1//===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms loops that contain branches on loop-invariant conditions
11// to have multiple loops.  For example, it turns the left into the right code:
12//
13//  for (...)                  if (lic)
14//    A                          for (...)
15//    if (lic)                     A; B; C
16//      B                      else
17//    C                          for (...)
18//                                 A; C
19//
20// This can increase the size of the code exponentially (doubling it every time
21// a loop is unswitched) so we only unswitch if the resultant code will be
22// smaller than a threshold.
23//
24// This pass expects LICM to be run before it to hoist invariant conditions out
25// of the loop, to make the unswitching opportunity obvious.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/Transforms/Scalar.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/CodeMetrics.h"
34#include "llvm/Analysis/InstructionSimplify.h"
35#include "llvm/Analysis/LoopInfo.h"
36#include "llvm/Analysis/LoopPass.h"
37#include "llvm/Analysis/ScalarEvolution.h"
38#include "llvm/Analysis/TargetTransformInfo.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Dominators.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Transforms/Utils/BasicBlockUtils.h"
48#include "llvm/Transforms/Utils/Cloning.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include <algorithm>
51#include <map>
52#include <set>
53using namespace llvm;
54
55#define DEBUG_TYPE "loop-unswitch"
56
57STATISTIC(NumBranches, "Number of branches unswitched");
58STATISTIC(NumSwitches, "Number of switches unswitched");
59STATISTIC(NumSelects , "Number of selects unswitched");
60STATISTIC(NumTrivial , "Number of unswitches that are trivial");
61STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
62STATISTIC(TotalInsts,  "Total number of instructions analyzed");
63
64// The specific value of 100 here was chosen based only on intuition and a
65// few specific examples.
66static cl::opt<unsigned>
67Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
68          cl::init(100), cl::Hidden);
69
70namespace {
71
72  class LUAnalysisCache {
73
74    typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
75      UnswitchedValsMap;
76
77    typedef UnswitchedValsMap::iterator UnswitchedValsIt;
78
79    struct LoopProperties {
80      unsigned CanBeUnswitchedCount;
81      unsigned SizeEstimation;
82      UnswitchedValsMap UnswitchedVals;
83    };
84
85    // Here we use std::map instead of DenseMap, since we need to keep valid
86    // LoopProperties pointer for current loop for better performance.
87    typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
88    typedef LoopPropsMap::iterator LoopPropsMapIt;
89
90    LoopPropsMap LoopsProperties;
91    UnswitchedValsMap *CurLoopInstructions;
92    LoopProperties *CurrentLoopProperties;
93
94    // Max size of code we can produce on remained iterations.
95    unsigned MaxSize;
96
97    public:
98
99      LUAnalysisCache() :
100        CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
101        MaxSize(Threshold)
102      {}
103
104      // Analyze loop. Check its size, calculate is it possible to unswitch
105      // it. Returns true if we can unswitch this loop.
106      bool countLoop(const Loop *L, const TargetTransformInfo &TTI);
107
108      // Clean all data related to given loop.
109      void forgetLoop(const Loop *L);
110
111      // Mark case value as unswitched.
112      // Since SI instruction can be partly unswitched, in order to avoid
113      // extra unswitching in cloned loops keep track all unswitched values.
114      void setUnswitched(const SwitchInst *SI, const Value *V);
115
116      // Check was this case value unswitched before or not.
117      bool isUnswitched(const SwitchInst *SI, const Value *V);
118
119      // Clone all loop-unswitch related loop properties.
120      // Redistribute unswitching quotas.
121      // Note, that new loop data is stored inside the VMap.
122      void cloneData(const Loop *NewLoop, const Loop *OldLoop,
123                     const ValueToValueMapTy &VMap);
124  };
125
126  class LoopUnswitch : public LoopPass {
127    LoopInfo *LI;  // Loop information
128    LPPassManager *LPM;
129
130    // LoopProcessWorklist - Used to check if second loop needs processing
131    // after RewriteLoopBodyWithConditionConstant rewrites first loop.
132    std::vector<Loop*> LoopProcessWorklist;
133
134    LUAnalysisCache BranchesInfo;
135
136    bool OptimizeForSize;
137    bool redoLoop;
138
139    Loop *currentLoop;
140    DominatorTree *DT;
141    BasicBlock *loopHeader;
142    BasicBlock *loopPreheader;
143
144    // LoopBlocks contains all of the basic blocks of the loop, including the
145    // preheader of the loop, the body of the loop, and the exit blocks of the
146    // loop, in that order.
147    std::vector<BasicBlock*> LoopBlocks;
148    // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
149    std::vector<BasicBlock*> NewBlocks;
150
151  public:
152    static char ID; // Pass ID, replacement for typeid
153    explicit LoopUnswitch(bool Os = false) :
154      LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
155      currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
156      loopPreheader(nullptr) {
157        initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
158      }
159
160    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
161    bool processCurrentLoop();
162
163    /// This transformation requires natural loop information & requires that
164    /// loop preheaders be inserted into the CFG.
165    ///
166    void getAnalysisUsage(AnalysisUsage &AU) const override {
167      AU.addRequiredID(LoopSimplifyID);
168      AU.addPreservedID(LoopSimplifyID);
169      AU.addRequired<LoopInfo>();
170      AU.addPreserved<LoopInfo>();
171      AU.addRequiredID(LCSSAID);
172      AU.addPreservedID(LCSSAID);
173      AU.addPreserved<DominatorTreeWrapperPass>();
174      AU.addPreserved<ScalarEvolution>();
175      AU.addRequired<TargetTransformInfo>();
176    }
177
178  private:
179
180    void releaseMemory() override {
181      BranchesInfo.forgetLoop(currentLoop);
182    }
183
184    void initLoopData() {
185      loopHeader = currentLoop->getHeader();
186      loopPreheader = currentLoop->getLoopPreheader();
187    }
188
189    /// Split all of the edges from inside the loop to their exit blocks.
190    /// Update the appropriate Phi nodes as we do so.
191    void SplitExitEdges(Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks);
192
193    bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
194    void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
195                                  BasicBlock *ExitBlock);
196    void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
197
198    void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
199                                              Constant *Val, bool isEqual);
200
201    void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
202                                        BasicBlock *TrueDest,
203                                        BasicBlock *FalseDest,
204                                        Instruction *InsertPt);
205
206    void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
207    bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = nullptr,
208                                    BasicBlock **LoopExit = nullptr);
209
210  };
211}
212
213// Analyze loop. Check its size, calculate is it possible to unswitch
214// it. Returns true if we can unswitch this loop.
215bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI) {
216
217  LoopPropsMapIt PropsIt;
218  bool Inserted;
219  std::tie(PropsIt, Inserted) =
220      LoopsProperties.insert(std::make_pair(L, LoopProperties()));
221
222  LoopProperties &Props = PropsIt->second;
223
224  if (Inserted) {
225    // New loop.
226
227    // Limit the number of instructions to avoid causing significant code
228    // expansion, and the number of basic blocks, to avoid loops with
229    // large numbers of branches which cause loop unswitching to go crazy.
230    // This is a very ad-hoc heuristic.
231
232    // FIXME: This is overly conservative because it does not take into
233    // consideration code simplification opportunities and code that can
234    // be shared by the resultant unswitched loops.
235    CodeMetrics Metrics;
236    for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
237         I != E; ++I)
238      Metrics.analyzeBasicBlock(*I, TTI);
239
240    Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
241    Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
242    MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
243
244    if (Metrics.notDuplicatable) {
245      DEBUG(dbgs() << "NOT unswitching loop %"
246                   << L->getHeader()->getName() << ", contents cannot be "
247                   << "duplicated!\n");
248      return false;
249    }
250  }
251
252  if (!Props.CanBeUnswitchedCount) {
253    DEBUG(dbgs() << "NOT unswitching loop %"
254                 << L->getHeader()->getName() << ", cost too high: "
255                 << L->getBlocks().size() << "\n");
256    return false;
257  }
258
259  // Be careful. This links are good only before new loop addition.
260  CurrentLoopProperties = &Props;
261  CurLoopInstructions = &Props.UnswitchedVals;
262
263  return true;
264}
265
266// Clean all data related to given loop.
267void LUAnalysisCache::forgetLoop(const Loop *L) {
268
269  LoopPropsMapIt LIt = LoopsProperties.find(L);
270
271  if (LIt != LoopsProperties.end()) {
272    LoopProperties &Props = LIt->second;
273    MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
274    LoopsProperties.erase(LIt);
275  }
276
277  CurrentLoopProperties = nullptr;
278  CurLoopInstructions = nullptr;
279}
280
281// Mark case value as unswitched.
282// Since SI instruction can be partly unswitched, in order to avoid
283// extra unswitching in cloned loops keep track all unswitched values.
284void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
285  (*CurLoopInstructions)[SI].insert(V);
286}
287
288// Check was this case value unswitched before or not.
289bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
290  return (*CurLoopInstructions)[SI].count(V);
291}
292
293// Clone all loop-unswitch related loop properties.
294// Redistribute unswitching quotas.
295// Note, that new loop data is stored inside the VMap.
296void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
297                                const ValueToValueMapTy &VMap) {
298
299  LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
300  LoopProperties &OldLoopProps = *CurrentLoopProperties;
301  UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
302
303  // Reallocate "can-be-unswitched quota"
304
305  --OldLoopProps.CanBeUnswitchedCount;
306  unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
307  NewLoopProps.CanBeUnswitchedCount = Quota / 2;
308  OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
309
310  NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
311
312  // Clone unswitched values info:
313  // for new loop switches we clone info about values that was
314  // already unswitched and has redundant successors.
315  for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
316    const SwitchInst *OldInst = I->first;
317    Value *NewI = VMap.lookup(OldInst);
318    const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
319    assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
320
321    NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
322  }
323}
324
325char LoopUnswitch::ID = 0;
326INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
327                      false, false)
328INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
329INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
330INITIALIZE_PASS_DEPENDENCY(LoopInfo)
331INITIALIZE_PASS_DEPENDENCY(LCSSA)
332INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
333                      false, false)
334
335Pass *llvm::createLoopUnswitchPass(bool Os) {
336  return new LoopUnswitch(Os);
337}
338
339/// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
340/// invariant in the loop, or has an invariant piece, return the invariant.
341/// Otherwise, return null.
342static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
343
344  // We started analyze new instruction, increment scanned instructions counter.
345  ++TotalInsts;
346
347  // We can never unswitch on vector conditions.
348  if (Cond->getType()->isVectorTy())
349    return nullptr;
350
351  // Constants should be folded, not unswitched on!
352  if (isa<Constant>(Cond)) return nullptr;
353
354  // TODO: Handle: br (VARIANT|INVARIANT).
355
356  // Hoist simple values out.
357  if (L->makeLoopInvariant(Cond, Changed))
358    return Cond;
359
360  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
361    if (BO->getOpcode() == Instruction::And ||
362        BO->getOpcode() == Instruction::Or) {
363      // If either the left or right side is invariant, we can unswitch on this,
364      // which will cause the branch to go away in one loop and the condition to
365      // simplify in the other one.
366      if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
367        return LHS;
368      if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
369        return RHS;
370    }
371
372  return nullptr;
373}
374
375bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
376  if (skipOptnoneFunction(L))
377    return false;
378
379  LI = &getAnalysis<LoopInfo>();
380  LPM = &LPM_Ref;
381  DominatorTreeWrapperPass *DTWP =
382      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
383  DT = DTWP ? &DTWP->getDomTree() : nullptr;
384  currentLoop = L;
385  Function *F = currentLoop->getHeader()->getParent();
386  bool Changed = false;
387  do {
388    assert(currentLoop->isLCSSAForm(*DT));
389    redoLoop = false;
390    Changed |= processCurrentLoop();
391  } while(redoLoop);
392
393  if (Changed) {
394    // FIXME: Reconstruct dom info, because it is not preserved properly.
395    if (DT)
396      DT->recalculate(*F);
397  }
398  return Changed;
399}
400
401/// processCurrentLoop - Do actual work and unswitch loop if possible
402/// and profitable.
403bool LoopUnswitch::processCurrentLoop() {
404  bool Changed = false;
405
406  initLoopData();
407
408  // If LoopSimplify was unable to form a preheader, don't do any unswitching.
409  if (!loopPreheader)
410    return false;
411
412  // Loops with indirectbr cannot be cloned.
413  if (!currentLoop->isSafeToClone())
414    return false;
415
416  // Without dedicated exits, splitting the exit edge may fail.
417  if (!currentLoop->hasDedicatedExits())
418    return false;
419
420  LLVMContext &Context = loopHeader->getContext();
421
422  // Probably we reach the quota of branches for this loop. If so
423  // stop unswitching.
424  if (!BranchesInfo.countLoop(currentLoop, getAnalysis<TargetTransformInfo>()))
425    return false;
426
427  // Loop over all of the basic blocks in the loop.  If we find an interior
428  // block that is branching on a loop-invariant condition, we can unswitch this
429  // loop.
430  for (Loop::block_iterator I = currentLoop->block_begin(),
431         E = currentLoop->block_end(); I != E; ++I) {
432    TerminatorInst *TI = (*I)->getTerminator();
433    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
434      // If this isn't branching on an invariant condition, we can't unswitch
435      // it.
436      if (BI->isConditional()) {
437        // See if this, or some part of it, is loop invariant.  If so, we can
438        // unswitch on it if we desire.
439        Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
440                                               currentLoop, Changed);
441        if (LoopCond && UnswitchIfProfitable(LoopCond,
442                                             ConstantInt::getTrue(Context))) {
443          ++NumBranches;
444          return true;
445        }
446      }
447    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
448      Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
449                                             currentLoop, Changed);
450      unsigned NumCases = SI->getNumCases();
451      if (LoopCond && NumCases) {
452        // Find a value to unswitch on:
453        // FIXME: this should chose the most expensive case!
454        // FIXME: scan for a case with a non-critical edge?
455        Constant *UnswitchVal = nullptr;
456
457        // Do not process same value again and again.
458        // At this point we have some cases already unswitched and
459        // some not yet unswitched. Let's find the first not yet unswitched one.
460        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
461             i != e; ++i) {
462          Constant *UnswitchValCandidate = i.getCaseValue();
463          if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
464            UnswitchVal = UnswitchValCandidate;
465            break;
466          }
467        }
468
469        if (!UnswitchVal)
470          continue;
471
472        if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
473          ++NumSwitches;
474          return true;
475        }
476      }
477    }
478
479    // Scan the instructions to check for unswitchable values.
480    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
481         BBI != E; ++BBI)
482      if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
483        Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
484                                               currentLoop, Changed);
485        if (LoopCond && UnswitchIfProfitable(LoopCond,
486                                             ConstantInt::getTrue(Context))) {
487          ++NumSelects;
488          return true;
489        }
490      }
491  }
492  return Changed;
493}
494
495/// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
496/// loop with no side effects (including infinite loops).
497///
498/// If true, we return true and set ExitBB to the block we
499/// exit through.
500///
501static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
502                                         BasicBlock *&ExitBB,
503                                         std::set<BasicBlock*> &Visited) {
504  if (!Visited.insert(BB).second) {
505    // Already visited. Without more analysis, this could indicate an infinite
506    // loop.
507    return false;
508  }
509  if (!L->contains(BB)) {
510    // Otherwise, this is a loop exit, this is fine so long as this is the
511    // first exit.
512    if (ExitBB) return false;
513    ExitBB = BB;
514    return true;
515  }
516
517  // Otherwise, this is an unvisited intra-loop node.  Check all successors.
518  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
519    // Check to see if the successor is a trivial loop exit.
520    if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
521      return false;
522  }
523
524  // Okay, everything after this looks good, check to make sure that this block
525  // doesn't include any side effects.
526  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
527    if (I->mayHaveSideEffects())
528      return false;
529
530  return true;
531}
532
533/// isTrivialLoopExitBlock - Return true if the specified block unconditionally
534/// leads to an exit from the specified loop, and has no side-effects in the
535/// process.  If so, return the block that is exited to, otherwise return null.
536static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
537  std::set<BasicBlock*> Visited;
538  Visited.insert(L->getHeader());  // Branches to header make infinite loops.
539  BasicBlock *ExitBB = nullptr;
540  if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
541    return ExitBB;
542  return nullptr;
543}
544
545/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
546/// trivial: that is, that the condition controls whether or not the loop does
547/// anything at all.  If this is a trivial condition, unswitching produces no
548/// code duplications (equivalently, it produces a simpler loop and a new empty
549/// loop, which gets deleted).
550///
551/// If this is a trivial condition, return true, otherwise return false.  When
552/// returning true, this sets Cond and Val to the condition that controls the
553/// trivial condition: when Cond dynamically equals Val, the loop is known to
554/// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
555/// Cond == Val.
556///
557bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
558                                       BasicBlock **LoopExit) {
559  BasicBlock *Header = currentLoop->getHeader();
560  TerminatorInst *HeaderTerm = Header->getTerminator();
561  LLVMContext &Context = Header->getContext();
562
563  BasicBlock *LoopExitBB = nullptr;
564  if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
565    // If the header block doesn't end with a conditional branch on Cond, we
566    // can't handle it.
567    if (!BI->isConditional() || BI->getCondition() != Cond)
568      return false;
569
570    // Check to see if a successor of the branch is guaranteed to
571    // exit through a unique exit block without having any
572    // side-effects.  If so, determine the value of Cond that causes it to do
573    // this.
574    if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
575                                             BI->getSuccessor(0)))) {
576      if (Val) *Val = ConstantInt::getTrue(Context);
577    } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
578                                                    BI->getSuccessor(1)))) {
579      if (Val) *Val = ConstantInt::getFalse(Context);
580    }
581  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
582    // If this isn't a switch on Cond, we can't handle it.
583    if (SI->getCondition() != Cond) return false;
584
585    // Check to see if a successor of the switch is guaranteed to go to the
586    // latch block or exit through a one exit block without having any
587    // side-effects.  If so, determine the value of Cond that causes it to do
588    // this.
589    // Note that we can't trivially unswitch on the default case or
590    // on already unswitched cases.
591    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
592         i != e; ++i) {
593      BasicBlock *LoopExitCandidate;
594      if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
595                                               i.getCaseSuccessor()))) {
596        // Okay, we found a trivial case, remember the value that is trivial.
597        ConstantInt *CaseVal = i.getCaseValue();
598
599        // Check that it was not unswitched before, since already unswitched
600        // trivial vals are looks trivial too.
601        if (BranchesInfo.isUnswitched(SI, CaseVal))
602          continue;
603        LoopExitBB = LoopExitCandidate;
604        if (Val) *Val = CaseVal;
605        break;
606      }
607    }
608  }
609
610  // If we didn't find a single unique LoopExit block, or if the loop exit block
611  // contains phi nodes, this isn't trivial.
612  if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
613    return false;   // Can't handle this.
614
615  if (LoopExit) *LoopExit = LoopExitBB;
616
617  // We already know that nothing uses any scalar values defined inside of this
618  // loop.  As such, we just have to check to see if this loop will execute any
619  // side-effecting instructions (e.g. stores, calls, volatile loads) in the
620  // part of the loop that the code *would* execute.  We already checked the
621  // tail, check the header now.
622  for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
623    if (I->mayHaveSideEffects())
624      return false;
625  return true;
626}
627
628/// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
629/// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
630/// unswitch the loop, reprocess the pieces, then return true.
631bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
632  Function *F = loopHeader->getParent();
633  Constant *CondVal = nullptr;
634  BasicBlock *ExitBlock = nullptr;
635
636  if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
637    // If the condition is trivial, always unswitch. There is no code growth
638    // for this case.
639    UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
640    return true;
641  }
642
643  // Check to see if it would be profitable to unswitch current loop.
644
645  // Do not do non-trivial unswitch while optimizing for size.
646  if (OptimizeForSize ||
647      F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
648                                      Attribute::OptimizeForSize))
649    return false;
650
651  UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
652  return true;
653}
654
655/// CloneLoop - Recursively clone the specified loop and all of its children,
656/// mapping the blocks with the specified map.
657static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
658                       LoopInfo *LI, LPPassManager *LPM) {
659  Loop *New = new Loop();
660  LPM->insertLoop(New, PL);
661
662  // Add all of the blocks in L to the new loop.
663  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
664       I != E; ++I)
665    if (LI->getLoopFor(*I) == L)
666      New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
667
668  // Add all of the subloops to the new loop.
669  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
670    CloneLoop(*I, New, VM, LI, LPM);
671
672  return New;
673}
674
675/// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
676/// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
677/// code immediately before InsertPt.
678void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
679                                                  BasicBlock *TrueDest,
680                                                  BasicBlock *FalseDest,
681                                                  Instruction *InsertPt) {
682  // Insert a conditional branch on LIC to the two preheaders.  The original
683  // code is the true version and the new code is the false version.
684  Value *BranchVal = LIC;
685  if (!isa<ConstantInt>(Val) ||
686      Val->getType() != Type::getInt1Ty(LIC->getContext()))
687    BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
688  else if (Val != ConstantInt::getTrue(Val->getContext()))
689    // We want to enter the new loop when the condition is true.
690    std::swap(TrueDest, FalseDest);
691
692  // Insert the new branch.
693  BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
694
695  // If either edge is critical, split it. This helps preserve LoopSimplify
696  // form for enclosing loops.
697  SplitCriticalEdge(BI, 0, this, false, false, true);
698  SplitCriticalEdge(BI, 1, this, false, false, true);
699}
700
701/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
702/// condition in it (a cond branch from its header block to its latch block,
703/// where the path through the loop that doesn't execute its body has no
704/// side-effects), unswitch it.  This doesn't involve any code duplication, just
705/// moving the conditional branch outside of the loop and updating loop info.
706void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
707                                            Constant *Val,
708                                            BasicBlock *ExitBlock) {
709  DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
710        << loopHeader->getName() << " [" << L->getBlocks().size()
711        << " blocks] in Function " << L->getHeader()->getParent()->getName()
712        << " on cond: " << *Val << " == " << *Cond << "\n");
713
714  // First step, split the preheader, so that we know that there is a safe place
715  // to insert the conditional branch.  We will change loopPreheader to have a
716  // conditional branch on Cond.
717  BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
718
719  // Now that we have a place to insert the conditional branch, create a place
720  // to branch to: this is the exit block out of the loop that we should
721  // short-circuit to.
722
723  // Split this block now, so that the loop maintains its exit block, and so
724  // that the jump from the preheader can execute the contents of the exit block
725  // without actually branching to it (the exit block should be dominated by the
726  // loop header, not the preheader).
727  assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
728  BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
729
730  // Okay, now we have a position to branch from and a position to branch to,
731  // insert the new conditional branch.
732  EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
733                                 loopPreheader->getTerminator());
734  LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
735  loopPreheader->getTerminator()->eraseFromParent();
736
737  // We need to reprocess this loop, it could be unswitched again.
738  redoLoop = true;
739
740  // Now that we know that the loop is never entered when this condition is a
741  // particular value, rewrite the loop with this info.  We know that this will
742  // at least eliminate the old branch.
743  RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
744  ++NumTrivial;
745}
746
747/// SplitExitEdges - Split all of the edges from inside the loop to their exit
748/// blocks.  Update the appropriate Phi nodes as we do so.
749void LoopUnswitch::SplitExitEdges(Loop *L,
750                               const SmallVectorImpl<BasicBlock *> &ExitBlocks){
751
752  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
753    BasicBlock *ExitBlock = ExitBlocks[i];
754    SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
755                                       pred_end(ExitBlock));
756
757    // Although SplitBlockPredecessors doesn't preserve loop-simplify in
758    // general, if we call it on all predecessors of all exits then it does.
759    if (!ExitBlock->isLandingPad()) {
760      SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
761    } else {
762      SmallVector<BasicBlock*, 2> NewBBs;
763      SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
764                                  this, NewBBs);
765    }
766  }
767}
768
769/// UnswitchNontrivialCondition - We determined that the loop is profitable
770/// to unswitch when LIC equal Val.  Split it into loop versions and test the
771/// condition outside of either loop.  Return the loops created as Out1/Out2.
772void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
773                                               Loop *L) {
774  Function *F = loopHeader->getParent();
775  DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
776        << loopHeader->getName() << " [" << L->getBlocks().size()
777        << " blocks] in Function " << F->getName()
778        << " when '" << *Val << "' == " << *LIC << "\n");
779
780  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
781    SE->forgetLoop(L);
782
783  LoopBlocks.clear();
784  NewBlocks.clear();
785
786  // First step, split the preheader and exit blocks, and add these blocks to
787  // the LoopBlocks list.
788  BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
789  LoopBlocks.push_back(NewPreheader);
790
791  // We want the loop to come after the preheader, but before the exit blocks.
792  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
793
794  SmallVector<BasicBlock*, 8> ExitBlocks;
795  L->getUniqueExitBlocks(ExitBlocks);
796
797  // Split all of the edges from inside the loop to their exit blocks.  Update
798  // the appropriate Phi nodes as we do so.
799  SplitExitEdges(L, ExitBlocks);
800
801  // The exit blocks may have been changed due to edge splitting, recompute.
802  ExitBlocks.clear();
803  L->getUniqueExitBlocks(ExitBlocks);
804
805  // Add exit blocks to the loop blocks.
806  LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
807
808  // Next step, clone all of the basic blocks that make up the loop (including
809  // the loop preheader and exit blocks), keeping track of the mapping between
810  // the instructions and blocks.
811  NewBlocks.reserve(LoopBlocks.size());
812  ValueToValueMapTy VMap;
813  for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
814    BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
815
816    NewBlocks.push_back(NewBB);
817    VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
818    LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
819  }
820
821  // Splice the newly inserted blocks into the function right before the
822  // original preheader.
823  F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
824                                NewBlocks[0], F->end());
825
826  // Now we create the new Loop object for the versioned loop.
827  Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
828
829  // Recalculate unswitching quota, inherit simplified switches info for NewBB,
830  // Probably clone more loop-unswitch related loop properties.
831  BranchesInfo.cloneData(NewLoop, L, VMap);
832
833  Loop *ParentLoop = L->getParentLoop();
834  if (ParentLoop) {
835    // Make sure to add the cloned preheader and exit blocks to the parent loop
836    // as well.
837    ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
838  }
839
840  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
841    BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
842    // The new exit block should be in the same loop as the old one.
843    if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
844      ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
845
846    assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
847           "Exit block should have been split to have one successor!");
848    BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
849
850    // If the successor of the exit block had PHI nodes, add an entry for
851    // NewExit.
852    for (BasicBlock::iterator I = ExitSucc->begin();
853         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
854      Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
855      ValueToValueMapTy::iterator It = VMap.find(V);
856      if (It != VMap.end()) V = It->second;
857      PN->addIncoming(V, NewExit);
858    }
859
860    if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
861      PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
862                                    ExitSucc->getFirstInsertionPt());
863
864      for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
865           I != E; ++I) {
866        BasicBlock *BB = *I;
867        LandingPadInst *LPI = BB->getLandingPadInst();
868        LPI->replaceAllUsesWith(PN);
869        PN->addIncoming(LPI, BB);
870      }
871    }
872  }
873
874  // Rewrite the code to refer to itself.
875  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
876    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
877           E = NewBlocks[i]->end(); I != E; ++I)
878      RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
879
880  // Rewrite the original preheader to select between versions of the loop.
881  BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
882  assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
883         "Preheader splitting did not work correctly!");
884
885  // Emit the new branch that selects between the two versions of this loop.
886  EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
887  LPM->deleteSimpleAnalysisValue(OldBR, L);
888  OldBR->eraseFromParent();
889
890  LoopProcessWorklist.push_back(NewLoop);
891  redoLoop = true;
892
893  // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
894  // deletes the instruction (for example by simplifying a PHI that feeds into
895  // the condition that we're unswitching on), we don't rewrite the second
896  // iteration.
897  WeakVH LICHandle(LIC);
898
899  // Now we rewrite the original code to know that the condition is true and the
900  // new code to know that the condition is false.
901  RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
902
903  // It's possible that simplifying one loop could cause the other to be
904  // changed to another value or a constant.  If its a constant, don't simplify
905  // it.
906  if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
907      LICHandle && !isa<Constant>(LICHandle))
908    RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
909}
910
911/// RemoveFromWorklist - Remove all instances of I from the worklist vector
912/// specified.
913static void RemoveFromWorklist(Instruction *I,
914                               std::vector<Instruction*> &Worklist) {
915
916  Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
917                 Worklist.end());
918}
919
920/// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
921/// program, replacing all uses with V and update the worklist.
922static void ReplaceUsesOfWith(Instruction *I, Value *V,
923                              std::vector<Instruction*> &Worklist,
924                              Loop *L, LPPassManager *LPM) {
925  DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
926
927  // Add uses to the worklist, which may be dead now.
928  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
929    if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
930      Worklist.push_back(Use);
931
932  // Add users to the worklist which may be simplified now.
933  for (User *U : I->users())
934    Worklist.push_back(cast<Instruction>(U));
935  LPM->deleteSimpleAnalysisValue(I, L);
936  RemoveFromWorklist(I, Worklist);
937  I->replaceAllUsesWith(V);
938  I->eraseFromParent();
939  ++NumSimplify;
940}
941
942// RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
943// the value specified by Val in the specified loop, or we know it does NOT have
944// that value.  Rewrite any uses of LIC or of properties correlated to it.
945void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
946                                                        Constant *Val,
947                                                        bool IsEqual) {
948  assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
949
950  // FIXME: Support correlated properties, like:
951  //  for (...)
952  //    if (li1 < li2)
953  //      ...
954  //    if (li1 > li2)
955  //      ...
956
957  // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
958  // selects, switches.
959  std::vector<Instruction*> Worklist;
960  LLVMContext &Context = Val->getContext();
961
962  // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
963  // in the loop with the appropriate one directly.
964  if (IsEqual || (isa<ConstantInt>(Val) &&
965      Val->getType()->isIntegerTy(1))) {
966    Value *Replacement;
967    if (IsEqual)
968      Replacement = Val;
969    else
970      Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
971                                     !cast<ConstantInt>(Val)->getZExtValue());
972
973    for (User *U : LIC->users()) {
974      Instruction *UI = dyn_cast<Instruction>(U);
975      if (!UI || !L->contains(UI))
976        continue;
977      Worklist.push_back(UI);
978    }
979
980    for (std::vector<Instruction*>::iterator UI = Worklist.begin(),
981         UE = Worklist.end(); UI != UE; ++UI)
982      (*UI)->replaceUsesOfWith(LIC, Replacement);
983
984    SimplifyCode(Worklist, L);
985    return;
986  }
987
988  // Otherwise, we don't know the precise value of LIC, but we do know that it
989  // is certainly NOT "Val".  As such, simplify any uses in the loop that we
990  // can.  This case occurs when we unswitch switch statements.
991  for (User *U : LIC->users()) {
992    Instruction *UI = dyn_cast<Instruction>(U);
993    if (!UI || !L->contains(UI))
994      continue;
995
996    Worklist.push_back(UI);
997
998    // TODO: We could do other simplifications, for example, turning
999    // 'icmp eq LIC, Val' -> false.
1000
1001    // If we know that LIC is not Val, use this info to simplify code.
1002    SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1003    if (!SI || !isa<ConstantInt>(Val)) continue;
1004
1005    SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1006    // Default case is live for multiple values.
1007    if (DeadCase == SI->case_default()) continue;
1008
1009    // Found a dead case value.  Don't remove PHI nodes in the
1010    // successor if they become single-entry, those PHI nodes may
1011    // be in the Users list.
1012
1013    BasicBlock *Switch = SI->getParent();
1014    BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1015    BasicBlock *Latch = L->getLoopLatch();
1016
1017    BranchesInfo.setUnswitched(SI, Val);
1018
1019    if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1020    // If the DeadCase successor dominates the loop latch, then the
1021    // transformation isn't safe since it will delete the sole predecessor edge
1022    // to the latch.
1023    if (Latch && DT->dominates(SISucc, Latch))
1024      continue;
1025
1026    // FIXME: This is a hack.  We need to keep the successor around
1027    // and hooked up so as to preserve the loop structure, because
1028    // trying to update it is complicated.  So instead we preserve the
1029    // loop structure and put the block on a dead code path.
1030    SplitEdge(Switch, SISucc, this);
1031    // Compute the successors instead of relying on the return value
1032    // of SplitEdge, since it may have split the switch successor
1033    // after PHI nodes.
1034    BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1035    BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1036    // Create an "unreachable" destination.
1037    BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1038                                           Switch->getParent(),
1039                                           OldSISucc);
1040    new UnreachableInst(Context, Abort);
1041    // Force the new case destination to branch to the "unreachable"
1042    // block while maintaining a (dead) CFG edge to the old block.
1043    NewSISucc->getTerminator()->eraseFromParent();
1044    BranchInst::Create(Abort, OldSISucc,
1045                       ConstantInt::getTrue(Context), NewSISucc);
1046    // Release the PHI operands for this edge.
1047    for (BasicBlock::iterator II = NewSISucc->begin();
1048         PHINode *PN = dyn_cast<PHINode>(II); ++II)
1049      PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1050                           UndefValue::get(PN->getType()));
1051    // Tell the domtree about the new block. We don't fully update the
1052    // domtree here -- instead we force it to do a full recomputation
1053    // after the pass is complete -- but we do need to inform it of
1054    // new blocks.
1055    if (DT)
1056      DT->addNewBlock(Abort, NewSISucc);
1057  }
1058
1059  SimplifyCode(Worklist, L);
1060}
1061
1062/// SimplifyCode - Okay, now that we have simplified some instructions in the
1063/// loop, walk over it and constant prop, dce, and fold control flow where
1064/// possible.  Note that this is effectively a very simple loop-structure-aware
1065/// optimizer.  During processing of this loop, L could very well be deleted, so
1066/// it must not be used.
1067///
1068/// FIXME: When the loop optimizer is more mature, separate this out to a new
1069/// pass.
1070///
1071void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1072  while (!Worklist.empty()) {
1073    Instruction *I = Worklist.back();
1074    Worklist.pop_back();
1075
1076    // Simple DCE.
1077    if (isInstructionTriviallyDead(I)) {
1078      DEBUG(dbgs() << "Remove dead instruction '" << *I);
1079
1080      // Add uses to the worklist, which may be dead now.
1081      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1082        if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1083          Worklist.push_back(Use);
1084      LPM->deleteSimpleAnalysisValue(I, L);
1085      RemoveFromWorklist(I, Worklist);
1086      I->eraseFromParent();
1087      ++NumSimplify;
1088      continue;
1089    }
1090
1091    // See if instruction simplification can hack this up.  This is common for
1092    // things like "select false, X, Y" after unswitching made the condition be
1093    // 'false'.  TODO: update the domtree properly so we can pass it here.
1094    if (Value *V = SimplifyInstruction(I))
1095      if (LI->replacementPreservesLCSSAForm(I, V)) {
1096        ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1097        continue;
1098      }
1099
1100    // Special case hacks that appear commonly in unswitched code.
1101    if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1102      if (BI->isUnconditional()) {
1103        // If BI's parent is the only pred of the successor, fold the two blocks
1104        // together.
1105        BasicBlock *Pred = BI->getParent();
1106        BasicBlock *Succ = BI->getSuccessor(0);
1107        BasicBlock *SinglePred = Succ->getSinglePredecessor();
1108        if (!SinglePred) continue;  // Nothing to do.
1109        assert(SinglePred == Pred && "CFG broken");
1110
1111        DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1112              << Succ->getName() << "\n");
1113
1114        // Resolve any single entry PHI nodes in Succ.
1115        while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1116          ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1117
1118        // If Succ has any successors with PHI nodes, update them to have
1119        // entries coming from Pred instead of Succ.
1120        Succ->replaceAllUsesWith(Pred);
1121
1122        // Move all of the successor contents from Succ to Pred.
1123        Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
1124                                   Succ->end());
1125        LPM->deleteSimpleAnalysisValue(BI, L);
1126        BI->eraseFromParent();
1127        RemoveFromWorklist(BI, Worklist);
1128
1129        // Remove Succ from the loop tree.
1130        LI->removeBlock(Succ);
1131        LPM->deleteSimpleAnalysisValue(Succ, L);
1132        Succ->eraseFromParent();
1133        ++NumSimplify;
1134        continue;
1135      }
1136
1137      continue;
1138    }
1139  }
1140}
1141