InlineFunction.cpp revision 1d0be15f89cb5056e20e2d24faa8d6afb1573bca
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/LLVMContext.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Attributes.h"
24#include "llvm/Analysis/CallGraph.h"
25#include "llvm/Analysis/DebugInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/CallSite.h"
30using namespace llvm;
31
32bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
33  return InlineFunction(CallSite(CI), CG, TD);
34}
35bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
36  return InlineFunction(CallSite(II), CG, TD);
37}
38
39/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
40/// in the body of the inlined function into invokes and turn unwind
41/// instructions into branches to the invoke unwind dest.
42///
43/// II is the invoke instruction being inlined.  FirstNewBlock is the first
44/// block of the inlined code (the last block is the end of the function),
45/// and InlineCodeInfo is information about the code that got inlined.
46static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
47                                ClonedCodeInfo &InlinedCodeInfo,
48                                CallGraph *CG) {
49  BasicBlock *InvokeDest = II->getUnwindDest();
50  std::vector<Value*> InvokeDestPHIValues;
51
52  // If there are PHI nodes in the unwind destination block, we need to
53  // keep track of which values came into them from this invoke, then remove
54  // the entry for this block.
55  BasicBlock *InvokeBlock = II->getParent();
56  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
57    PHINode *PN = cast<PHINode>(I);
58    // Save the value to use for this edge.
59    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
60  }
61
62  Function *Caller = FirstNewBlock->getParent();
63
64  // The inlined code is currently at the end of the function, scan from the
65  // start of the inlined code to its end, checking for stuff we need to
66  // rewrite.
67  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
68    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
69         BB != E; ++BB) {
70      if (InlinedCodeInfo.ContainsCalls) {
71        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
72          Instruction *I = BBI++;
73
74          // We only need to check for function calls: inlined invoke
75          // instructions require no special handling.
76          if (!isa<CallInst>(I)) continue;
77          CallInst *CI = cast<CallInst>(I);
78
79          // If this call cannot unwind, don't convert it to an invoke.
80          if (CI->doesNotThrow())
81            continue;
82
83          // Convert this function call into an invoke instruction.
84          // First, split the basic block.
85          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
86
87          // Next, create the new invoke instruction, inserting it at the end
88          // of the old basic block.
89          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
90          InvokeInst *II =
91            InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
92                               InvokeArgs.begin(), InvokeArgs.end(),
93                               CI->getName(), BB->getTerminator());
94          II->setCallingConv(CI->getCallingConv());
95          II->setAttributes(CI->getAttributes());
96
97          // Make sure that anything using the call now uses the invoke!
98          CI->replaceAllUsesWith(II);
99
100          // Update the callgraph.
101          if (CG) {
102            // We should be able to do this:
103            //   (*CG)[Caller]->replaceCallSite(CI, II);
104            // but that fails if the old call site isn't in the call graph,
105            // which, because of LLVM bug 3601, it sometimes isn't.
106            CallGraphNode *CGN = (*CG)[Caller];
107            for (CallGraphNode::iterator NI = CGN->begin(), NE = CGN->end();
108                 NI != NE; ++NI) {
109              if (NI->first == CI) {
110                NI->first = II;
111                break;
112              }
113            }
114          }
115
116          // Delete the unconditional branch inserted by splitBasicBlock
117          BB->getInstList().pop_back();
118          Split->getInstList().pop_front();  // Delete the original call
119
120          // Update any PHI nodes in the exceptional block to indicate that
121          // there is now a new entry in them.
122          unsigned i = 0;
123          for (BasicBlock::iterator I = InvokeDest->begin();
124               isa<PHINode>(I); ++I, ++i) {
125            PHINode *PN = cast<PHINode>(I);
126            PN->addIncoming(InvokeDestPHIValues[i], BB);
127          }
128
129          // This basic block is now complete, start scanning the next one.
130          break;
131        }
132      }
133
134      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
135        // An UnwindInst requires special handling when it gets inlined into an
136        // invoke site.  Once this happens, we know that the unwind would cause
137        // a control transfer to the invoke exception destination, so we can
138        // transform it into a direct branch to the exception destination.
139        BranchInst::Create(InvokeDest, UI);
140
141        // Delete the unwind instruction!
142        UI->eraseFromParent();
143
144        // Update any PHI nodes in the exceptional block to indicate that
145        // there is now a new entry in them.
146        unsigned i = 0;
147        for (BasicBlock::iterator I = InvokeDest->begin();
148             isa<PHINode>(I); ++I, ++i) {
149          PHINode *PN = cast<PHINode>(I);
150          PN->addIncoming(InvokeDestPHIValues[i], BB);
151        }
152      }
153    }
154  }
155
156  // Now that everything is happy, we have one final detail.  The PHI nodes in
157  // the exception destination block still have entries due to the original
158  // invoke instruction.  Eliminate these entries (which might even delete the
159  // PHI node) now.
160  InvokeDest->removePredecessor(II->getParent());
161}
162
163/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
164/// into the caller, update the specified callgraph to reflect the changes we
165/// made.  Note that it's possible that not all code was copied over, so only
166/// some edges of the callgraph may remain.
167static void UpdateCallGraphAfterInlining(CallSite CS,
168                                         Function::iterator FirstNewBlock,
169                                       DenseMap<const Value*, Value*> &ValueMap,
170                                         CallGraph &CG) {
171  const Function *Caller = CS.getInstruction()->getParent()->getParent();
172  const Function *Callee = CS.getCalledFunction();
173  CallGraphNode *CalleeNode = CG[Callee];
174  CallGraphNode *CallerNode = CG[Caller];
175
176  // Since we inlined some uninlined call sites in the callee into the caller,
177  // add edges from the caller to all of the callees of the callee.
178  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
179
180  // Consider the case where CalleeNode == CallerNode.
181  CallGraphNode::CalledFunctionsVector CallCache;
182  if (CalleeNode == CallerNode) {
183    CallCache.assign(I, E);
184    I = CallCache.begin();
185    E = CallCache.end();
186  }
187
188  for (; I != E; ++I) {
189    const Instruction *OrigCall = I->first.getInstruction();
190
191    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
192    // Only copy the edge if the call was inlined!
193    if (VMI != ValueMap.end() && VMI->second) {
194      // If the call was inlined, but then constant folded, there is no edge to
195      // add.  Check for this case.
196      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
197        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
198    }
199  }
200  // Update the call graph by deleting the edge from Callee to Caller.  We must
201  // do this after the loop above in case Caller and Callee are the same.
202  CallerNode->removeCallEdgeFor(CS);
203}
204
205/// findFnRegionEndMarker - This is a utility routine that is used by
206/// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
207/// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
208static const DbgRegionEndInst *findFnRegionEndMarker(const Function *F) {
209
210  GlobalVariable *FnStart = NULL;
211  const DbgRegionEndInst *FnEnd = NULL;
212  for (Function::const_iterator FI = F->begin(), FE =F->end(); FI != FE; ++FI)
213    for (BasicBlock::const_iterator BI = FI->begin(), BE = FI->end(); BI != BE;
214         ++BI) {
215      if (FnStart == NULL)  {
216        if (const DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI)) {
217          DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
218          assert (SP.isNull() == false && "Invalid llvm.dbg.func.start");
219          if (SP.describes(F))
220            FnStart = SP.getGV();
221        }
222      } else {
223        if (const DbgRegionEndInst *REI = dyn_cast<DbgRegionEndInst>(BI))
224          if (REI->getContext() == FnStart)
225            FnEnd = REI;
226      }
227    }
228  return FnEnd;
229}
230
231// InlineFunction - This function inlines the called function into the basic
232// block of the caller.  This returns false if it is not possible to inline this
233// call.  The program is still in a well defined state if this occurs though.
234//
235// Note that this only does one level of inlining.  For example, if the
236// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
237// exists in the instruction stream.  Similiarly this will inline a recursive
238// function by one level.
239//
240bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
241  Instruction *TheCall = CS.getInstruction();
242  LLVMContext &Context = TheCall->getContext();
243  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
244         "Instruction not in function!");
245
246  const Function *CalledFunc = CS.getCalledFunction();
247  if (CalledFunc == 0 ||          // Can't inline external function or indirect
248      CalledFunc->isDeclaration() || // call, or call to a vararg function!
249      CalledFunc->getFunctionType()->isVarArg()) return false;
250
251
252  // If the call to the callee is not a tail call, we must clear the 'tail'
253  // flags on any calls that we inline.
254  bool MustClearTailCallFlags =
255    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
256
257  // If the call to the callee cannot throw, set the 'nounwind' flag on any
258  // calls that we inline.
259  bool MarkNoUnwind = CS.doesNotThrow();
260
261  BasicBlock *OrigBB = TheCall->getParent();
262  Function *Caller = OrigBB->getParent();
263
264  // GC poses two hazards to inlining, which only occur when the callee has GC:
265  //  1. If the caller has no GC, then the callee's GC must be propagated to the
266  //     caller.
267  //  2. If the caller has a differing GC, it is invalid to inline.
268  if (CalledFunc->hasGC()) {
269    if (!Caller->hasGC())
270      Caller->setGC(CalledFunc->getGC());
271    else if (CalledFunc->getGC() != Caller->getGC())
272      return false;
273  }
274
275  // Get an iterator to the last basic block in the function, which will have
276  // the new function inlined after it.
277  //
278  Function::iterator LastBlock = &Caller->back();
279
280  // Make sure to capture all of the return instructions from the cloned
281  // function.
282  std::vector<ReturnInst*> Returns;
283  ClonedCodeInfo InlinedFunctionInfo;
284  Function::iterator FirstNewBlock;
285
286  { // Scope to destroy ValueMap after cloning.
287    DenseMap<const Value*, Value*> ValueMap;
288
289    assert(CalledFunc->arg_size() == CS.arg_size() &&
290           "No varargs calls can be inlined!");
291
292    // Calculate the vector of arguments to pass into the function cloner, which
293    // matches up the formal to the actual argument values.
294    CallSite::arg_iterator AI = CS.arg_begin();
295    unsigned ArgNo = 0;
296    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
297         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
298      Value *ActualArg = *AI;
299
300      // When byval arguments actually inlined, we need to make the copy implied
301      // by them explicit.  However, we don't do this if the callee is readonly
302      // or readnone, because the copy would be unneeded: the callee doesn't
303      // modify the struct.
304      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
305          !CalledFunc->onlyReadsMemory()) {
306        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
307        const Type *VoidPtrTy =
308            PointerType::getUnqual(Type::getInt8Ty(Context));
309
310        // Create the alloca.  If we have TargetData, use nice alignment.
311        unsigned Align = 1;
312        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
313        Value *NewAlloca = new AllocaInst(AggTy, 0, Align,
314                                          I->getName(),
315                                          &*Caller->begin()->begin());
316        // Emit a memcpy.
317        const Type *Tys[] = { Type::getInt64Ty(Context) };
318        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
319                                                       Intrinsic::memcpy,
320                                                       Tys, 1);
321        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
322        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
323
324        Value *Size;
325        if (TD == 0)
326          Size = ConstantExpr::getSizeOf(AggTy);
327        else
328          Size = ConstantInt::get(Type::getInt64Ty(Context),
329                                         TD->getTypeStoreSize(AggTy));
330
331        // Always generate a memcpy of alignment 1 here because we don't know
332        // the alignment of the src pointer.  Other optimizations can infer
333        // better alignment.
334        Value *CallArgs[] = {
335          DestCast, SrcCast, Size,
336          ConstantInt::get(Type::getInt32Ty(Context), 1)
337        };
338        CallInst *TheMemCpy =
339          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
340
341        // If we have a call graph, update it.
342        if (CG) {
343          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
344          CallGraphNode *CallerNode = (*CG)[Caller];
345          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
346        }
347
348        // Uses of the argument in the function should use our new alloca
349        // instead.
350        ActualArg = NewAlloca;
351      }
352
353      ValueMap[I] = ActualArg;
354    }
355
356    // Adjust llvm.dbg.region.end. If the CalledFunc has region end
357    // marker then clone that marker after next stop point at the
358    // call site. The function body cloner does not clone original
359    // region end marker from the CalledFunc. This will ensure that
360    // inlined function's scope ends at the right place.
361    const DbgRegionEndInst *DREI = findFnRegionEndMarker(CalledFunc);
362    if (DREI) {
363      for (BasicBlock::iterator BI = TheCall,
364             BE = TheCall->getParent()->end(); BI != BE; ++BI) {
365        if (DbgStopPointInst *DSPI = dyn_cast<DbgStopPointInst>(BI)) {
366          if (DbgRegionEndInst *NewDREI =
367              dyn_cast<DbgRegionEndInst>(DREI->clone(Context)))
368            NewDREI->insertAfter(DSPI);
369          break;
370        }
371      }
372    }
373
374    // We want the inliner to prune the code as it copies.  We would LOVE to
375    // have no dead or constant instructions leftover after inlining occurs
376    // (which can happen, e.g., because an argument was constant), but we'll be
377    // happy with whatever the cloner can do.
378    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
379                              &InlinedFunctionInfo, TD);
380
381    // Remember the first block that is newly cloned over.
382    FirstNewBlock = LastBlock; ++FirstNewBlock;
383
384    // Update the callgraph if requested.
385    if (CG)
386      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
387  }
388
389  // If there are any alloca instructions in the block that used to be the entry
390  // block for the callee, move them to the entry block of the caller.  First
391  // calculate which instruction they should be inserted before.  We insert the
392  // instructions at the end of the current alloca list.
393  //
394  {
395    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
396    for (BasicBlock::iterator I = FirstNewBlock->begin(),
397           E = FirstNewBlock->end(); I != E; )
398      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
399        // If the alloca is now dead, remove it.  This often occurs due to code
400        // specialization.
401        if (AI->use_empty()) {
402          AI->eraseFromParent();
403          continue;
404        }
405
406        if (isa<Constant>(AI->getArraySize())) {
407          // Scan for the block of allocas that we can move over, and move them
408          // all at once.
409          while (isa<AllocaInst>(I) &&
410                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
411            ++I;
412
413          // Transfer all of the allocas over in a block.  Using splice means
414          // that the instructions aren't removed from the symbol table, then
415          // reinserted.
416          Caller->getEntryBlock().getInstList().splice(
417              InsertPoint,
418              FirstNewBlock->getInstList(),
419              AI, I);
420        }
421      }
422  }
423
424  // If the inlined code contained dynamic alloca instructions, wrap the inlined
425  // code with llvm.stacksave/llvm.stackrestore intrinsics.
426  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
427    Module *M = Caller->getParent();
428    // Get the two intrinsics we care about.
429    Constant *StackSave, *StackRestore;
430    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
431    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
432
433    // If we are preserving the callgraph, add edges to the stacksave/restore
434    // functions for the calls we insert.
435    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
436    if (CG) {
437      // We know that StackSave/StackRestore are Function*'s, because they are
438      // intrinsics which must have the right types.
439      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
440      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
441      CallerNode = (*CG)[Caller];
442    }
443
444    // Insert the llvm.stacksave.
445    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
446                                          FirstNewBlock->begin());
447    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
448
449    // Insert a call to llvm.stackrestore before any return instructions in the
450    // inlined function.
451    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
452      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
453      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
454    }
455
456    // Count the number of StackRestore calls we insert.
457    unsigned NumStackRestores = Returns.size();
458
459    // If we are inlining an invoke instruction, insert restores before each
460    // unwind.  These unwinds will be rewritten into branches later.
461    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
462      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
463           BB != E; ++BB)
464        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
465          CallInst::Create(StackRestore, SavedPtr, "", UI);
466          ++NumStackRestores;
467        }
468    }
469  }
470
471  // If we are inlining tail call instruction through a call site that isn't
472  // marked 'tail', we must remove the tail marker for any calls in the inlined
473  // code.  Also, calls inlined through a 'nounwind' call site should be marked
474  // 'nounwind'.
475  if (InlinedFunctionInfo.ContainsCalls &&
476      (MustClearTailCallFlags || MarkNoUnwind)) {
477    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
478         BB != E; ++BB)
479      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
480        if (CallInst *CI = dyn_cast<CallInst>(I)) {
481          if (MustClearTailCallFlags)
482            CI->setTailCall(false);
483          if (MarkNoUnwind)
484            CI->setDoesNotThrow();
485        }
486  }
487
488  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
489  // instructions are unreachable.
490  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
491    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
492         BB != E; ++BB) {
493      TerminatorInst *Term = BB->getTerminator();
494      if (isa<UnwindInst>(Term)) {
495        new UnreachableInst(Context, Term);
496        BB->getInstList().erase(Term);
497      }
498    }
499
500  // If we are inlining for an invoke instruction, we must make sure to rewrite
501  // any inlined 'unwind' instructions into branches to the invoke exception
502  // destination, and call instructions into invoke instructions.
503  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
504    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo, CG);
505
506  // If we cloned in _exactly one_ basic block, and if that block ends in a
507  // return instruction, we splice the body of the inlined callee directly into
508  // the calling basic block.
509  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
510    // Move all of the instructions right before the call.
511    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
512                                 FirstNewBlock->begin(), FirstNewBlock->end());
513    // Remove the cloned basic block.
514    Caller->getBasicBlockList().pop_back();
515
516    // If the call site was an invoke instruction, add a branch to the normal
517    // destination.
518    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
519      BranchInst::Create(II->getNormalDest(), TheCall);
520
521    // If the return instruction returned a value, replace uses of the call with
522    // uses of the returned value.
523    if (!TheCall->use_empty()) {
524      ReturnInst *R = Returns[0];
525      if (TheCall == R->getReturnValue())
526        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
527      else
528        TheCall->replaceAllUsesWith(R->getReturnValue());
529    }
530    // Since we are now done with the Call/Invoke, we can delete it.
531    TheCall->eraseFromParent();
532
533    // Since we are now done with the return instruction, delete it also.
534    Returns[0]->eraseFromParent();
535
536    // We are now done with the inlining.
537    return true;
538  }
539
540  // Otherwise, we have the normal case, of more than one block to inline or
541  // multiple return sites.
542
543  // We want to clone the entire callee function into the hole between the
544  // "starter" and "ender" blocks.  How we accomplish this depends on whether
545  // this is an invoke instruction or a call instruction.
546  BasicBlock *AfterCallBB;
547  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
548
549    // Add an unconditional branch to make this look like the CallInst case...
550    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
551
552    // Split the basic block.  This guarantees that no PHI nodes will have to be
553    // updated due to new incoming edges, and make the invoke case more
554    // symmetric to the call case.
555    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
556                                          CalledFunc->getName()+".exit");
557
558  } else {  // It's a call
559    // If this is a call instruction, we need to split the basic block that
560    // the call lives in.
561    //
562    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
563                                          CalledFunc->getName()+".exit");
564  }
565
566  // Change the branch that used to go to AfterCallBB to branch to the first
567  // basic block of the inlined function.
568  //
569  TerminatorInst *Br = OrigBB->getTerminator();
570  assert(Br && Br->getOpcode() == Instruction::Br &&
571         "splitBasicBlock broken!");
572  Br->setOperand(0, FirstNewBlock);
573
574
575  // Now that the function is correct, make it a little bit nicer.  In
576  // particular, move the basic blocks inserted from the end of the function
577  // into the space made by splitting the source basic block.
578  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
579                                     FirstNewBlock, Caller->end());
580
581  // Handle all of the return instructions that we just cloned in, and eliminate
582  // any users of the original call/invoke instruction.
583  const Type *RTy = CalledFunc->getReturnType();
584
585  if (Returns.size() > 1) {
586    // The PHI node should go at the front of the new basic block to merge all
587    // possible incoming values.
588    PHINode *PHI = 0;
589    if (!TheCall->use_empty()) {
590      PHI = PHINode::Create(RTy, TheCall->getName(),
591                            AfterCallBB->begin());
592      // Anything that used the result of the function call should now use the
593      // PHI node as their operand.
594      TheCall->replaceAllUsesWith(PHI);
595    }
596
597    // Loop over all of the return instructions adding entries to the PHI node
598    // as appropriate.
599    if (PHI) {
600      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
601        ReturnInst *RI = Returns[i];
602        assert(RI->getReturnValue()->getType() == PHI->getType() &&
603               "Ret value not consistent in function!");
604        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
605      }
606    }
607
608    // Add a branch to the merge points and remove return instructions.
609    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
610      ReturnInst *RI = Returns[i];
611      BranchInst::Create(AfterCallBB, RI);
612      RI->eraseFromParent();
613    }
614  } else if (!Returns.empty()) {
615    // Otherwise, if there is exactly one return value, just replace anything
616    // using the return value of the call with the computed value.
617    if (!TheCall->use_empty()) {
618      if (TheCall == Returns[0]->getReturnValue())
619        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
620      else
621        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
622    }
623
624    // Splice the code from the return block into the block that it will return
625    // to, which contains the code that was after the call.
626    BasicBlock *ReturnBB = Returns[0]->getParent();
627    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
628                                      ReturnBB->getInstList());
629
630    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
631    ReturnBB->replaceAllUsesWith(AfterCallBB);
632
633    // Delete the return instruction now and empty ReturnBB now.
634    Returns[0]->eraseFromParent();
635    ReturnBB->eraseFromParent();
636  } else if (!TheCall->use_empty()) {
637    // No returns, but something is using the return value of the call.  Just
638    // nuke the result.
639    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
640  }
641
642  // Since we are now done with the Call/Invoke, we can delete it.
643  TheCall->eraseFromParent();
644
645  // We should always be able to fold the entry block of the function into the
646  // single predecessor of the block...
647  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
648  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
649
650  // Splice the code entry block into calling block, right before the
651  // unconditional branch.
652  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
653  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
654
655  // Remove the unconditional branch.
656  OrigBB->getInstList().erase(Br);
657
658  // Now we can remove the CalleeEntry block, which is now empty.
659  Caller->getBasicBlockList().erase(CalleeEntry);
660
661  return true;
662}
663