InlineFunction.cpp revision 51d6816089a66c171dc23b50d62989ac6bb5c491
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// This file implements inlining of a function into a call site, resolving
4// parameters and the return value as appropriate.
5//
6// FIXME: This pass should transform alloca instructions in the called function
7//        into malloc/free pairs!  Or perhaps it should refuse to inline them!
8//
9//===----------------------------------------------------------------------===//
10
11#include "llvm/Transforms/Utils/Cloning.h"
12#include "llvm/Constant.h"
13#include "llvm/DerivedTypes.h"
14#include "llvm/Module.h"
15#include "llvm/Instructions.h"
16#include "llvm/Intrinsics.h"
17#include "llvm/Support/CallSite.h"
18#include "llvm/Transforms/Utils/Local.h"
19
20bool InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
21bool InlineFunction(InvokeInst *II) { return InlineFunction(CallSite(II)); }
22
23// InlineFunction - This function inlines the called function into the basic
24// block of the caller.  This returns false if it is not possible to inline this
25// call.  The program is still in a well defined state if this occurs though.
26//
27// Note that this only does one level of inlining.  For example, if the
28// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
29// exists in the instruction stream.  Similiarly this will inline a recursive
30// function by one level.
31//
32bool InlineFunction(CallSite CS) {
33  Instruction *TheCall = CS.getInstruction();
34  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
35         "Instruction not in function!");
36
37  const Function *CalledFunc = CS.getCalledFunction();
38  if (CalledFunc == 0 ||          // Can't inline external function or indirect
39      CalledFunc->isExternal() || // call, or call to a vararg function!
40      CalledFunc->getFunctionType()->isVarArg()) return false;
41
42  BasicBlock *OrigBB = TheCall->getParent();
43  Function *Caller = OrigBB->getParent();
44
45  // We want to clone the entire callee function into the whole between the
46  // "starter" and "ender" blocks.  How we accomplish this depends on whether
47  // this is an invoke instruction or a call instruction.
48
49  BasicBlock *InvokeDest = 0;     // Exception handling destination
50  std::vector<Value*> InvokeDestPHIValues; // Values for PHI nodes in InvokeDest
51  BasicBlock *AfterCallBB;
52
53  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
54    AfterCallBB = II->getNormalDest();
55    InvokeDest = II->getExceptionalDest();
56
57    // Add an unconditional branch to make this look like the CallInst case...
58    new BranchInst(AfterCallBB, TheCall);
59
60    // If there are PHI nodes in the exceptional destination block, we need to
61    // keep track of which values came into them from this invoke, then remove
62    // the entry for this block.
63    for (BasicBlock::iterator I = InvokeDest->begin();
64         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
65      // Save the value to use for this edge...
66      InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
67    }
68
69    // Remove (unlink) the InvokeInst from the function...
70    OrigBB->getInstList().remove(TheCall);
71
72  } else {  // It's a call
73    // If this is a call instruction, we need to split the basic block that the
74    // call lives in.
75    //
76    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
77                                          CalledFunc->getName()+".entry");
78    // Remove (unlink) the CallInst from the function...
79    AfterCallBB->getInstList().remove(TheCall);
80  }
81
82  // If we have a return value generated by this call, convert it into a PHI
83  // node that gets values from each of the old RET instructions in the original
84  // function.
85  //
86  PHINode *PHI = 0;
87  if (!TheCall->use_empty()) {
88    // The PHI node should go at the front of the new basic block to merge all
89    // possible incoming values.
90    //
91    PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(),
92                      AfterCallBB->begin());
93
94    // Anything that used the result of the function call should now use the PHI
95    // node as their operand.
96    //
97    TheCall->replaceAllUsesWith(PHI);
98  }
99
100  // Get an iterator to the last basic block in the function, which will have
101  // the new function inlined after it.
102  //
103  Function::iterator LastBlock = &Caller->back();
104
105  // Calculate the vector of arguments to pass into the function cloner...
106  std::map<const Value*, Value*> ValueMap;
107  assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
108         std::distance(CS.arg_begin(), CS.arg_end()) &&
109         "No varargs calls can be inlined!");
110
111  CallSite::arg_iterator AI = CS.arg_begin();
112  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
113       I != E; ++I, ++AI)
114    ValueMap[I] = *AI;
115
116  // Since we are now done with the Call/Invoke, we can delete it.
117  delete TheCall;
118
119  // Make a vector to capture the return instructions in the cloned function...
120  std::vector<ReturnInst*> Returns;
121
122  // Populate the value map with all of the globals in the program.
123  // FIXME: This should be the default for CloneFunctionInto!
124  Module &M = *Caller->getParent();
125  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
126    ValueMap[I] = I;
127  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
128    ValueMap[I] = I;
129
130  // Do all of the hard part of cloning the callee into the caller...
131  CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
132
133  // Loop over all of the return instructions, turning them into unconditional
134  // branches to the merge point now...
135  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
136    ReturnInst *RI = Returns[i];
137    BasicBlock *BB = RI->getParent();
138
139    // Add a branch to the merge point where the PHI node lives if it exists.
140    new BranchInst(AfterCallBB, RI);
141
142    if (PHI) {   // The PHI node should include this value!
143      assert(RI->getReturnValue() && "Ret should have value!");
144      assert(RI->getReturnValue()->getType() == PHI->getType() &&
145             "Ret value not consistent in function!");
146      PHI->addIncoming(RI->getReturnValue(), BB);
147    }
148
149    // Delete the return instruction now
150    BB->getInstList().erase(RI);
151  }
152
153  // Check to see if the PHI node only has one argument.  This is a common
154  // case resulting from there only being a single return instruction in the
155  // function call.  Because this is so common, eliminate the PHI node.
156  //
157  if (PHI && PHI->getNumIncomingValues() == 1) {
158    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
159    PHI->getParent()->getInstList().erase(PHI);
160  }
161
162  // Change the branch that used to go to AfterCallBB to branch to the first
163  // basic block of the inlined function.
164  //
165  TerminatorInst *Br = OrigBB->getTerminator();
166  assert(Br && Br->getOpcode() == Instruction::Br &&
167	 "splitBasicBlock broken!");
168  Br->setOperand(0, ++LastBlock);
169
170  // If there are any alloca instructions in the block that used to be the entry
171  // block for the callee, move them to the entry block of the caller.  First
172  // calculate which instruction they should be inserted before.  We insert the
173  // instructions at the end of the current alloca list.
174  //
175  if (isa<AllocaInst>(LastBlock->begin())) {
176    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
177    while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
178
179    for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
180         I != E; )
181      if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
182        ++I;  // Move to the next instruction
183        LastBlock->getInstList().remove(AI);
184        Caller->front().getInstList().insert(InsertPoint, AI);
185      } else {
186        ++I;
187      }
188  }
189
190  // If we just inlined a call due to an invoke instruction, scan the inlined
191  // function checking for function calls that should now be made into invoke
192  // instructions, and for unwind's which should be turned into branches.
193  if (InvokeDest) {
194    for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB) {
195      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
196        // We only need to check for function calls: inlined invoke instructions
197        // require no special handling...
198        if (CallInst *CI = dyn_cast<CallInst>(I)) {
199          // Convert this function call into an invoke instruction...
200
201          // First, split the basic block...
202          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
203
204          // Next, create the new invoke instruction, inserting it at the end
205          // of the old basic block.
206          InvokeInst *II =
207            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
208                           std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
209                           CI->getName(), BB->getTerminator());
210
211          // Make sure that anything using the call now uses the invoke!
212          CI->replaceAllUsesWith(II);
213
214          // Delete the unconditional branch inserted by splitBasicBlock
215          BB->getInstList().pop_back();
216          Split->getInstList().pop_front();  // Delete the original call
217
218          // Update any PHI nodes in the exceptional block to indicate that
219          // there is now a new entry in them.
220          unsigned i = 0;
221          for (BasicBlock::iterator I = InvokeDest->begin();
222               PHINode *PN = dyn_cast<PHINode>(I); ++I, ++i)
223            PN->addIncoming(InvokeDestPHIValues[i], BB);
224
225          // This basic block is now complete, start scanning the next one.
226          break;
227        } else {
228          ++I;
229        }
230      }
231
232      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
233        // An UnwindInst requires special handling when it gets inlined into an
234        // invoke site.  Once this happens, we know that the unwind would cause
235        // a control transfer to the invoke exception destination, so we can
236        // transform it into a direct branch to the exception destination.
237        BranchInst *BI = new BranchInst(InvokeDest, UI);
238
239        // Delete the unwind instruction!
240        UI->getParent()->getInstList().pop_back();
241      }
242    }
243
244    // Now that everything is happy, we have one final detail.  The PHI nodes in
245    // the exception destination block still have entries due to the original
246    // invoke instruction.  Eliminate these entries (which might even delete the
247    // PHI node) now.
248    for (BasicBlock::iterator I = InvokeDest->begin();
249         PHINode *PN = dyn_cast<PHINode>(I); ++I)
250      PN->removeIncomingValue(OrigBB);
251  }
252  // Now that the function is correct, make it a little bit nicer.  In
253  // particular, move the basic blocks inserted from the end of the function
254  // into the space made by splitting the source basic block.
255  //
256  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
257                                     LastBlock, Caller->end());
258
259  // We should always be able to fold the entry block of the function into the
260  // single predecessor of the block...
261  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
262  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
263  SimplifyCFG(CalleeEntry);
264
265  // Okay, continue the CFG cleanup.  It's often the case that there is only a
266  // single return instruction in the callee function.  If this is the case,
267  // then we have an unconditional branch from the return block to the
268  // 'AfterCallBB'.  Check for this case, and eliminate the branch is possible.
269  SimplifyCFG(AfterCallBB);
270  return true;
271}
272