InlineFunction.cpp revision a6d7345ec91e4b07671f62d231e7c42f054bc70d
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector in
49/// the given landing pad.
50static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
51  // The llvm.eh.exception call is required to be in the landing pad.
52  for (BasicBlock::iterator i = lpad->begin(), e = lpad->end(); i != e; i++) {
53    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
54    if (!exn) continue;
55
56    EHSelectorInst *selector = 0;
57    for (Instruction::use_iterator
58           ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
59      EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
60      if (!sel) continue;
61
62      // Immediately accept an eh.selector in the landing pad.
63      if (sel->getParent() == lpad) return sel;
64
65      // Otherwise, use the first selector we see.
66      if (!selector) selector = sel;
67    }
68
69    return selector;
70  }
71
72  return 0;
73}
74
75namespace {
76  /// A class for recording information about inlining through an invoke.
77  class InvokeInliningInfo {
78    BasicBlock *OuterUnwindDest;
79    EHSelectorInst *OuterSelector;
80    BasicBlock *InnerUnwindDest;
81    PHINode *InnerExceptionPHI;
82    PHINode *InnerSelectorPHI;
83    SmallVector<Value*, 8> UnwindDestPHIValues;
84
85  public:
86    InvokeInliningInfo(InvokeInst *II) :
87      OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
88      InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) {
89
90      // If there are PHI nodes in the unwind destination block, we
91      // need to keep track of which values came into them from the
92      // invoke before removing the edge from this block.
93      llvm::BasicBlock *invokeBB = II->getParent();
94      for (BasicBlock::iterator I = OuterUnwindDest->begin();
95             isa<PHINode>(I); ++I) {
96        // Save the value to use for this edge.
97        PHINode *phi = cast<PHINode>(I);
98        UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
99      }
100    }
101
102    /// The outer unwind destination is the target of unwind edges
103    /// introduced for calls within the inlined function.
104    BasicBlock *getOuterUnwindDest() const {
105      return OuterUnwindDest;
106    }
107
108    EHSelectorInst *getOuterSelector() {
109      if (!OuterSelector)
110        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
111      return OuterSelector;
112    }
113
114    BasicBlock *getInnerUnwindDest();
115
116    bool forwardEHResume(CallInst *call, BasicBlock *src);
117
118    /// Add incoming-PHI values to the unwind destination block for
119    /// the given basic block, using the values for the original
120    /// invoke's source block.
121    void addIncomingPHIValuesFor(BasicBlock *BB) const {
122      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
123    }
124
125    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
126      BasicBlock::iterator I = dest->begin();
127      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
128        PHINode *phi = cast<PHINode>(I);
129        phi->addIncoming(UnwindDestPHIValues[i], src);
130      }
131    }
132  };
133}
134
135/// Replace all the instruction uses of a value with a different value.
136/// This has the advantage of not screwing up the CallGraph.
137static void replaceAllInsnUsesWith(Instruction *insn, Value *replacement) {
138  for (Value::use_iterator i = insn->use_begin(), e = insn->use_end();
139       i != e; ) {
140    Use &use = i.getUse();
141    ++i;
142    if (isa<Instruction>(use.getUser()))
143      use.set(replacement);
144  }
145}
146
147/// Get or create a target for the branch out of rewritten calls to
148/// llvm.eh.resume.
149BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
150  if (InnerUnwindDest) return InnerUnwindDest;
151
152  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
153  // in the outer landing pad to immediately following the phis.
154  EHSelectorInst *selector = getOuterSelector();
155  if (!selector) return 0;
156
157  // The call to llvm.eh.exception *must* be in the landing pad.
158  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
159  assert(exn->getParent() == OuterUnwindDest);
160
161  // TODO: recognize when we've already done this, so that we don't
162  // get a linear number of these when inlining calls into lots of
163  // invokes with the same landing pad.
164
165  // Do the hoisting.
166  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
167  assert(splitPoint != selector && "selector-on-exception dominance broken!");
168  if (splitPoint == exn) {
169    selector->removeFromParent();
170    selector->insertAfter(exn);
171    splitPoint = selector->getNextNode();
172  } else {
173    exn->moveBefore(splitPoint);
174    selector->moveBefore(splitPoint);
175  }
176
177  // Split the landing pad.
178  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
179                                        OuterUnwindDest->getName() + ".body");
180
181  // The number of incoming edges we expect to the inner landing pad.
182  const unsigned phiCapacity = 2;
183
184  // Create corresponding new phis for all the phis in the outer landing pad.
185  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
186  BasicBlock::iterator I = OuterUnwindDest->begin();
187  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
188    PHINode *outerPhi = cast<PHINode>(I);
189    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
190                                        outerPhi->getName() + ".lpad-body",
191                                        insertPoint);
192    outerPhi->replaceAllUsesWith(innerPhi);
193    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
194  }
195
196  // Create a phi for the exception value...
197  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
198                                      "exn.lpad-body", insertPoint);
199  replaceAllInsnUsesWith(exn, InnerExceptionPHI);
200  selector->setArgOperand(0, exn); // restore this use
201  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
202
203  // ...and the selector.
204  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
205                                     "selector.lpad-body", insertPoint);
206  replaceAllInsnUsesWith(selector, InnerSelectorPHI);
207  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
208
209  // All done.
210  return InnerUnwindDest;
211}
212
213/// [LIBUNWIND] Try to forward the given call, which logically occurs
214/// at the end of the given block, as a branch to the inner unwind
215/// block.  Returns true if the call was forwarded.
216bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
217  Function *fn = dyn_cast<Function>(call->getCalledValue());
218  if (!fn || fn->getName() != "llvm.eh.resume")
219    return false;
220
221  // If this fails, maybe it should be a fatal error.
222  BasicBlock *dest = getInnerUnwindDest();
223  if (!dest) return false;
224
225  // Make a branch.
226  BranchInst::Create(dest, src);
227
228  // Update the phis in the destination.  They were inserted in an
229  // order which makes this work.
230  addIncomingPHIValuesForInto(src, dest);
231  InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
232  InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
233
234  return true;
235}
236
237/// [LIBUNWIND] Check whether this selector is "only cleanups":
238///   call i32 @llvm.eh.selector(blah, blah, i32 0)
239static bool isCleanupOnlySelector(EHSelectorInst *selector) {
240  if (selector->getNumArgOperands() != 3) return false;
241  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
242  return (val && val->isZero());
243}
244
245/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
246/// an invoke, we have to turn all of the calls that can throw into
247/// invokes.  This function analyze BB to see if there are any calls, and if so,
248/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
249/// nodes in that block with the values specified in InvokeDestPHIValues.
250///
251/// Returns true to indicate that the next block should be skipped.
252static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
253                                                   InvokeInliningInfo &Invoke) {
254  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
255    Instruction *I = BBI++;
256
257    // We only need to check for function calls: inlined invoke
258    // instructions require no special handling.
259    CallInst *CI = dyn_cast<CallInst>(I);
260    if (CI == 0) continue;
261
262    // LIBUNWIND: merge selector instructions.
263    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
264      EHSelectorInst *Outer = Invoke.getOuterSelector();
265      if (!Outer) continue;
266
267      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
268      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
269
270      // If both selectors contain only cleanups, we don't need to do
271      // anything.  TODO: this is really just a very specific instance
272      // of a much more general optimization.
273      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
274
275      // Otherwise, we just append the outer selector to the inner selector.
276      SmallVector<Value*, 16> NewSelector;
277      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
278        NewSelector.push_back(Inner->getArgOperand(i));
279      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
280        NewSelector.push_back(Outer->getArgOperand(i));
281
282      CallInst *NewInner = CallInst::Create(Inner->getCalledValue(),
283                                            NewSelector.begin(),
284                                            NewSelector.end(),
285                                            "",
286                                            Inner);
287      // No need to copy attributes, calling convention, etc.
288      NewInner->takeName(Inner);
289      Inner->replaceAllUsesWith(NewInner);
290      Inner->eraseFromParent();
291      continue;
292    }
293
294    // If this call cannot unwind, don't convert it to an invoke.
295    if (CI->doesNotThrow())
296      continue;
297
298    // Convert this function call into an invoke instruction.
299    // First, split the basic block.
300    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
301
302    // Delete the unconditional branch inserted by splitBasicBlock
303    BB->getInstList().pop_back();
304
305    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
306    // directly to the new landing pad.
307    if (Invoke.forwardEHResume(CI, BB)) {
308      // TODO: 'Split' is now unreachable; clean it up.
309
310      // We want to leave the original call intact so that the call
311      // graph and other structures won't get misled.  We also have to
312      // avoid processing the next block, or we'll iterate here forever.
313      return true;
314    }
315
316    // Otherwise, create the new invoke instruction.
317    ImmutableCallSite CS(CI);
318    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
319    InvokeInst *II =
320      InvokeInst::Create(CI->getCalledValue(), Split,
321                         Invoke.getOuterUnwindDest(),
322                         InvokeArgs.begin(), InvokeArgs.end(),
323                         CI->getName(), BB);
324    II->setCallingConv(CI->getCallingConv());
325    II->setAttributes(CI->getAttributes());
326
327    // Make sure that anything using the call now uses the invoke!  This also
328    // updates the CallGraph if present, because it uses a WeakVH.
329    CI->replaceAllUsesWith(II);
330
331    Split->getInstList().pop_front();  // Delete the original call
332
333    // Update any PHI nodes in the exceptional block to indicate that
334    // there is now a new entry in them.
335    Invoke.addIncomingPHIValuesFor(BB);
336    return false;
337  }
338
339  return false;
340}
341
342
343/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
344/// in the body of the inlined function into invokes and turn unwind
345/// instructions into branches to the invoke unwind dest.
346///
347/// II is the invoke instruction being inlined.  FirstNewBlock is the first
348/// block of the inlined code (the last block is the end of the function),
349/// and InlineCodeInfo is information about the code that got inlined.
350static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
351                                ClonedCodeInfo &InlinedCodeInfo) {
352  BasicBlock *InvokeDest = II->getUnwindDest();
353
354  Function *Caller = FirstNewBlock->getParent();
355
356  // The inlined code is currently at the end of the function, scan from the
357  // start of the inlined code to its end, checking for stuff we need to
358  // rewrite.  If the code doesn't have calls or unwinds, we know there is
359  // nothing to rewrite.
360  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
361    // Now that everything is happy, we have one final detail.  The PHI nodes in
362    // the exception destination block still have entries due to the original
363    // invoke instruction.  Eliminate these entries (which might even delete the
364    // PHI node) now.
365    InvokeDest->removePredecessor(II->getParent());
366    return;
367  }
368
369  InvokeInliningInfo Invoke(II);
370
371  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
372    if (InlinedCodeInfo.ContainsCalls)
373      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
374        // Honor a request to skip the next block.  We don't need to
375        // consider UnwindInsts in this case either.
376        ++BB;
377        continue;
378      }
379
380    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
381      // An UnwindInst requires special handling when it gets inlined into an
382      // invoke site.  Once this happens, we know that the unwind would cause
383      // a control transfer to the invoke exception destination, so we can
384      // transform it into a direct branch to the exception destination.
385      BranchInst::Create(InvokeDest, UI);
386
387      // Delete the unwind instruction!
388      UI->eraseFromParent();
389
390      // Update any PHI nodes in the exceptional block to indicate that
391      // there is now a new entry in them.
392      Invoke.addIncomingPHIValuesFor(BB);
393    }
394  }
395
396  // Now that everything is happy, we have one final detail.  The PHI nodes in
397  // the exception destination block still have entries due to the original
398  // invoke instruction.  Eliminate these entries (which might even delete the
399  // PHI node) now.
400  InvokeDest->removePredecessor(II->getParent());
401}
402
403/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
404/// into the caller, update the specified callgraph to reflect the changes we
405/// made.  Note that it's possible that not all code was copied over, so only
406/// some edges of the callgraph may remain.
407static void UpdateCallGraphAfterInlining(CallSite CS,
408                                         Function::iterator FirstNewBlock,
409                                         ValueToValueMapTy &VMap,
410                                         InlineFunctionInfo &IFI) {
411  CallGraph &CG = *IFI.CG;
412  const Function *Caller = CS.getInstruction()->getParent()->getParent();
413  const Function *Callee = CS.getCalledFunction();
414  CallGraphNode *CalleeNode = CG[Callee];
415  CallGraphNode *CallerNode = CG[Caller];
416
417  // Since we inlined some uninlined call sites in the callee into the caller,
418  // add edges from the caller to all of the callees of the callee.
419  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
420
421  // Consider the case where CalleeNode == CallerNode.
422  CallGraphNode::CalledFunctionsVector CallCache;
423  if (CalleeNode == CallerNode) {
424    CallCache.assign(I, E);
425    I = CallCache.begin();
426    E = CallCache.end();
427  }
428
429  for (; I != E; ++I) {
430    const Value *OrigCall = I->first;
431
432    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
433    // Only copy the edge if the call was inlined!
434    if (VMI == VMap.end() || VMI->second == 0)
435      continue;
436
437    // If the call was inlined, but then constant folded, there is no edge to
438    // add.  Check for this case.
439    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
440    if (NewCall == 0) continue;
441
442    // Remember that this call site got inlined for the client of
443    // InlineFunction.
444    IFI.InlinedCalls.push_back(NewCall);
445
446    // It's possible that inlining the callsite will cause it to go from an
447    // indirect to a direct call by resolving a function pointer.  If this
448    // happens, set the callee of the new call site to a more precise
449    // destination.  This can also happen if the call graph node of the caller
450    // was just unnecessarily imprecise.
451    if (I->second->getFunction() == 0)
452      if (Function *F = CallSite(NewCall).getCalledFunction()) {
453        // Indirect call site resolved to direct call.
454        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
455
456        continue;
457      }
458
459    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
460  }
461
462  // Update the call graph by deleting the edge from Callee to Caller.  We must
463  // do this after the loop above in case Caller and Callee are the same.
464  CallerNode->removeCallEdgeFor(CS);
465}
466
467/// HandleByValArgument - When inlining a call site that has a byval argument,
468/// we have to make the implicit memcpy explicit by adding it.
469static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
470                                  const Function *CalledFunc,
471                                  InlineFunctionInfo &IFI,
472                                  unsigned ByValAlignment) {
473  const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
474
475  // If the called function is readonly, then it could not mutate the caller's
476  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
477  // temporary.
478  if (CalledFunc->onlyReadsMemory()) {
479    // If the byval argument has a specified alignment that is greater than the
480    // passed in pointer, then we either have to round up the input pointer or
481    // give up on this transformation.
482    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
483      return Arg;
484
485    // If the pointer is already known to be sufficiently aligned, or if we can
486    // round it up to a larger alignment, then we don't need a temporary.
487    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
488                                   IFI.TD) >= ByValAlignment)
489      return Arg;
490
491    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
492    // for code quality, but rarely happens and is required for correctness.
493  }
494
495  LLVMContext &Context = Arg->getContext();
496
497  const Type *VoidPtrTy = Type::getInt8PtrTy(Context);
498
499  // Create the alloca.  If we have TargetData, use nice alignment.
500  unsigned Align = 1;
501  if (IFI.TD)
502    Align = IFI.TD->getPrefTypeAlignment(AggTy);
503
504  // If the byval had an alignment specified, we *must* use at least that
505  // alignment, as it is required by the byval argument (and uses of the
506  // pointer inside the callee).
507  Align = std::max(Align, ByValAlignment);
508
509  Function *Caller = TheCall->getParent()->getParent();
510
511  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
512                                    &*Caller->begin()->begin());
513  // Emit a memcpy.
514  const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
515  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
516                                                 Intrinsic::memcpy,
517                                                 Tys, 3);
518  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
519  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
520
521  Value *Size;
522  if (IFI.TD == 0)
523    Size = ConstantExpr::getSizeOf(AggTy);
524  else
525    Size = ConstantInt::get(Type::getInt64Ty(Context),
526                            IFI.TD->getTypeStoreSize(AggTy));
527
528  // Always generate a memcpy of alignment 1 here because we don't know
529  // the alignment of the src pointer.  Other optimizations can infer
530  // better alignment.
531  Value *CallArgs[] = {
532    DestCast, SrcCast, Size,
533    ConstantInt::get(Type::getInt32Ty(Context), 1),
534    ConstantInt::getFalse(Context) // isVolatile
535  };
536  CallInst *TheMemCpy =
537    CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
538
539  // If we have a call graph, update it.
540  if (CallGraph *CG = IFI.CG) {
541    CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
542    CallGraphNode *CallerNode = (*CG)[Caller];
543    CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
544  }
545
546  // Uses of the argument in the function should use our new alloca
547  // instead.
548  return NewAlloca;
549}
550
551// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
552// intrinsic.
553static bool isUsedByLifetimeMarker(Value *V) {
554  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
555       ++UI) {
556    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
557      switch (II->getIntrinsicID()) {
558      default: break;
559      case Intrinsic::lifetime_start:
560      case Intrinsic::lifetime_end:
561        return true;
562      }
563    }
564  }
565  return false;
566}
567
568// hasLifetimeMarkers - Check whether the given alloca already has
569// lifetime.start or lifetime.end intrinsics.
570static bool hasLifetimeMarkers(AllocaInst *AI) {
571  const Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
572  if (AI->getType() == Int8PtrTy)
573    return isUsedByLifetimeMarker(AI);
574
575  // Do a scan to find all the bitcasts to i8*.
576  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
577       ++I) {
578    if (I->getType() != Int8PtrTy) continue;
579    if (!isa<BitCastInst>(*I)) continue;
580    if (isUsedByLifetimeMarker(*I))
581      return true;
582  }
583  return false;
584}
585
586// InlineFunction - This function inlines the called function into the basic
587// block of the caller.  This returns false if it is not possible to inline this
588// call.  The program is still in a well defined state if this occurs though.
589//
590// Note that this only does one level of inlining.  For example, if the
591// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
592// exists in the instruction stream.  Similarly this will inline a recursive
593// function by one level.
594//
595bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
596  Instruction *TheCall = CS.getInstruction();
597  LLVMContext &Context = TheCall->getContext();
598  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
599         "Instruction not in function!");
600
601  // If IFI has any state in it, zap it before we fill it in.
602  IFI.reset();
603
604  const Function *CalledFunc = CS.getCalledFunction();
605  if (CalledFunc == 0 ||          // Can't inline external function or indirect
606      CalledFunc->isDeclaration() || // call, or call to a vararg function!
607      CalledFunc->getFunctionType()->isVarArg()) return false;
608
609  // If the call to the callee is not a tail call, we must clear the 'tail'
610  // flags on any calls that we inline.
611  bool MustClearTailCallFlags =
612    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
613
614  // If the call to the callee cannot throw, set the 'nounwind' flag on any
615  // calls that we inline.
616  bool MarkNoUnwind = CS.doesNotThrow();
617
618  BasicBlock *OrigBB = TheCall->getParent();
619  Function *Caller = OrigBB->getParent();
620
621  // GC poses two hazards to inlining, which only occur when the callee has GC:
622  //  1. If the caller has no GC, then the callee's GC must be propagated to the
623  //     caller.
624  //  2. If the caller has a differing GC, it is invalid to inline.
625  if (CalledFunc->hasGC()) {
626    if (!Caller->hasGC())
627      Caller->setGC(CalledFunc->getGC());
628    else if (CalledFunc->getGC() != Caller->getGC())
629      return false;
630  }
631
632  // Get an iterator to the last basic block in the function, which will have
633  // the new function inlined after it.
634  //
635  Function::iterator LastBlock = &Caller->back();
636
637  // Make sure to capture all of the return instructions from the cloned
638  // function.
639  SmallVector<ReturnInst*, 8> Returns;
640  ClonedCodeInfo InlinedFunctionInfo;
641  Function::iterator FirstNewBlock;
642
643  { // Scope to destroy VMap after cloning.
644    ValueToValueMapTy VMap;
645
646    assert(CalledFunc->arg_size() == CS.arg_size() &&
647           "No varargs calls can be inlined!");
648
649    // Calculate the vector of arguments to pass into the function cloner, which
650    // matches up the formal to the actual argument values.
651    CallSite::arg_iterator AI = CS.arg_begin();
652    unsigned ArgNo = 0;
653    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
654         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
655      Value *ActualArg = *AI;
656
657      // When byval arguments actually inlined, we need to make the copy implied
658      // by them explicit.  However, we don't do this if the callee is readonly
659      // or readnone, because the copy would be unneeded: the callee doesn't
660      // modify the struct.
661      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
662        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
663                                        CalledFunc->getParamAlignment(ArgNo+1));
664
665        // Calls that we inline may use the new alloca, so we need to clear
666        // their 'tail' flags if HandleByValArgument introduced a new alloca and
667        // the callee has calls.
668        MustClearTailCallFlags |= ActualArg != *AI;
669      }
670
671      VMap[I] = ActualArg;
672    }
673
674    // We want the inliner to prune the code as it copies.  We would LOVE to
675    // have no dead or constant instructions leftover after inlining occurs
676    // (which can happen, e.g., because an argument was constant), but we'll be
677    // happy with whatever the cloner can do.
678    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
679                              /*ModuleLevelChanges=*/false, Returns, ".i",
680                              &InlinedFunctionInfo, IFI.TD, TheCall);
681
682    // Remember the first block that is newly cloned over.
683    FirstNewBlock = LastBlock; ++FirstNewBlock;
684
685    // Update the callgraph if requested.
686    if (IFI.CG)
687      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
688  }
689
690  // If there are any alloca instructions in the block that used to be the entry
691  // block for the callee, move them to the entry block of the caller.  First
692  // calculate which instruction they should be inserted before.  We insert the
693  // instructions at the end of the current alloca list.
694  //
695  {
696    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
697    for (BasicBlock::iterator I = FirstNewBlock->begin(),
698         E = FirstNewBlock->end(); I != E; ) {
699      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
700      if (AI == 0) continue;
701
702      // If the alloca is now dead, remove it.  This often occurs due to code
703      // specialization.
704      if (AI->use_empty()) {
705        AI->eraseFromParent();
706        continue;
707      }
708
709      if (!isa<Constant>(AI->getArraySize()))
710        continue;
711
712      // Keep track of the static allocas that we inline into the caller.
713      IFI.StaticAllocas.push_back(AI);
714
715      // Scan for the block of allocas that we can move over, and move them
716      // all at once.
717      while (isa<AllocaInst>(I) &&
718             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
719        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
720        ++I;
721      }
722
723      // Transfer all of the allocas over in a block.  Using splice means
724      // that the instructions aren't removed from the symbol table, then
725      // reinserted.
726      Caller->getEntryBlock().getInstList().splice(InsertPoint,
727                                                   FirstNewBlock->getInstList(),
728                                                   AI, I);
729    }
730  }
731
732  // Leave lifetime markers for the static alloca's, scoping them to the
733  // function we just inlined.
734  if (!IFI.StaticAllocas.empty()) {
735    // Also preserve the call graph, if applicable.
736    CallGraphNode *StartCGN = 0, *EndCGN = 0, *CallerNode = 0;
737    if (CallGraph *CG = IFI.CG) {
738      Function *Start = Intrinsic::getDeclaration(Caller->getParent(),
739                                                  Intrinsic::lifetime_start);
740      Function *End = Intrinsic::getDeclaration(Caller->getParent(),
741                                                Intrinsic::lifetime_end);
742      StartCGN = CG->getOrInsertFunction(Start);
743      EndCGN = CG->getOrInsertFunction(End);
744      CallerNode = (*CG)[Caller];
745    }
746
747    IRBuilder<> builder(FirstNewBlock->begin());
748    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
749      AllocaInst *AI = IFI.StaticAllocas[ai];
750
751      // If the alloca is already scoped to something smaller than the whole
752      // function then there's no need to add redundant, less accurate markers.
753      if (hasLifetimeMarkers(AI))
754        continue;
755
756      CallInst *StartCall = builder.CreateLifetimeStart(AI);
757      if (IFI.CG) CallerNode->addCalledFunction(StartCall, StartCGN);
758      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
759        IRBuilder<> builder(Returns[ri]);
760        CallInst *EndCall = builder.CreateLifetimeEnd(AI);
761        if (IFI.CG) CallerNode->addCalledFunction(EndCall, EndCGN);
762      }
763    }
764  }
765
766  // If the inlined code contained dynamic alloca instructions, wrap the inlined
767  // code with llvm.stacksave/llvm.stackrestore intrinsics.
768  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
769    Module *M = Caller->getParent();
770    // Get the two intrinsics we care about.
771    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
772    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
773
774    // If we are preserving the callgraph, add edges to the stacksave/restore
775    // functions for the calls we insert.
776    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
777    if (CallGraph *CG = IFI.CG) {
778      StackSaveCGN    = CG->getOrInsertFunction(StackSave);
779      StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
780      CallerNode = (*CG)[Caller];
781    }
782
783    // Insert the llvm.stacksave.
784    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
785                                          FirstNewBlock->begin());
786    if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
787
788    // Insert a call to llvm.stackrestore before any return instructions in the
789    // inlined function.
790    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
791      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
792      if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
793    }
794
795    // Count the number of StackRestore calls we insert.
796    unsigned NumStackRestores = Returns.size();
797
798    // If we are inlining an invoke instruction, insert restores before each
799    // unwind.  These unwinds will be rewritten into branches later.
800    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
801      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
802           BB != E; ++BB)
803        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
804          CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
805          if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
806          ++NumStackRestores;
807        }
808    }
809  }
810
811  // If we are inlining tail call instruction through a call site that isn't
812  // marked 'tail', we must remove the tail marker for any calls in the inlined
813  // code.  Also, calls inlined through a 'nounwind' call site should be marked
814  // 'nounwind'.
815  if (InlinedFunctionInfo.ContainsCalls &&
816      (MustClearTailCallFlags || MarkNoUnwind)) {
817    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
818         BB != E; ++BB)
819      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
820        if (CallInst *CI = dyn_cast<CallInst>(I)) {
821          if (MustClearTailCallFlags)
822            CI->setTailCall(false);
823          if (MarkNoUnwind)
824            CI->setDoesNotThrow();
825        }
826  }
827
828  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
829  // instructions are unreachable.
830  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
831    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
832         BB != E; ++BB) {
833      TerminatorInst *Term = BB->getTerminator();
834      if (isa<UnwindInst>(Term)) {
835        new UnreachableInst(Context, Term);
836        BB->getInstList().erase(Term);
837      }
838    }
839
840  // If we are inlining for an invoke instruction, we must make sure to rewrite
841  // any inlined 'unwind' instructions into branches to the invoke exception
842  // destination, and call instructions into invoke instructions.
843  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
844    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
845
846  // If we cloned in _exactly one_ basic block, and if that block ends in a
847  // return instruction, we splice the body of the inlined callee directly into
848  // the calling basic block.
849  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
850    // Move all of the instructions right before the call.
851    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
852                                 FirstNewBlock->begin(), FirstNewBlock->end());
853    // Remove the cloned basic block.
854    Caller->getBasicBlockList().pop_back();
855
856    // If the call site was an invoke instruction, add a branch to the normal
857    // destination.
858    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
859      BranchInst::Create(II->getNormalDest(), TheCall);
860
861    // If the return instruction returned a value, replace uses of the call with
862    // uses of the returned value.
863    if (!TheCall->use_empty()) {
864      ReturnInst *R = Returns[0];
865      if (TheCall == R->getReturnValue())
866        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
867      else
868        TheCall->replaceAllUsesWith(R->getReturnValue());
869    }
870    // Since we are now done with the Call/Invoke, we can delete it.
871    TheCall->eraseFromParent();
872
873    // Since we are now done with the return instruction, delete it also.
874    Returns[0]->eraseFromParent();
875
876    // We are now done with the inlining.
877    return true;
878  }
879
880  // Otherwise, we have the normal case, of more than one block to inline or
881  // multiple return sites.
882
883  // We want to clone the entire callee function into the hole between the
884  // "starter" and "ender" blocks.  How we accomplish this depends on whether
885  // this is an invoke instruction or a call instruction.
886  BasicBlock *AfterCallBB;
887  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
888
889    // Add an unconditional branch to make this look like the CallInst case...
890    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
891
892    // Split the basic block.  This guarantees that no PHI nodes will have to be
893    // updated due to new incoming edges, and make the invoke case more
894    // symmetric to the call case.
895    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
896                                          CalledFunc->getName()+".exit");
897
898  } else {  // It's a call
899    // If this is a call instruction, we need to split the basic block that
900    // the call lives in.
901    //
902    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
903                                          CalledFunc->getName()+".exit");
904  }
905
906  // Change the branch that used to go to AfterCallBB to branch to the first
907  // basic block of the inlined function.
908  //
909  TerminatorInst *Br = OrigBB->getTerminator();
910  assert(Br && Br->getOpcode() == Instruction::Br &&
911         "splitBasicBlock broken!");
912  Br->setOperand(0, FirstNewBlock);
913
914
915  // Now that the function is correct, make it a little bit nicer.  In
916  // particular, move the basic blocks inserted from the end of the function
917  // into the space made by splitting the source basic block.
918  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
919                                     FirstNewBlock, Caller->end());
920
921  // Handle all of the return instructions that we just cloned in, and eliminate
922  // any users of the original call/invoke instruction.
923  const Type *RTy = CalledFunc->getReturnType();
924
925  PHINode *PHI = 0;
926  if (Returns.size() > 1) {
927    // The PHI node should go at the front of the new basic block to merge all
928    // possible incoming values.
929    if (!TheCall->use_empty()) {
930      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
931                            AfterCallBB->begin());
932      // Anything that used the result of the function call should now use the
933      // PHI node as their operand.
934      TheCall->replaceAllUsesWith(PHI);
935    }
936
937    // Loop over all of the return instructions adding entries to the PHI node
938    // as appropriate.
939    if (PHI) {
940      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
941        ReturnInst *RI = Returns[i];
942        assert(RI->getReturnValue()->getType() == PHI->getType() &&
943               "Ret value not consistent in function!");
944        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
945      }
946    }
947
948
949    // Add a branch to the merge points and remove return instructions.
950    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
951      ReturnInst *RI = Returns[i];
952      BranchInst::Create(AfterCallBB, RI);
953      RI->eraseFromParent();
954    }
955  } else if (!Returns.empty()) {
956    // Otherwise, if there is exactly one return value, just replace anything
957    // using the return value of the call with the computed value.
958    if (!TheCall->use_empty()) {
959      if (TheCall == Returns[0]->getReturnValue())
960        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
961      else
962        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
963    }
964
965    // Splice the code from the return block into the block that it will return
966    // to, which contains the code that was after the call.
967    BasicBlock *ReturnBB = Returns[0]->getParent();
968    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
969                                      ReturnBB->getInstList());
970
971    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
972    ReturnBB->replaceAllUsesWith(AfterCallBB);
973
974    // Delete the return instruction now and empty ReturnBB now.
975    Returns[0]->eraseFromParent();
976    ReturnBB->eraseFromParent();
977  } else if (!TheCall->use_empty()) {
978    // No returns, but something is using the return value of the call.  Just
979    // nuke the result.
980    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
981  }
982
983  // Since we are now done with the Call/Invoke, we can delete it.
984  TheCall->eraseFromParent();
985
986  // We should always be able to fold the entry block of the function into the
987  // single predecessor of the block...
988  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
989  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
990
991  // Splice the code entry block into calling block, right before the
992  // unconditional branch.
993  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
994  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
995
996  // Remove the unconditional branch.
997  OrigBB->getInstList().erase(Br);
998
999  // Now we can remove the CalleeEntry block, which is now empty.
1000  Caller->getBasicBlockList().erase(CalleeEntry);
1001
1002  // If we inserted a phi node, check to see if it has a single value (e.g. all
1003  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1004  // block other optimizations.
1005  if (PHI)
1006    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1007      PHI->replaceAllUsesWith(V);
1008      PHI->eraseFromParent();
1009    }
1010
1011  return true;
1012}
1013