InlineFunction.cpp revision 6d55f2269e20298a1d6a683be72d9552482156a9
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Attributes.h"
23#include "llvm/Analysis/CallGraph.h"
24#include "llvm/Analysis/DebugInfo.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Transforms/Utils/Local.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/IRBuilder.h"
32using namespace llvm;
33
34bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
35  return InlineFunction(CallSite(CI), IFI);
36}
37bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
38  return InlineFunction(CallSite(II), IFI);
39}
40
41
42/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
43/// an invoke, we have to turn all of the calls that can throw into
44/// invokes.  This function analyze BB to see if there are any calls, and if so,
45/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
46/// nodes in that block with the values specified in InvokeDestPHIValues.
47///
48static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
49                                                   BasicBlock *InvokeDest,
50                           const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
51  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
52    Instruction *I = BBI++;
53
54    // We only need to check for function calls: inlined invoke
55    // instructions require no special handling.
56    CallInst *CI = dyn_cast<CallInst>(I);
57    if (CI == 0) continue;
58
59    // If this call cannot unwind, don't convert it to an invoke.
60    if (CI->doesNotThrow())
61      continue;
62
63    // Convert this function call into an invoke instruction.
64    // First, split the basic block.
65    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
66
67    // Next, create the new invoke instruction, inserting it at the end
68    // of the old basic block.
69    ImmutableCallSite CS(CI);
70    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
71    InvokeInst *II =
72      InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
73                         InvokeArgs.begin(), InvokeArgs.end(),
74                         CI->getName(), BB->getTerminator());
75    II->setCallingConv(CI->getCallingConv());
76    II->setAttributes(CI->getAttributes());
77
78    // Make sure that anything using the call now uses the invoke!  This also
79    // updates the CallGraph if present, because it uses a WeakVH.
80    CI->replaceAllUsesWith(II);
81
82    // Delete the unconditional branch inserted by splitBasicBlock
83    BB->getInstList().pop_back();
84    Split->getInstList().pop_front();  // Delete the original call
85
86    // Update any PHI nodes in the exceptional block to indicate that
87    // there is now a new entry in them.
88    unsigned i = 0;
89    for (BasicBlock::iterator I = InvokeDest->begin();
90         isa<PHINode>(I); ++I, ++i)
91      cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
92
93    // This basic block is now complete, the caller will continue scanning the
94    // next one.
95    return;
96  }
97}
98
99
100/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
101/// in the body of the inlined function into invokes and turn unwind
102/// instructions into branches to the invoke unwind dest.
103///
104/// II is the invoke instruction being inlined.  FirstNewBlock is the first
105/// block of the inlined code (the last block is the end of the function),
106/// and InlineCodeInfo is information about the code that got inlined.
107static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
108                                ClonedCodeInfo &InlinedCodeInfo) {
109  BasicBlock *InvokeDest = II->getUnwindDest();
110  SmallVector<Value*, 8> InvokeDestPHIValues;
111
112  // If there are PHI nodes in the unwind destination block, we need to
113  // keep track of which values came into them from this invoke, then remove
114  // the entry for this block.
115  BasicBlock *InvokeBlock = II->getParent();
116  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
117    PHINode *PN = cast<PHINode>(I);
118    // Save the value to use for this edge.
119    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
120  }
121
122  Function *Caller = FirstNewBlock->getParent();
123
124  // The inlined code is currently at the end of the function, scan from the
125  // start of the inlined code to its end, checking for stuff we need to
126  // rewrite.  If the code doesn't have calls or unwinds, we know there is
127  // nothing to rewrite.
128  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
129    // Now that everything is happy, we have one final detail.  The PHI nodes in
130    // the exception destination block still have entries due to the original
131    // invoke instruction.  Eliminate these entries (which might even delete the
132    // PHI node) now.
133    InvokeDest->removePredecessor(II->getParent());
134    return;
135  }
136
137  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
138    if (InlinedCodeInfo.ContainsCalls)
139      HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
140                                             InvokeDestPHIValues);
141
142    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
143      // An UnwindInst requires special handling when it gets inlined into an
144      // invoke site.  Once this happens, we know that the unwind would cause
145      // a control transfer to the invoke exception destination, so we can
146      // transform it into a direct branch to the exception destination.
147      BranchInst::Create(InvokeDest, UI);
148
149      // Delete the unwind instruction!
150      UI->eraseFromParent();
151
152      // Update any PHI nodes in the exceptional block to indicate that
153      // there is now a new entry in them.
154      unsigned i = 0;
155      for (BasicBlock::iterator I = InvokeDest->begin();
156           isa<PHINode>(I); ++I, ++i) {
157        PHINode *PN = cast<PHINode>(I);
158        PN->addIncoming(InvokeDestPHIValues[i], BB);
159      }
160    }
161  }
162
163  // Now that everything is happy, we have one final detail.  The PHI nodes in
164  // the exception destination block still have entries due to the original
165  // invoke instruction.  Eliminate these entries (which might even delete the
166  // PHI node) now.
167  InvokeDest->removePredecessor(II->getParent());
168}
169
170/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
171/// into the caller, update the specified callgraph to reflect the changes we
172/// made.  Note that it's possible that not all code was copied over, so only
173/// some edges of the callgraph may remain.
174static void UpdateCallGraphAfterInlining(CallSite CS,
175                                         Function::iterator FirstNewBlock,
176                                         ValueToValueMapTy &VMap,
177                                         InlineFunctionInfo &IFI) {
178  CallGraph &CG = *IFI.CG;
179  const Function *Caller = CS.getInstruction()->getParent()->getParent();
180  const Function *Callee = CS.getCalledFunction();
181  CallGraphNode *CalleeNode = CG[Callee];
182  CallGraphNode *CallerNode = CG[Caller];
183
184  // Since we inlined some uninlined call sites in the callee into the caller,
185  // add edges from the caller to all of the callees of the callee.
186  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
187
188  // Consider the case where CalleeNode == CallerNode.
189  CallGraphNode::CalledFunctionsVector CallCache;
190  if (CalleeNode == CallerNode) {
191    CallCache.assign(I, E);
192    I = CallCache.begin();
193    E = CallCache.end();
194  }
195
196  for (; I != E; ++I) {
197    const Value *OrigCall = I->first;
198
199    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
200    // Only copy the edge if the call was inlined!
201    if (VMI == VMap.end() || VMI->second == 0)
202      continue;
203
204    // If the call was inlined, but then constant folded, there is no edge to
205    // add.  Check for this case.
206    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
207    if (NewCall == 0) continue;
208
209    // Remember that this call site got inlined for the client of
210    // InlineFunction.
211    IFI.InlinedCalls.push_back(NewCall);
212
213    // It's possible that inlining the callsite will cause it to go from an
214    // indirect to a direct call by resolving a function pointer.  If this
215    // happens, set the callee of the new call site to a more precise
216    // destination.  This can also happen if the call graph node of the caller
217    // was just unnecessarily imprecise.
218    if (I->second->getFunction() == 0)
219      if (Function *F = CallSite(NewCall).getCalledFunction()) {
220        // Indirect call site resolved to direct call.
221        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
222
223        continue;
224      }
225
226    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
227  }
228
229  // Update the call graph by deleting the edge from Callee to Caller.  We must
230  // do this after the loop above in case Caller and Callee are the same.
231  CallerNode->removeCallEdgeFor(CS);
232}
233
234/// HandleByValArgument - When inlining a call site that has a byval argument,
235/// we have to make the implicit memcpy explicit by adding it.
236static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
237                                  const Function *CalledFunc,
238                                  InlineFunctionInfo &IFI,
239                                  unsigned ByValAlignment) {
240  const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
241
242  // If the called function is readonly, then it could not mutate the caller's
243  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
244  // temporary.
245  if (CalledFunc->onlyReadsMemory()) {
246    // If the byval argument has a specified alignment that is greater than the
247    // passed in pointer, then we either have to round up the input pointer or
248    // give up on this transformation.
249    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
250      return Arg;
251
252    // If the pointer is already known to be sufficiently aligned, or if we can
253    // round it up to a larger alignment, then we don't need a temporary.
254    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
255                                   IFI.TD) >= ByValAlignment)
256      return Arg;
257
258    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
259    // for code quality, but rarely happens and is required for correctness.
260  }
261
262  LLVMContext &Context = Arg->getContext();
263
264  const Type *VoidPtrTy = Type::getInt8PtrTy(Context);
265
266  // Create the alloca.  If we have TargetData, use nice alignment.
267  unsigned Align = 1;
268  if (IFI.TD)
269    Align = IFI.TD->getPrefTypeAlignment(AggTy);
270
271  // If the byval had an alignment specified, we *must* use at least that
272  // alignment, as it is required by the byval argument (and uses of the
273  // pointer inside the callee).
274  Align = std::max(Align, ByValAlignment);
275
276  Function *Caller = TheCall->getParent()->getParent();
277
278  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
279                                    &*Caller->begin()->begin());
280  // Emit a memcpy.
281  const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
282  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
283                                                 Intrinsic::memcpy,
284                                                 Tys, 3);
285  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
286  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
287
288  Value *Size;
289  if (IFI.TD == 0)
290    Size = ConstantExpr::getSizeOf(AggTy);
291  else
292    Size = ConstantInt::get(Type::getInt64Ty(Context),
293                            IFI.TD->getTypeStoreSize(AggTy));
294
295  // Always generate a memcpy of alignment 1 here because we don't know
296  // the alignment of the src pointer.  Other optimizations can infer
297  // better alignment.
298  Value *CallArgs[] = {
299    DestCast, SrcCast, Size,
300    ConstantInt::get(Type::getInt32Ty(Context), 1),
301    ConstantInt::getFalse(Context) // isVolatile
302  };
303  CallInst *TheMemCpy =
304    CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
305
306  // If we have a call graph, update it.
307  if (CallGraph *CG = IFI.CG) {
308    CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
309    CallGraphNode *CallerNode = (*CG)[Caller];
310    CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
311  }
312
313  // Uses of the argument in the function should use our new alloca
314  // instead.
315  return NewAlloca;
316}
317
318// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
319// intrinsic.
320static bool isUsedByLifetimeMarker(Value *V) {
321  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
322       ++UI) {
323    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
324      switch (II->getIntrinsicID()) {
325      default: break;
326      case Intrinsic::lifetime_start:
327      case Intrinsic::lifetime_end:
328        return true;
329      }
330    }
331  }
332  return false;
333}
334
335// hasLifetimeMarkers - Check whether the given alloca already has
336// lifetime.start or lifetime.end intrinsics.
337static bool hasLifetimeMarkers(AllocaInst *AI) {
338  const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
339  if (AI->getType() == Int8PtrTy)
340    return isUsedByLifetimeMarker(AI);
341
342  // Do a scan to find all the bitcasts to i8*.
343  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
344       ++I) {
345    if (I->getType() != Int8PtrTy) continue;
346    if (!isa<BitCastInst>(*I)) continue;
347    if (isUsedByLifetimeMarker(*I))
348      return true;
349  }
350  return false;
351}
352
353// InlineFunction - This function inlines the called function into the basic
354// block of the caller.  This returns false if it is not possible to inline this
355// call.  The program is still in a well defined state if this occurs though.
356//
357// Note that this only does one level of inlining.  For example, if the
358// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
359// exists in the instruction stream.  Similarly this will inline a recursive
360// function by one level.
361//
362bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
363  Instruction *TheCall = CS.getInstruction();
364  LLVMContext &Context = TheCall->getContext();
365  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
366         "Instruction not in function!");
367
368  // If IFI has any state in it, zap it before we fill it in.
369  IFI.reset();
370
371  const Function *CalledFunc = CS.getCalledFunction();
372  if (CalledFunc == 0 ||          // Can't inline external function or indirect
373      CalledFunc->isDeclaration() || // call, or call to a vararg function!
374      CalledFunc->getFunctionType()->isVarArg()) return false;
375
376  // If the call to the callee is not a tail call, we must clear the 'tail'
377  // flags on any calls that we inline.
378  bool MustClearTailCallFlags =
379    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
380
381  // If the call to the callee cannot throw, set the 'nounwind' flag on any
382  // calls that we inline.
383  bool MarkNoUnwind = CS.doesNotThrow();
384
385  BasicBlock *OrigBB = TheCall->getParent();
386  Function *Caller = OrigBB->getParent();
387
388  // GC poses two hazards to inlining, which only occur when the callee has GC:
389  //  1. If the caller has no GC, then the callee's GC must be propagated to the
390  //     caller.
391  //  2. If the caller has a differing GC, it is invalid to inline.
392  if (CalledFunc->hasGC()) {
393    if (!Caller->hasGC())
394      Caller->setGC(CalledFunc->getGC());
395    else if (CalledFunc->getGC() != Caller->getGC())
396      return false;
397  }
398
399  // Get an iterator to the last basic block in the function, which will have
400  // the new function inlined after it.
401  //
402  Function::iterator LastBlock = &Caller->back();
403
404  // Make sure to capture all of the return instructions from the cloned
405  // function.
406  SmallVector<ReturnInst*, 8> Returns;
407  ClonedCodeInfo InlinedFunctionInfo;
408  Function::iterator FirstNewBlock;
409
410  { // Scope to destroy VMap after cloning.
411    ValueToValueMapTy VMap;
412
413    assert(CalledFunc->arg_size() == CS.arg_size() &&
414           "No varargs calls can be inlined!");
415
416    // Calculate the vector of arguments to pass into the function cloner, which
417    // matches up the formal to the actual argument values.
418    CallSite::arg_iterator AI = CS.arg_begin();
419    unsigned ArgNo = 0;
420    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
421         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
422      Value *ActualArg = *AI;
423
424      // When byval arguments actually inlined, we need to make the copy implied
425      // by them explicit.  However, we don't do this if the callee is readonly
426      // or readnone, because the copy would be unneeded: the callee doesn't
427      // modify the struct.
428      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
429        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
430                                        CalledFunc->getParamAlignment(ArgNo+1));
431
432        // Calls that we inline may use the new alloca, so we need to clear
433        // their 'tail' flags if HandleByValArgument introduced a new alloca and
434        // the callee has calls.
435        MustClearTailCallFlags |= ActualArg != *AI;
436      }
437
438      VMap[I] = ActualArg;
439    }
440
441    // We want the inliner to prune the code as it copies.  We would LOVE to
442    // have no dead or constant instructions leftover after inlining occurs
443    // (which can happen, e.g., because an argument was constant), but we'll be
444    // happy with whatever the cloner can do.
445    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
446                              /*ModuleLevelChanges=*/false, Returns, ".i",
447                              &InlinedFunctionInfo, IFI.TD, TheCall);
448
449    // Remember the first block that is newly cloned over.
450    FirstNewBlock = LastBlock; ++FirstNewBlock;
451
452    // Update the callgraph if requested.
453    if (IFI.CG)
454      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
455  }
456
457  // If there are any alloca instructions in the block that used to be the entry
458  // block for the callee, move them to the entry block of the caller.  First
459  // calculate which instruction they should be inserted before.  We insert the
460  // instructions at the end of the current alloca list.
461  //
462  {
463    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
464    for (BasicBlock::iterator I = FirstNewBlock->begin(),
465         E = FirstNewBlock->end(); I != E; ) {
466      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
467      if (AI == 0) continue;
468
469      // If the alloca is now dead, remove it.  This often occurs due to code
470      // specialization.
471      if (AI->use_empty()) {
472        AI->eraseFromParent();
473        continue;
474      }
475
476      if (!isa<Constant>(AI->getArraySize()))
477        continue;
478
479      // Keep track of the static allocas that we inline into the caller.
480      IFI.StaticAllocas.push_back(AI);
481
482      // Scan for the block of allocas that we can move over, and move them
483      // all at once.
484      while (isa<AllocaInst>(I) &&
485             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
486        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
487        ++I;
488      }
489
490      // Transfer all of the allocas over in a block.  Using splice means
491      // that the instructions aren't removed from the symbol table, then
492      // reinserted.
493      Caller->getEntryBlock().getInstList().splice(InsertPoint,
494                                                   FirstNewBlock->getInstList(),
495                                                   AI, I);
496    }
497  }
498
499  // Leave lifetime markers for the static alloca's, scoping them to the
500  // function we just inlined.
501  if (!IFI.StaticAllocas.empty()) {
502    // Also preserve the call graph, if applicable.
503    CallGraphNode *StartCGN = 0, *EndCGN = 0, *CallerNode = 0;
504    if (CallGraph *CG = IFI.CG) {
505      Function *Start = Intrinsic::getDeclaration(Caller->getParent(),
506                                                  Intrinsic::lifetime_start);
507      Function *End = Intrinsic::getDeclaration(Caller->getParent(),
508                                                Intrinsic::lifetime_end);
509      StartCGN = CG->getOrInsertFunction(Start);
510      EndCGN = CG->getOrInsertFunction(End);
511      CallerNode = (*CG)[Caller];
512    }
513
514    IRBuilder<> builder(FirstNewBlock->begin());
515    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
516      AllocaInst *AI = IFI.StaticAllocas[ai];
517
518      // If the alloca is already scoped to something smaller than the whole
519      // function then there's no need to add redundant, less accurate markers.
520      if (hasLifetimeMarkers(AI))
521        continue;
522
523      CallInst *StartCall = builder.CreateLifetimeStart(AI);
524      if (IFI.CG) CallerNode->addCalledFunction(StartCall, StartCGN);
525      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
526        IRBuilder<> builder(Returns[ri]);
527        CallInst *EndCall = builder.CreateLifetimeEnd(AI);
528        if (IFI.CG) CallerNode->addCalledFunction(EndCall, EndCGN);
529      }
530    }
531  }
532
533  // If the inlined code contained dynamic alloca instructions, wrap the inlined
534  // code with llvm.stacksave/llvm.stackrestore intrinsics.
535  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
536    Module *M = Caller->getParent();
537    // Get the two intrinsics we care about.
538    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
539    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
540
541    // If we are preserving the callgraph, add edges to the stacksave/restore
542    // functions for the calls we insert.
543    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
544    if (CallGraph *CG = IFI.CG) {
545      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
546      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
547      CallerNode = (*CG)[Caller];
548    }
549
550    // Insert the llvm.stacksave.
551    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
552                                          FirstNewBlock->begin());
553    if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
554
555    // Insert a call to llvm.stackrestore before any return instructions in the
556    // inlined function.
557    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
558      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
559      if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
560    }
561
562    // Count the number of StackRestore calls we insert.
563    unsigned NumStackRestores = Returns.size();
564
565    // If we are inlining an invoke instruction, insert restores before each
566    // unwind.  These unwinds will be rewritten into branches later.
567    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
568      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
569           BB != E; ++BB)
570        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
571          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
572          if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
573          ++NumStackRestores;
574        }
575    }
576  }
577
578  // If we are inlining tail call instruction through a call site that isn't
579  // marked 'tail', we must remove the tail marker for any calls in the inlined
580  // code.  Also, calls inlined through a 'nounwind' call site should be marked
581  // 'nounwind'.
582  if (InlinedFunctionInfo.ContainsCalls &&
583      (MustClearTailCallFlags || MarkNoUnwind)) {
584    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
585         BB != E; ++BB)
586      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
587        if (CallInst *CI = dyn_cast<CallInst>(I)) {
588          if (MustClearTailCallFlags)
589            CI->setTailCall(false);
590          if (MarkNoUnwind)
591            CI->setDoesNotThrow();
592        }
593  }
594
595  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
596  // instructions are unreachable.
597  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
598    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
599         BB != E; ++BB) {
600      TerminatorInst *Term = BB->getTerminator();
601      if (isa<UnwindInst>(Term)) {
602        new UnreachableInst(Context, Term);
603        BB->getInstList().erase(Term);
604      }
605    }
606
607  // If we are inlining for an invoke instruction, we must make sure to rewrite
608  // any inlined 'unwind' instructions into branches to the invoke exception
609  // destination, and call instructions into invoke instructions.
610  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
611    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
612
613  // If we cloned in _exactly one_ basic block, and if that block ends in a
614  // return instruction, we splice the body of the inlined callee directly into
615  // the calling basic block.
616  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
617    // Move all of the instructions right before the call.
618    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
619                                 FirstNewBlock->begin(), FirstNewBlock->end());
620    // Remove the cloned basic block.
621    Caller->getBasicBlockList().pop_back();
622
623    // If the call site was an invoke instruction, add a branch to the normal
624    // destination.
625    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
626      BranchInst::Create(II->getNormalDest(), TheCall);
627
628    // If the return instruction returned a value, replace uses of the call with
629    // uses of the returned value.
630    if (!TheCall->use_empty()) {
631      ReturnInst *R = Returns[0];
632      if (TheCall == R->getReturnValue())
633        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
634      else
635        TheCall->replaceAllUsesWith(R->getReturnValue());
636    }
637    // Since we are now done with the Call/Invoke, we can delete it.
638    TheCall->eraseFromParent();
639
640    // Since we are now done with the return instruction, delete it also.
641    Returns[0]->eraseFromParent();
642
643    // We are now done with the inlining.
644    return true;
645  }
646
647  // Otherwise, we have the normal case, of more than one block to inline or
648  // multiple return sites.
649
650  // We want to clone the entire callee function into the hole between the
651  // "starter" and "ender" blocks.  How we accomplish this depends on whether
652  // this is an invoke instruction or a call instruction.
653  BasicBlock *AfterCallBB;
654  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
655
656    // Add an unconditional branch to make this look like the CallInst case...
657    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
658
659    // Split the basic block.  This guarantees that no PHI nodes will have to be
660    // updated due to new incoming edges, and make the invoke case more
661    // symmetric to the call case.
662    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
663                                          CalledFunc->getName()+".exit");
664
665  } else {  // It's a call
666    // If this is a call instruction, we need to split the basic block that
667    // the call lives in.
668    //
669    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
670                                          CalledFunc->getName()+".exit");
671  }
672
673  // Change the branch that used to go to AfterCallBB to branch to the first
674  // basic block of the inlined function.
675  //
676  TerminatorInst *Br = OrigBB->getTerminator();
677  assert(Br && Br->getOpcode() == Instruction::Br &&
678         "splitBasicBlock broken!");
679  Br->setOperand(0, FirstNewBlock);
680
681
682  // Now that the function is correct, make it a little bit nicer.  In
683  // particular, move the basic blocks inserted from the end of the function
684  // into the space made by splitting the source basic block.
685  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
686                                     FirstNewBlock, Caller->end());
687
688  // Handle all of the return instructions that we just cloned in, and eliminate
689  // any users of the original call/invoke instruction.
690  const Type *RTy = CalledFunc->getReturnType();
691
692  PHINode *PHI = 0;
693  if (Returns.size() > 1) {
694    // The PHI node should go at the front of the new basic block to merge all
695    // possible incoming values.
696    if (!TheCall->use_empty()) {
697      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
698                            AfterCallBB->begin());
699      // Anything that used the result of the function call should now use the
700      // PHI node as their operand.
701      TheCall->replaceAllUsesWith(PHI);
702    }
703
704    // Loop over all of the return instructions adding entries to the PHI node
705    // as appropriate.
706    if (PHI) {
707      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
708        ReturnInst *RI = Returns[i];
709        assert(RI->getReturnValue()->getType() == PHI->getType() &&
710               "Ret value not consistent in function!");
711        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
712      }
713    }
714
715
716    // Add a branch to the merge points and remove return instructions.
717    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
718      ReturnInst *RI = Returns[i];
719      BranchInst::Create(AfterCallBB, RI);
720      RI->eraseFromParent();
721    }
722  } else if (!Returns.empty()) {
723    // Otherwise, if there is exactly one return value, just replace anything
724    // using the return value of the call with the computed value.
725    if (!TheCall->use_empty()) {
726      if (TheCall == Returns[0]->getReturnValue())
727        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
728      else
729        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
730    }
731
732    // Splice the code from the return block into the block that it will return
733    // to, which contains the code that was after the call.
734    BasicBlock *ReturnBB = Returns[0]->getParent();
735    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
736                                      ReturnBB->getInstList());
737
738    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
739    ReturnBB->replaceAllUsesWith(AfterCallBB);
740
741    // Delete the return instruction now and empty ReturnBB now.
742    Returns[0]->eraseFromParent();
743    ReturnBB->eraseFromParent();
744  } else if (!TheCall->use_empty()) {
745    // No returns, but something is using the return value of the call.  Just
746    // nuke the result.
747    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
748  }
749
750  // Since we are now done with the Call/Invoke, we can delete it.
751  TheCall->eraseFromParent();
752
753  // We should always be able to fold the entry block of the function into the
754  // single predecessor of the block...
755  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
756  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
757
758  // Splice the code entry block into calling block, right before the
759  // unconditional branch.
760  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
761  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
762
763  // Remove the unconditional branch.
764  OrigBB->getInstList().erase(Br);
765
766  // Now we can remove the CalleeEntry block, which is now empty.
767  Caller->getBasicBlockList().erase(CalleeEntry);
768
769  // If we inserted a phi node, check to see if it has a single value (e.g. all
770  // the entries are the same or undef).  If so, remove the PHI so it doesn't
771  // block other optimizations.
772  if (PHI)
773    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
774      PHI->replaceAllUsesWith(V);
775      PHI->eraseFromParent();
776    }
777
778  return true;
779}
780