
376bool LICM::canSinkOrHoistInst(Instruction &I) {
377  // Loads have extra constraints we have to verify before we can hoist them.
378  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
379    if (LI->isVolatile())
380      return false;        // Don't hoist volatile loads!
381
382    // Loads from constant memory are always safe to move, even if they end up
383    // in the same alias set as something that ends up being modified.
384    if (EnableLICMConstantMotion &&
385        AA->pointsToConstantMemory(LI->getOperand(0)))
386      return true;
387
388    // Don't hoist loads which have may-aliased stores in loop.
389    unsigned Size = 0;
390    if (LI->getType()->isSized())
391      Size = AA->getTargetData().getTypeStoreSize(LI->getType());
392    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
393  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
394    // Handle obvious cases efficiently.
395    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
396    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
397      return true;
398    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
399      // If this call only reads from memory and there are no writes to memory
400      // in the loop, we can hoist or sink the call as appropriate.
401      bool FoundMod = false;
402      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
403           I != E; ++I) {
404        AliasSet &AS = *I;
405        if (!AS.isForwardingAliasSet() && AS.isMod()) {
406          FoundMod = true;
407          break;
408        }
409      }
410      if (!FoundMod) return true;
411    }
412
413    // FIXME: This should use mod/ref information to see if we can hoist or sink
414    // the call.
415
416    return false;
417  }
418
419  // Otherwise these instructions are hoistable/sinkable
420  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
421         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
422         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
423         isa<ShuffleVectorInst>(I);
424}
425
426/// isNotUsedInLoop - Return true if the only users of this instruction are
427/// outside of the loop.  If this is true, we can sink the instruction to the
428/// exit blocks of the loop.
429///
430bool LICM::isNotUsedInLoop(Instruction &I) {
431  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
432    Instruction *User = cast<Instruction>(*UI);
433    if (PHINode *PN = dyn_cast<PHINode>(User)) {
434      // PHI node uses occur in predecessor blocks!
435      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
436        if (PN->getIncomingValue(i) == &I)
437          if (CurLoop->contains(PN->getIncomingBlock(i)))
438            return false;
439    } else if (CurLoop->contains(User->getParent())) {
440      return false;
441    }
442  }
443  return true;
444}
445
446
447/// isLoopInvariantInst - Return true if all operands of this instruction are
448/// loop invariant.  We also filter out non-hoistable instructions here just for
449/// efficiency.
450///
451bool LICM::isLoopInvariantInst(Instruction &I) {
452  // The instruction is loop invariant if all of its operands are loop-invariant
453  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
454    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
455      return false;
456
457  // If we got this far, the instruction is loop invariant!
458  return true;
459}
460
461/// sink - When an instruction is found to only be used outside of the loop,
462/// this function moves it to the exit blocks and patches up SSA form as needed.
463/// This method is guaranteed to remove the original instruction from its
464/// position, and may either delete it or move it to outside of the loop.
465///
466void LICM::sink(Instruction &I) {
467  DOUT << "LICM sinking instruction: " << I;
468
469  SmallVector<BasicBlock*, 8> ExitBlocks;
470  CurLoop->getExitBlocks(ExitBlocks);
471
472  if (isa<LoadInst>(I)) ++NumMovedLoads;
473  else if (isa<CallInst>(I)) ++NumMovedCalls;
474  ++NumSunk;
475  Changed = true;
476
477  // The case where there is only a single exit node of this loop is common
478  // enough that we handle it as a special (more efficient) case.  It is more
479  // efficient to handle because there are no PHI nodes that need to be placed.
480  if (ExitBlocks.size() == 1) {
481    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
482      // Instruction is not used, just delete it.
483      CurAST->deleteValue(&I);
484      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
485        I.replaceAllUsesWith(UndefValue::get(I.getType()));
486      I.eraseFromParent();
487    } else {
488      // Move the instruction to the start of the exit block, after any PHI
489      // nodes in it.
490      I.removeFromParent();
491
492      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
493      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
494    }
495  } else if (ExitBlocks.empty()) {
496    // The instruction is actually dead if there ARE NO exit blocks.
497    CurAST->deleteValue(&I);
498    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
499      I.replaceAllUsesWith(UndefValue::get(I.getType()));
500    I.eraseFromParent();
501  } else {
502    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
503    // do all of the hard work of inserting PHI nodes as necessary.  We convert
504    // the value into a stack object to get it to do this.
505
506    // Firstly, we create a stack object to hold the value...
507    AllocaInst *AI = 0;
508
509    if (I.getType() != Type::VoidTy) {
510      AI = new AllocaInst(I.getType(), 0, I.getName(),
511                          I.getParent()->getParent()->getEntryBlock().begin());
512      CurAST->add(AI);
513    }
514
515    // Secondly, insert load instructions for each use of the instruction
516    // outside of the loop.
517    while (!I.use_empty()) {
518      Instruction *U = cast<Instruction>(I.use_back());
519
520      // If the user is a PHI Node, we actually have to insert load instructions
521      // in all predecessor blocks, not in the PHI block itself!
522      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
523        // Only insert into each predecessor once, so that we don't have
524        // different incoming values from the same block!
525        std::map<BasicBlock*, Value*> InsertedBlocks;
526        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
527          if (UPN->getIncomingValue(i) == &I) {
528            BasicBlock *Pred = UPN->getIncomingBlock(i);
529            Value *&PredVal = InsertedBlocks[Pred];
530            if (!PredVal) {
531              // Insert a new load instruction right before the terminator in
532              // the predecessor block.
533              PredVal = new LoadInst(AI, "", Pred->getTerminator());
534              CurAST->add(cast<LoadInst>(PredVal));
535            }
536
537            UPN->setIncomingValue(i, PredVal);
538          }
539
540      } else {
541        LoadInst *L = new LoadInst(AI, "", U);
542        U->replaceUsesOfWith(&I, L);
543        CurAST->add(L);
544      }
545    }
546
547    // Thirdly, insert a copy of the instruction in each exit block of the loop
548    // that is dominated by the instruction, storing the result into the memory
549    // location.  Be careful not to insert the instruction into any particular
550    // basic block more than once.
551    std::set<BasicBlock*> InsertedBlocks;
552    BasicBlock *InstOrigBB = I.getParent();
553
554    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
555      BasicBlock *ExitBlock = ExitBlocks[i];
556
557      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
558        // If we haven't already processed this exit block, do so now.
559        if (InsertedBlocks.insert(ExitBlock).second) {
560          // Insert the code after the last PHI node...
561          BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
562
563          // If this is the first exit block processed, just move the original
564          // instruction, otherwise clone the original instruction and insert
565          // the copy.
566          Instruction *New;
567          if (InsertedBlocks.size() == 1) {
568            I.removeFromParent();
569            ExitBlock->getInstList().insert(InsertPt, &I);
570            New = &I;
571          } else {
572            New = I.clone();
573            CurAST->copyValue(&I, New);
574            if (!I.getName().empty())
575              New->setName(I.getName()+".le");
576            ExitBlock->getInstList().insert(InsertPt, New);
577          }
578
579          // Now that we have inserted the instruction, store it into the alloca
580          if (AI) new StoreInst(New, AI, InsertPt);
581        }
582      }
583    }
584
585    // If the instruction doesn't dominate any exit blocks, it must be dead.
586    if (InsertedBlocks.empty()) {
587      CurAST->deleteValue(&I);
588      I.eraseFromParent();
589    }
590
591    // Finally, promote the fine value to SSA form.
592    if (AI) {
593      std::vector<AllocaInst*> Allocas;
594      Allocas.push_back(AI);
595      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
596    }
597  }
598}
599
600/// hoist - When an instruction is found to only use loop invariant operands
601/// that is safe to hoist, this instruction is called to do the dirty work.
602///
603void LICM::hoist(Instruction &I) {
604  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
605
606  // Remove the instruction from its current basic block... but don't delete the
607  // instruction.
608  I.removeFromParent();
609
610  // Insert the new node in Preheader, before the terminator.
611  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
612
613  if (isa<LoadInst>(I)) ++NumMovedLoads;
614  else if (isa<CallInst>(I)) ++NumMovedCalls;
615  ++NumHoisted;
616  Changed = true;
617}
618
619/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
620/// not a trapping instruction or if it is a trapping instruction and is
621/// guaranteed to execute.
622///
623bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
624  // If it is not a trapping instruction, it is always safe to hoist.
625  if (!Inst.isTrapping()) return true;
626
627  // Otherwise we have to check to make sure that the instruction dominates all
628  // of the exit blocks.  If it doesn't, then there is a path out of the loop
629  // which does not execute this instruction, so we can't hoist it.
630
631  // If the instruction is in the header block for the loop (which is very
632  // common), it is always guaranteed to dominate the exit blocks.  Since this
633  // is a common case, and can save some work, check it now.
634  if (Inst.getParent() == CurLoop->getHeader())
635    return true;
636
637  // It's always safe to load from a global or alloca.
638  if (isa<LoadInst>(Inst))
639    if (isa<AllocationInst>(Inst.getOperand(0)) ||
640        isa<GlobalVariable>(Inst.getOperand(0)))
641      return true;
642
643  // Get the exit blocks for the current loop.
644  SmallVector<BasicBlock*, 8> ExitBlocks;
645  CurLoop->getExitBlocks(ExitBlocks);
646
647  // For each exit block, get the DT node and walk up the DT until the
648  // instruction's basic block is found or we exit the loop.
649  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
650    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
651      return false;
652
653  return true;
654}
655
656
657/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
658/// stores out of the loop and moving loads to before the loop.  We do this by
659/// looping over the stores in the loop, looking for stores to Must pointers
660/// which are loop invariant.  We promote these memory locations to use allocas
661/// instead.  These allocas can easily be raised to register values by the
662/// PromoteMem2Reg functionality.
663///
664void LICM::PromoteValuesInLoop() {
665  // PromotedValues - List of values that are promoted out of the loop.  Each
666  // value has an alloca instruction for it, and a canonical version of the
667  // pointer.
668  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
669  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
670
671  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
672  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
673
674  Changed = true;
675  NumPromoted += PromotedValues.size();
676
677  std::vector<Value*> PointerValueNumbers;
678
679  // Emit a copy from the value into the alloca'd value in the loop preheader
680  TerminatorInst *LoopPredInst = Preheader->getTerminator();
681  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
682    Value *Ptr = PromotedValues[i].second;
683
684    // If we are promoting a pointer value, update alias information for the
685    // inserted load.
686    Value *LoadValue = 0;
687    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
688      // Locate a load or store through the pointer, and assign the same value
689      // to LI as we are loading or storing.  Since we know that the value is
690      // stored in this loop, this will always succeed.
691      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
692           UI != E; ++UI)
693        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
694          LoadValue = LI;
695          break;
696        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
697          if (SI->getOperand(1) == Ptr) {
698            LoadValue = SI->getOperand(0);
699            break;
700          }
701        }
702      assert(LoadValue && "No store through the pointer found!");
703      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
704    }
705
706    // Load from the memory we are promoting.
707    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
708
709    if (LoadValue) CurAST->copyValue(LoadValue, LI);
710
711    // Store into the temporary alloca.
712    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
713  }
714
715  // Scan the basic blocks in the loop, replacing uses of our pointers with
716  // uses of the allocas in question.
717  //
718  for (Loop::block_iterator I = CurLoop->block_begin(),
719         E = CurLoop->block_end(); I != E; ++I) {
720    BasicBlock *BB = *I;
721    // Rewrite all loads and stores in the block of the pointer...
722    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
723      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
724        std::map<Value*, AllocaInst*>::iterator
725          I = ValueToAllocaMap.find(L->getOperand(0));
726        if (I != ValueToAllocaMap.end())
727          L->setOperand(0, I->second);    // Rewrite load instruction...
728      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
729        std::map<Value*, AllocaInst*>::iterator
730          I = ValueToAllocaMap.find(S->getOperand(1));
731        if (I != ValueToAllocaMap.end())
732          S->setOperand(1, I->second);    // Rewrite store instruction...
733      }
734    }
735  }
736
737  // Now that the body of the loop uses the allocas instead of the original
738  // memory locations, insert code to copy the alloca value back into the
739  // original memory location on all exits from the loop.  Note that we only
740  // want to insert one copy of the code in each exit block, though the loop may
741  // exit to the same block more than once.
742  //
743  SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
744
745  SmallVector<BasicBlock*, 8> ExitBlocks;
746  CurLoop->getExitBlocks(ExitBlocks);
747  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
748    if (!ProcessedBlocks.insert(ExitBlocks[i]))
749      continue;
750
751    // Copy all of the allocas into their memory locations.
752    BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
753    Instruction *InsertPos = BI;
754    unsigned PVN = 0;
755    for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
756      // Load from the alloca.
757      LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
758
759      // If this is a pointer type, update alias info appropriately.
760      if (isa<PointerType>(LI->getType()))
761        CurAST->copyValue(PointerValueNumbers[PVN++], LI);
762
763      // Store into the memory we promoted.
764      new StoreInst(LI, PromotedValues[i].second, InsertPos);
765    }
766  }
767
768  // Now that we have done the deed, use the mem2reg functionality to promote
769  // all of the new allocas we just created into real SSA registers.
770  //
771  std::vector<AllocaInst*> PromotedAllocas;
772  PromotedAllocas.reserve(PromotedValues.size());
773  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
774    PromotedAllocas.push_back(PromotedValues[i].first);
775  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
776}
777
778/// FindPromotableValuesInLoop - Check the current loop for stores to definite
779/// pointers, which are not loaded and stored through may aliases and are safe
780/// for promotion.  If these are found, create an alloca for the value, add it
781/// to the PromotedValues list, and keep track of the mapping from value to
782/// alloca.
783void LICM::FindPromotableValuesInLoop(
784                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
785                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
786  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
787
788  // Loop over all of the alias sets in the tracker object.
789  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
790       I != E; ++I) {
791    AliasSet &AS = *I;
792    // We can promote this alias set if it has a store, if it is a "Must" alias
793    // set, if the pointer is loop invariant, and if we are not eliminating any
794    // volatile loads or stores.
795    if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
796        AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->first))
797      continue;
798
799    assert(!AS.empty() &&
800           "Must alias set should have at least one pointer element in it!");
801    Value *V = AS.begin()->first;
802
803    // Check that all of the pointers in the alias set have the same type.  We
804    // cannot (yet) promote a memory location that is loaded and stored in
805    // different sizes.
806    {
807      bool PointerOk = true;
808      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
809        if (V->getType() != I->first->getType()) {
810          PointerOk = false;
811          break;
812        }
813      if (!PointerOk)
814        continue;
815    }
816
817    // It isn't safe to promote a load/store from the loop if the load/store is
818    // conditional.  For example, turning:
819    //
820    //    for () { if (c) *P += 1; }
821    //
822    // into:
823    //
824    //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
825    //
826    // is not safe, because *P may only be valid to access if 'c' is true.
827    //
828    // It is safe to promote P if all uses are direct load/stores and if at
829    // least one is guaranteed to be executed.
830    bool GuaranteedToExecute = false;
831    bool InvalidInst = false;
832    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
833         UI != UE; ++UI) {
834      // Ignore instructions not in this loop.
835      Instruction *Use = dyn_cast<Instruction>(*UI);
836      if (!Use || !CurLoop->contains(Use->getParent()))
837        continue;
838
839      if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
840        InvalidInst = true;
841        break;
842      }
843
844      if (!GuaranteedToExecute)
845        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
846    }
847
848    // If there is an non-load/store instruction in the loop, we can't promote
849    // it.  If there isn't a guaranteed-to-execute instruction, we can't
850    // promote.
851    if (InvalidInst || !GuaranteedToExecute)
852      continue;
853
854    const Type *Ty = cast<PointerType>(V->getType())->getElementType();
855    AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
856    PromotedValues.push_back(std::make_pair(AI, V));
857
858    // Update the AST and alias analysis.
859    CurAST->copyValue(V, AI);
860
861    for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
862      ValueToAllocaMap.insert(std::make_pair(I->first, AI));
863
864    DOUT << "LICM: Promoting value: " << *V << "\n";
865  }
866}
867
868/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
869void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
870  AliasSetTracker *AST = LoopToAliasMap[L];
871  if (!AST)
872    return;
873
874  AST->copyValue(From, To);
875}
876
877/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
878/// set.
879void LICM::deleteAnalysisValue(Value *V, Loop *L) {
880  AliasSetTracker *AST = LoopToAliasMap[L];
881  if (!AST)
882    return;
883
884  AST->deleteValue(V);
885}
886