InlineFunction.cpp revision 981418bf1562d0b5b470ddc7d0034c9f3297b893
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/Support/CallSite.h"
23using namespace llvm;
24
25bool llvm::InlineFunction(CallInst *CI, CallGraph *CG) {
26  return InlineFunction(CallSite(CI), CG);
27}
28bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG) {
29  return InlineFunction(CallSite(II), CG);
30}
31
32/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
33/// in the body of the inlined function into invokes and turn unwind
34/// instructions into branches to the invoke unwind dest.
35///
36/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
37/// block of the inlined code (the last block is the end of the function),
38/// and InlineCodeInfo is information about the code that got inlined.
39static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
40                                ClonedCodeInfo &InlinedCodeInfo) {
41  BasicBlock *InvokeDest = II->getUnwindDest();
42  std::vector<Value*> InvokeDestPHIValues;
43
44  // If there are PHI nodes in the unwind destination block, we need to
45  // keep track of which values came into them from this invoke, then remove
46  // the entry for this block.
47  BasicBlock *InvokeBlock = II->getParent();
48  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
49    PHINode *PN = cast<PHINode>(I);
50    // Save the value to use for this edge.
51    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
52  }
53
54  Function *Caller = FirstNewBlock->getParent();
55
56  // The inlined code is currently at the end of the function, scan from the
57  // start of the inlined code to its end, checking for stuff we need to
58  // rewrite.
59  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
60    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
61         BB != E; ++BB) {
62      if (InlinedCodeInfo.ContainsCalls) {
63        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
64          Instruction *I = BBI++;
65
66          // We only need to check for function calls: inlined invoke
67          // instructions require no special handling.
68          if (!isa<CallInst>(I)) continue;
69          CallInst *CI = cast<CallInst>(I);
70
71          // If this is an intrinsic function call, don't convert it to an
72          // invoke.
73          if (CI->getCalledFunction() &&
74              CI->getCalledFunction()->getIntrinsicID())
75            continue;
76
77          // Convert this function call into an invoke instruction.
78          // First, split the basic block.
79          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
80
81          // Next, create the new invoke instruction, inserting it at the end
82          // of the old basic block.
83          InvokeInst *II =
84            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
85                           std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
86                           CI->getName(), BB->getTerminator());
87          II->setCallingConv(CI->getCallingConv());
88
89          // Make sure that anything using the call now uses the invoke!
90          CI->replaceAllUsesWith(II);
91
92          // Delete the unconditional branch inserted by splitBasicBlock
93          BB->getInstList().pop_back();
94          Split->getInstList().pop_front();  // Delete the original call
95
96          // Update any PHI nodes in the exceptional block to indicate that
97          // there is now a new entry in them.
98          unsigned i = 0;
99          for (BasicBlock::iterator I = InvokeDest->begin();
100               isa<PHINode>(I); ++I, ++i) {
101            PHINode *PN = cast<PHINode>(I);
102            PN->addIncoming(InvokeDestPHIValues[i], BB);
103          }
104
105          // This basic block is now complete, start scanning the next one.
106          break;
107        }
108      }
109
110      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
111        // An UnwindInst requires special handling when it gets inlined into an
112        // invoke site.  Once this happens, we know that the unwind would cause
113        // a control transfer to the invoke exception destination, so we can
114        // transform it into a direct branch to the exception destination.
115        new BranchInst(InvokeDest, UI);
116
117        // Delete the unwind instruction!
118        UI->getParent()->getInstList().pop_back();
119
120        // Update any PHI nodes in the exceptional block to indicate that
121        // there is now a new entry in them.
122        unsigned i = 0;
123        for (BasicBlock::iterator I = InvokeDest->begin();
124             isa<PHINode>(I); ++I, ++i) {
125          PHINode *PN = cast<PHINode>(I);
126          PN->addIncoming(InvokeDestPHIValues[i], BB);
127        }
128      }
129    }
130  }
131
132  // Now that everything is happy, we have one final detail.  The PHI nodes in
133  // the exception destination block still have entries due to the original
134  // invoke instruction.  Eliminate these entries (which might even delete the
135  // PHI node) now.
136  InvokeDest->removePredecessor(II->getParent());
137}
138
139/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
140/// into the caller, update the specified callgraph to reflect the changes we
141/// made.  Note that it's possible that not all code was copied over, so only
142/// some edges of the callgraph will be remain.
143static void UpdateCallGraphAfterInlining(const Function *Caller,
144                                         const Function *Callee,
145                                         Function::iterator FirstNewBlock,
146                                       std::map<const Value*, Value*> &ValueMap,
147                                         CallGraph &CG) {
148  // Update the call graph by deleting the edge from Callee to Caller
149  CallGraphNode *CalleeNode = CG[Callee];
150  CallGraphNode *CallerNode = CG[Caller];
151  CallerNode->removeCallEdgeTo(CalleeNode);
152
153  // Since we inlined some uninlined call sites in the callee into the caller,
154  // add edges from the caller to all of the callees of the callee.
155  for (CallGraphNode::iterator I = CalleeNode->begin(),
156       E = CalleeNode->end(); I != E; ++I) {
157    const Instruction *OrigCall = I->first.getInstruction();
158
159    std::map<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
160    // Only copy the edge if the call was inlined!
161    if (VMI != ValueMap.end() && VMI->second) {
162      // If the call was inlined, but then constant folded, there is no edge to
163      // add.  Check for this case.
164      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
165        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
166    }
167  }
168}
169
170
171// InlineFunction - This function inlines the called function into the basic
172// block of the caller.  This returns false if it is not possible to inline this
173// call.  The program is still in a well defined state if this occurs though.
174//
175// Note that this only does one level of inlining.  For example, if the
176// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
177// exists in the instruction stream.  Similiarly this will inline a recursive
178// function by one level.
179//
180bool llvm::InlineFunction(CallSite CS, CallGraph *CG) {
181  Instruction *TheCall = CS.getInstruction();
182  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
183         "Instruction not in function!");
184
185  const Function *CalledFunc = CS.getCalledFunction();
186  if (CalledFunc == 0 ||          // Can't inline external function or indirect
187      CalledFunc->isExternal() || // call, or call to a vararg function!
188      CalledFunc->getFunctionType()->isVarArg()) return false;
189
190
191  // If the call to the callee is a non-tail call, we must clear the 'tail'
192  // flags on any calls that we inline.
193  bool MustClearTailCallFlags =
194    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
195
196  BasicBlock *OrigBB = TheCall->getParent();
197  Function *Caller = OrigBB->getParent();
198
199  // Get an iterator to the last basic block in the function, which will have
200  // the new function inlined after it.
201  //
202  Function::iterator LastBlock = &Caller->back();
203
204  // Make sure to capture all of the return instructions from the cloned
205  // function.
206  std::vector<ReturnInst*> Returns;
207  ClonedCodeInfo InlinedFunctionInfo;
208  Function::iterator FirstNewBlock;
209
210  { // Scope to destroy ValueMap after cloning.
211    std::map<const Value*, Value*> ValueMap;
212
213    // Calculate the vector of arguments to pass into the function cloner, which
214    // matches up the formal to the actual argument values.
215    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
216           std::distance(CS.arg_begin(), CS.arg_end()) &&
217           "No varargs calls can be inlined!");
218    CallSite::arg_iterator AI = CS.arg_begin();
219    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
220           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
221      ValueMap[I] = *AI;
222
223    // We want the inliner to prune the code as it copies.  We would LOVE to
224    // have no dead or constant instructions leftover after inlining occurs
225    // (which can happen, e.g., because an argument was constant), but we'll be
226    // happy with whatever the cloner can do.
227    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
228                              &InlinedFunctionInfo);
229
230    // Remember the first block that is newly cloned over.
231    FirstNewBlock = LastBlock; ++FirstNewBlock;
232
233    // Update the callgraph if requested.
234    if (CG)
235      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
236                                   *CG);
237  }
238
239  // If there are any alloca instructions in the block that used to be the entry
240  // block for the callee, move them to the entry block of the caller.  First
241  // calculate which instruction they should be inserted before.  We insert the
242  // instructions at the end of the current alloca list.
243  //
244  {
245    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
246    for (BasicBlock::iterator I = FirstNewBlock->begin(),
247           E = FirstNewBlock->end(); I != E; )
248      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
249        if (isa<Constant>(AI->getArraySize())) {
250          // Scan for the block of allocas that we can move over, and move them
251          // all at once.
252          while (isa<AllocaInst>(I) &&
253                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
254            ++I;
255
256          // Transfer all of the allocas over in a block.  Using splice means
257          // that they instructions aren't removed from the symbol table, then
258          // reinserted.
259          Caller->front().getInstList().splice(InsertPoint,
260                                               FirstNewBlock->getInstList(),
261                                               AI, I);
262        }
263  }
264
265  // If the inlined code contained dynamic alloca instructions, wrap the inlined
266  // code with llvm.stacksave/llvm.stackrestore intrinsics.
267  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
268    Module *M = Caller->getParent();
269    const Type *SBytePtr = PointerType::get(Type::SByteTy);
270    // Get the two intrinsics we care about.
271    Function *StackSave, *StackRestore;
272    StackSave    = M->getOrInsertFunction("llvm.stacksave", SBytePtr, NULL);
273    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
274                                          SBytePtr, NULL);
275
276    // If we are preserving the callgraph, add edges to the stacksave/restore
277    // functions for the calls we insert.
278    CallGraphNode *StackSaveCGN, *StackRestoreCGN, *CallerNode;
279    if (CG) {
280      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
281      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
282      CallerNode = (*CG)[Caller];
283    }
284
285    // Insert the llvm.stacksave.
286    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
287                                      FirstNewBlock->begin());
288    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
289
290    // Insert a call to llvm.stackrestore before any return instructions in the
291    // inlined function.
292    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
293      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
294      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
295    }
296
297    // Count the number of StackRestore calls we insert.
298    unsigned NumStackRestores = Returns.size();
299
300    // If we are inlining an invoke instruction, insert restores before each
301    // unwind.  These unwinds will be rewritten into branches later.
302    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
303      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
304           BB != E; ++BB)
305        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
306          new CallInst(StackRestore, SavedPtr, "", UI);
307          ++NumStackRestores;
308        }
309    }
310  }
311
312  // If we are inlining tail call instruction through a call site that isn't
313  // marked 'tail', we must remove the tail marker for any calls in the inlined
314  // code.
315  if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) {
316    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
317         BB != E; ++BB)
318      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
319        if (CallInst *CI = dyn_cast<CallInst>(I))
320          CI->setTailCall(false);
321  }
322
323  // If we are inlining for an invoke instruction, we must make sure to rewrite
324  // any inlined 'unwind' instructions into branches to the invoke exception
325  // destination, and call instructions into invoke instructions.
326  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
327    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
328
329  // If we cloned in _exactly one_ basic block, and if that block ends in a
330  // return instruction, we splice the body of the inlined callee directly into
331  // the calling basic block.
332  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
333    // Move all of the instructions right before the call.
334    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
335                                 FirstNewBlock->begin(), FirstNewBlock->end());
336    // Remove the cloned basic block.
337    Caller->getBasicBlockList().pop_back();
338
339    // If the call site was an invoke instruction, add a branch to the normal
340    // destination.
341    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
342      new BranchInst(II->getNormalDest(), TheCall);
343
344    // If the return instruction returned a value, replace uses of the call with
345    // uses of the returned value.
346    if (!TheCall->use_empty())
347      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
348
349    // Since we are now done with the Call/Invoke, we can delete it.
350    TheCall->getParent()->getInstList().erase(TheCall);
351
352    // Since we are now done with the return instruction, delete it also.
353    Returns[0]->getParent()->getInstList().erase(Returns[0]);
354
355    // We are now done with the inlining.
356    return true;
357  }
358
359  // Otherwise, we have the normal case, of more than one block to inline or
360  // multiple return sites.
361
362  // We want to clone the entire callee function into the hole between the
363  // "starter" and "ender" blocks.  How we accomplish this depends on whether
364  // this is an invoke instruction or a call instruction.
365  BasicBlock *AfterCallBB;
366  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
367
368    // Add an unconditional branch to make this look like the CallInst case...
369    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
370
371    // Split the basic block.  This guarantees that no PHI nodes will have to be
372    // updated due to new incoming edges, and make the invoke case more
373    // symmetric to the call case.
374    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
375                                          CalledFunc->getName()+".exit");
376
377  } else {  // It's a call
378    // If this is a call instruction, we need to split the basic block that
379    // the call lives in.
380    //
381    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
382                                          CalledFunc->getName()+".exit");
383  }
384
385  // Change the branch that used to go to AfterCallBB to branch to the first
386  // basic block of the inlined function.
387  //
388  TerminatorInst *Br = OrigBB->getTerminator();
389  assert(Br && Br->getOpcode() == Instruction::Br &&
390         "splitBasicBlock broken!");
391  Br->setOperand(0, FirstNewBlock);
392
393
394  // Now that the function is correct, make it a little bit nicer.  In
395  // particular, move the basic blocks inserted from the end of the function
396  // into the space made by splitting the source basic block.
397  //
398  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
399                                     FirstNewBlock, Caller->end());
400
401  // Handle all of the return instructions that we just cloned in, and eliminate
402  // any users of the original call/invoke instruction.
403  if (Returns.size() > 1) {
404    // The PHI node should go at the front of the new basic block to merge all
405    // possible incoming values.
406    //
407    PHINode *PHI = 0;
408    if (!TheCall->use_empty()) {
409      PHI = new PHINode(CalledFunc->getReturnType(),
410                        TheCall->getName(), AfterCallBB->begin());
411
412      // Anything that used the result of the function call should now use the
413      // PHI node as their operand.
414      //
415      TheCall->replaceAllUsesWith(PHI);
416    }
417
418    // Loop over all of the return instructions, turning them into unconditional
419    // branches to the merge point now, and adding entries to the PHI node as
420    // appropriate.
421    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
422      ReturnInst *RI = Returns[i];
423
424      if (PHI) {
425        assert(RI->getReturnValue() && "Ret should have value!");
426        assert(RI->getReturnValue()->getType() == PHI->getType() &&
427               "Ret value not consistent in function!");
428        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
429      }
430
431      // Add a branch to the merge point where the PHI node lives if it exists.
432      new BranchInst(AfterCallBB, RI);
433
434      // Delete the return instruction now
435      RI->getParent()->getInstList().erase(RI);
436    }
437
438  } else if (!Returns.empty()) {
439    // Otherwise, if there is exactly one return value, just replace anything
440    // using the return value of the call with the computed value.
441    if (!TheCall->use_empty())
442      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
443
444    // Splice the code from the return block into the block that it will return
445    // to, which contains the code that was after the call.
446    BasicBlock *ReturnBB = Returns[0]->getParent();
447    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
448                                      ReturnBB->getInstList());
449
450    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
451    ReturnBB->replaceAllUsesWith(AfterCallBB);
452
453    // Delete the return instruction now and empty ReturnBB now.
454    Returns[0]->eraseFromParent();
455    ReturnBB->eraseFromParent();
456  } else if (!TheCall->use_empty()) {
457    // No returns, but something is using the return value of the call.  Just
458    // nuke the result.
459    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
460  }
461
462  // Since we are now done with the Call/Invoke, we can delete it.
463  TheCall->eraseFromParent();
464
465  // We should always be able to fold the entry block of the function into the
466  // single predecessor of the block...
467  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
468  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
469
470  // Splice the code entry block into calling block, right before the
471  // unconditional branch.
472  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
473  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
474
475  // Remove the unconditional branch.
476  OrigBB->getInstList().erase(Br);
477
478  // Now we can remove the CalleeEntry block, which is now empty.
479  Caller->getBasicBlockList().erase(CalleeEntry);
480
481  return true;
482}
483