InlineFunction.cpp revision ee5457cbe88b7f691f774de8515d9a94226d1b00
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// This file implements inlining of a function into a call site, resolving
4// parameters and the return value as appropriate.
5//
6// FIXME: This pass should transform alloca instructions in the called function
7//        into malloc/free pairs!  Or perhaps it should refuse to inline them!
8//
9//===----------------------------------------------------------------------===//
10
11#include "llvm/Transforms/Utils/Cloning.h"
12#include "llvm/Constant.h"
13#include "llvm/DerivedTypes.h"
14#include "llvm/Module.h"
15#include "llvm/Instructions.h"
16#include "llvm/Intrinsics.h"
17#include "llvm/Support/CallSite.h"
18#include "llvm/Transforms/Utils/Local.h"
19
20bool InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
21bool InlineFunction(InvokeInst *II) { return InlineFunction(CallSite(II)); }
22
23// InlineFunction - This function inlines the called function into the basic
24// block of the caller.  This returns false if it is not possible to inline this
25// call.  The program is still in a well defined state if this occurs though.
26//
27// Note that this only does one level of inlining.  For example, if the
28// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
29// exists in the instruction stream.  Similiarly this will inline a recursive
30// function by one level.
31//
32bool InlineFunction(CallSite CS) {
33  Instruction *TheCall = CS.getInstruction();
34  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
35         "Instruction not in function!");
36
37  const Function *CalledFunc = CS.getCalledFunction();
38  if (CalledFunc == 0 ||          // Can't inline external function or indirect
39      CalledFunc->isExternal() || // call, or call to a vararg function!
40      CalledFunc->getFunctionType()->isVarArg()) return false;
41
42  BasicBlock *OrigBB = TheCall->getParent();
43  Function *Caller = OrigBB->getParent();
44
45  // We want to clone the entire callee function into the whole between the
46  // "starter" and "ender" blocks.  How we accomplish this depends on whether
47  // this is an invoke instruction or a call instruction.
48
49  BasicBlock *InvokeDest = 0;     // Exception handling destination
50  BasicBlock *AfterCallBB;
51  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
52    AfterCallBB = II->getNormalDest();
53    InvokeDest = II->getExceptionalDest();
54
55    // Add an unconditional branch to make this look like the CallInst case...
56    new BranchInst(AfterCallBB, TheCall);
57
58    // Remove (unlink) the InvokeInst from the function...
59    OrigBB->getInstList().remove(TheCall);
60  } else {  // It's a call
61    // If this is a call instruction, we need to split the basic block that the
62    // call lives in.
63    //
64    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
65                                          CalledFunc->getName()+".entry");
66    // Remove (unlink) the CallInst from the function...
67    AfterCallBB->getInstList().remove(TheCall);
68  }
69
70  // If we have a return value generated by this call, convert it into a PHI
71  // node that gets values from each of the old RET instructions in the original
72  // function.
73  //
74  PHINode *PHI = 0;
75  if (!TheCall->use_empty()) {
76    // The PHI node should go at the front of the new basic block to merge all
77    // possible incoming values.
78    //
79    PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(),
80                      AfterCallBB->begin());
81
82    // Anything that used the result of the function call should now use the PHI
83    // node as their operand.
84    //
85    TheCall->replaceAllUsesWith(PHI);
86  }
87
88  // Get an iterator to the last basic block in the function, which will have
89  // the new function inlined after it.
90  //
91  Function::iterator LastBlock = &Caller->back();
92
93  // Calculate the vector of arguments to pass into the function cloner...
94  std::map<const Value*, Value*> ValueMap;
95  assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
96         std::distance(CS.arg_begin(), CS.arg_end()) &&
97         "No varargs calls can be inlined!");
98
99  CallSite::arg_iterator AI = CS.arg_begin();
100  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
101       I != E; ++I, ++AI)
102    ValueMap[I] = *AI;
103
104  // Since we are now done with the Call/Invoke, we can delete it.
105  delete TheCall;
106
107  // Make a vector to capture the return instructions in the cloned function...
108  std::vector<ReturnInst*> Returns;
109
110  // Populate the value map with all of the globals in the program.
111  // FIXME: This should be the default for CloneFunctionInto!
112  Module &M = *Caller->getParent();
113  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
114    ValueMap[I] = I;
115  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
116    ValueMap[I] = I;
117
118  // Do all of the hard part of cloning the callee into the caller...
119  CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
120
121  // Loop over all of the return instructions, turning them into unconditional
122  // branches to the merge point now...
123  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
124    ReturnInst *RI = Returns[i];
125    BasicBlock *BB = RI->getParent();
126
127    // Add a branch to the merge point where the PHI node lives if it exists.
128    new BranchInst(AfterCallBB, RI);
129
130    if (PHI) {   // The PHI node should include this value!
131      assert(RI->getReturnValue() && "Ret should have value!");
132      assert(RI->getReturnValue()->getType() == PHI->getType() &&
133             "Ret value not consistent in function!");
134      PHI->addIncoming(RI->getReturnValue(), BB);
135    }
136
137    // Delete the return instruction now
138    BB->getInstList().erase(RI);
139  }
140
141  // Check to see if the PHI node only has one argument.  This is a common
142  // case resulting from there only being a single return instruction in the
143  // function call.  Because this is so common, eliminate the PHI node.
144  //
145  if (PHI && PHI->getNumIncomingValues() == 1) {
146    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
147    PHI->getParent()->getInstList().erase(PHI);
148  }
149
150  // Change the branch that used to go to AfterCallBB to branch to the first
151  // basic block of the inlined function.
152  //
153  TerminatorInst *Br = OrigBB->getTerminator();
154  assert(Br && Br->getOpcode() == Instruction::Br &&
155	 "splitBasicBlock broken!");
156  Br->setOperand(0, ++LastBlock);
157
158  // If there are any alloca instructions in the block that used to be the entry
159  // block for the callee, move them to the entry block of the caller.  First
160  // calculate which instruction they should be inserted before.  We insert the
161  // instructions at the end of the current alloca list.
162  //
163  if (isa<AllocaInst>(LastBlock->begin())) {
164    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
165    while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
166
167    for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
168         I != E; )
169      if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
170        ++I;  // Move to the next instruction
171        LastBlock->getInstList().remove(AI);
172        Caller->front().getInstList().insert(InsertPoint, AI);
173      } else {
174        ++I;
175      }
176  }
177
178  // If we just inlined a call due to an invoke instruction, scan the inlined
179  // function checking for function calls that should now be made into invoke
180  // instructions, and for unwind's which should be turned into branches.
181  if (InvokeDest)
182    for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB) {
183      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
184        // We only need to check for function calls: inlined invoke instructions
185        // require no special handling...
186        if (CallInst *CI = dyn_cast<CallInst>(I)) {
187          // Convert this function call into an invoke instruction...
188
189          // First, split the basic block...
190          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
191
192          // Next, create the new invoke instruction, inserting it at the end
193          // of the old basic block.
194          new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
195                         std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
196                         CI->getName(), BB->getTerminator());
197
198          // Delete the unconditional branch inserted by splitBasicBlock
199          BB->getInstList().pop_back();
200          Split->getInstList().pop_front();  // Delete the original call
201
202          // This basic block is now complete, start scanning the next one.
203          break;
204        } else {
205          ++I;
206        }
207      }
208
209      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
210        // An UnwindInst requires special handling when it gets inlined into an
211        // invoke site.  Once this happens, we know that the unwind would cause
212        // a control transfer to the invoke exception destination, so we can
213        // transform it into a direct branch to the exception destination.
214        BranchInst *BI = new BranchInst(InvokeDest, UI);
215
216        // Delete the unwind instruction!
217        UI->getParent()->getInstList().pop_back();
218      }
219    }
220
221  // Now that the function is correct, make it a little bit nicer.  In
222  // particular, move the basic blocks inserted from the end of the function
223  // into the space made by splitting the source basic block.
224  //
225  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
226                                     LastBlock, Caller->end());
227
228  // We should always be able to fold the entry block of the function into the
229  // single predecessor of the block...
230  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
231  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
232  SimplifyCFG(CalleeEntry);
233
234  // Okay, continue the CFG cleanup.  It's often the case that there is only a
235  // single return instruction in the callee function.  If this is the case,
236  // then we have an unconditional branch from the return block to the
237  // 'AfterCallBB'.  Check for this case, and eliminate the branch is possible.
238  SimplifyCFG(AfterCallBB);
239  return true;
240}
241