InlineFunction.cpp revision fd3adbb31a2745e18d8964d3db02d4d5879202af
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48// FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is
49// turned on.
50
51/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
52static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
53  for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
54    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
55    if (exn) return exn;
56  }
57
58  return 0;
59}
60
61/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
62/// the given llvm.eh.exception call.
63static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
64  BasicBlock *exnBlock = exn->getParent();
65
66  EHSelectorInst *outOfBlockSelector = 0;
67  for (Instruction::use_iterator
68         ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
69    EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
70    if (!sel) continue;
71
72    // Immediately accept an eh.selector in the same block as the
73    // excepton call.
74    if (sel->getParent() == exnBlock) return sel;
75
76    // Otherwise, use the first selector we see.
77    if (!outOfBlockSelector) outOfBlockSelector = sel;
78  }
79
80  return outOfBlockSelector;
81}
82
83/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
84/// in the given landing pad.  In principle, llvm.eh.exception is
85/// required to be in the landing pad; in practice, SplitCriticalEdge
86/// can break that invariant, and then inlining can break it further.
87/// There's a real need for a reliable solution here, but until that
88/// happens, we have some fragile workarounds here.
89static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
90  // Look for an exception call in the actual landing pad.
91  EHExceptionInst *exn = findExceptionInBlock(lpad);
92  if (exn) return findSelectorForException(exn);
93
94  // Okay, if that failed, look for one in an obvious successor.  If
95  // we find one, we'll fix the IR by moving things back to the
96  // landing pad.
97
98  bool dominates = true; // does the lpad dominate the exn call
99  BasicBlock *nonDominated = 0; // if not, the first non-dominated block
100  BasicBlock *lastDominated = 0; // and the block which branched to it
101
102  BasicBlock *exnBlock = lpad;
103
104  // We need to protect against lpads that lead into infinite loops.
105  SmallPtrSet<BasicBlock*,4> visited;
106  visited.insert(exnBlock);
107
108  do {
109    // We're not going to apply this hack to anything more complicated
110    // than a series of unconditional branches, so if the block
111    // doesn't terminate in an unconditional branch, just fail.  More
112    // complicated cases can arise when, say, sinking a call into a
113    // split unwind edge and then inlining it; but that can do almost
114    // *anything* to the CFG, including leaving the selector
115    // completely unreachable.  The only way to fix that properly is
116    // to (1) prohibit transforms which move the exception or selector
117    // values away from the landing pad, e.g. by producing them with
118    // instructions that are pinned to an edge like a phi, or
119    // producing them with not-really-instructions, and (2) making
120    // transforms which split edges deal with that.
121    BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
122    if (!branch || branch->isConditional()) return 0;
123
124    BasicBlock *successor = branch->getSuccessor(0);
125
126    // Fail if we found an infinite loop.
127    if (!visited.insert(successor)) return 0;
128
129    // If the successor isn't dominated by exnBlock:
130    if (!successor->getSinglePredecessor()) {
131      // We don't want to have to deal with threading the exception
132      // through multiple levels of phi, so give up if we've already
133      // followed a non-dominating edge.
134      if (!dominates) return 0;
135
136      // Otherwise, remember this as a non-dominating edge.
137      dominates = false;
138      nonDominated = successor;
139      lastDominated = exnBlock;
140    }
141
142    exnBlock = successor;
143
144    // Can we stop here?
145    exn = findExceptionInBlock(exnBlock);
146  } while (!exn);
147
148  // Look for a selector call for the exception we found.
149  EHSelectorInst *selector = findSelectorForException(exn);
150  if (!selector) return 0;
151
152  // The easy case is when the landing pad still dominates the
153  // exception call, in which case we can just move both calls back to
154  // the landing pad.
155  if (dominates) {
156    selector->moveBefore(lpad->getFirstNonPHI());
157    exn->moveBefore(selector);
158    return selector;
159  }
160
161  // Otherwise, we have to split at the first non-dominating block.
162  // The CFG looks basically like this:
163  //    lpad:
164  //      phis_0
165  //      insnsAndBranches_1
166  //      br label %nonDominated
167  //    nonDominated:
168  //      phis_2
169  //      insns_3
170  //      %exn = call i8* @llvm.eh.exception()
171  //      insnsAndBranches_4
172  //      %selector = call @llvm.eh.selector(i8* %exn, ...
173  // We need to turn this into:
174  //    lpad:
175  //      phis_0
176  //      %exn0 = call i8* @llvm.eh.exception()
177  //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
178  //      insnsAndBranches_1
179  //      br label %split // from lastDominated
180  //    nonDominated:
181  //      phis_2 (without edge from lastDominated)
182  //      %exn1 = call i8* @llvm.eh.exception()
183  //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
184  //      br label %split
185  //    split:
186  //      phis_2 (edge from lastDominated, edge from split)
187  //      %exn = phi ...
188  //      %selector = phi ...
189  //      insns_3
190  //      insnsAndBranches_4
191
192  assert(nonDominated);
193  assert(lastDominated);
194
195  // First, make clones of the intrinsics to go in lpad.
196  EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
197  EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
198  lpadSelector->setArgOperand(0, lpadExn);
199  lpadSelector->insertBefore(lpad->getFirstNonPHI());
200  lpadExn->insertBefore(lpadSelector);
201
202  // Split the non-dominated block.
203  BasicBlock *split =
204    nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
205                                  nonDominated->getName() + ".lpad-fix");
206
207  // Redirect the last dominated branch there.
208  cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
209
210  // Move the existing intrinsics to the end of the old block.
211  selector->moveBefore(&nonDominated->back());
212  exn->moveBefore(selector);
213
214  Instruction *splitIP = &split->front();
215
216  // For all the phis in nonDominated, make a new phi in split to join
217  // that phi with the edge from lastDominated.
218  for (BasicBlock::iterator
219         i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
220    PHINode *phi = dyn_cast<PHINode>(i);
221    if (!phi) break;
222
223    PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
224                                        splitIP);
225    phi->replaceAllUsesWith(splitPhi);
226    splitPhi->addIncoming(phi, nonDominated);
227    splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
228                          lastDominated);
229  }
230
231  // Make new phis for the exception and selector.
232  PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
233  exn->replaceAllUsesWith(exnPhi);
234  selector->setArgOperand(0, exn); // except for this use
235  exnPhi->addIncoming(exn, nonDominated);
236  exnPhi->addIncoming(lpadExn, lastDominated);
237
238  PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
239  selector->replaceAllUsesWith(selectorPhi);
240  selectorPhi->addIncoming(selector, nonDominated);
241  selectorPhi->addIncoming(lpadSelector, lastDominated);
242
243  return lpadSelector;
244}
245
246namespace {
247  /// A class for recording information about inlining through an invoke.
248  class InvokeInliningInfo {
249    BasicBlock *OuterUnwindDest;
250    EHSelectorInst *OuterSelector;
251    BasicBlock *InnerUnwindDest;
252    PHINode *InnerExceptionPHI;
253    PHINode *InnerSelectorPHI;
254    SmallVector<Value*, 8> UnwindDestPHIValues;
255
256    // FIXME: New EH - These will replace the analogous ones above.
257    BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
258    BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
259    LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
260    PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
261
262  public:
263    InvokeInliningInfo(InvokeInst *II)
264      : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
265        InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
266        OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
267        CallerLPad(0), InnerEHValuesPHI(0) {
268      // If there are PHI nodes in the unwind destination block, we need to keep
269      // track of which values came into them from the invoke before removing
270      // the edge from this block.
271      llvm::BasicBlock *InvokeBB = II->getParent();
272      BasicBlock::iterator I = OuterUnwindDest->begin();
273      for (; isa<PHINode>(I); ++I) {
274        // Save the value to use for this edge.
275        PHINode *PHI = cast<PHINode>(I);
276        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
277      }
278
279      CallerLPad = cast<LandingPadInst>(I);
280    }
281
282    /// The outer unwind destination is the target of unwind edges
283    /// introduced for calls within the inlined function.
284    BasicBlock *getOuterUnwindDest() const {
285      return OuterUnwindDest;
286    }
287
288    EHSelectorInst *getOuterSelector() {
289      if (!OuterSelector)
290        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
291      return OuterSelector;
292    }
293
294    BasicBlock *getInnerUnwindDest();
295
296    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
297
298    /// forwardResume - Forward the 'resume' instruction to the caller's landing
299    /// pad block. When the landing pad block has only one predecessor, this is
300    /// a simple branch. When there is more than one predecessor, we need to
301    /// split the landing pad block after the landingpad instruction and jump
302    /// to there.
303    void forwardResume(ResumeInst *RI);
304
305    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
306    /// destination block for the given basic block, using the values for the
307    /// original invoke's source block.
308    void addIncomingPHIValuesFor(BasicBlock *BB) const {
309      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
310    }
311
312    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
313      BasicBlock::iterator I = dest->begin();
314      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
315        PHINode *phi = cast<PHINode>(I);
316        phi->addIncoming(UnwindDestPHIValues[i], src);
317      }
318    }
319  };
320}
321
322/// getInnerUnwindDest - Get or create a target for the branch from ResumeInsts.
323BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
324  if (InnerResumeDest) return InnerResumeDest;
325
326  // Split the landing pad.
327  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
328  InnerResumeDest =
329    OuterResumeDest->splitBasicBlock(SplitPoint,
330                                     OuterResumeDest->getName() + ".body");
331
332  // The number of incoming edges we expect to the inner landing pad.
333  const unsigned PHICapacity = 2;
334
335  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
336  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
337  BasicBlock::iterator I = OuterResumeDest->begin();
338  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
339    PHINode *OuterPHI = cast<PHINode>(I);
340    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
341                                        OuterPHI->getName() + ".lpad-body",
342                                        InsertPoint);
343    OuterPHI->replaceAllUsesWith(InnerPHI);
344    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
345  }
346
347  // Create a PHI for the exception values.
348  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
349                                     "eh.lpad-body", InsertPoint);
350  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
351  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
352
353  // All done.
354  return InnerResumeDest;
355}
356
357/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
358/// block. When the landing pad block has only one predecessor, this is a simple
359/// branch. When there is more than one predecessor, we need to split the
360/// landing pad block after the landingpad instruction and jump to there.
361void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
362  BasicBlock *Dest = getInnerUnwindDest();
363  BasicBlock *Src = RI->getParent();
364
365  BranchInst::Create(Dest, Src);
366
367  // Update the PHIs in the destination. They were inserted in an order which
368  // makes this work.
369  addIncomingPHIValuesForInto(Src, Dest);
370
371  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
372  RI->eraseFromParent();
373}
374
375/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
376/// an invoke, we have to turn all of the calls that can throw into
377/// invokes.  This function analyze BB to see if there are any calls, and if so,
378/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
379/// nodes in that block with the values specified in InvokeDestPHIValues.
380///
381/// Returns true to indicate that the next block should be skipped.
382static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
383                                                   InvokeInliningInfo &Invoke) {
384  LandingPadInst *LPI = Invoke.getLandingPadInst();
385
386  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
387    Instruction *I = BBI++;
388
389    if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
390      unsigned NumClauses = LPI->getNumClauses();
391      L->reserveClauses(NumClauses);
392      for (unsigned i = 0; i != NumClauses; ++i)
393        L->addClause(LPI->getClause(i));
394    }
395
396    // We only need to check for function calls: inlined invoke
397    // instructions require no special handling.
398    CallInst *CI = dyn_cast<CallInst>(I);
399
400    // If this call cannot unwind, don't convert it to an invoke.
401    if (!CI || CI->doesNotThrow())
402      continue;
403
404    // Convert this function call into an invoke instruction.  First, split the
405    // basic block.
406    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
407
408    // Delete the unconditional branch inserted by splitBasicBlock
409    BB->getInstList().pop_back();
410
411    // Create the new invoke instruction.
412    ImmutableCallSite CS(CI);
413    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
414    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
415                                        Invoke.getOuterUnwindDest(),
416                                        InvokeArgs, CI->getName(), BB);
417    II->setCallingConv(CI->getCallingConv());
418    II->setAttributes(CI->getAttributes());
419
420    // Make sure that anything using the call now uses the invoke!  This also
421    // updates the CallGraph if present, because it uses a WeakVH.
422    CI->replaceAllUsesWith(II);
423
424    // Delete the original call
425    Split->getInstList().pop_front();
426
427    // Update any PHI nodes in the exceptional block to indicate that there is
428    // now a new entry in them.
429    Invoke.addIncomingPHIValuesFor(BB);
430    return false;
431  }
432
433  return false;
434}
435
436/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
437/// in the body of the inlined function into invokes and turn unwind
438/// instructions into branches to the invoke unwind dest.
439///
440/// II is the invoke instruction being inlined.  FirstNewBlock is the first
441/// block of the inlined code (the last block is the end of the function),
442/// and InlineCodeInfo is information about the code that got inlined.
443static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
444                                ClonedCodeInfo &InlinedCodeInfo) {
445  BasicBlock *InvokeDest = II->getUnwindDest();
446
447  Function *Caller = FirstNewBlock->getParent();
448
449  // The inlined code is currently at the end of the function, scan from the
450  // start of the inlined code to its end, checking for stuff we need to
451  // rewrite.  If the code doesn't have calls or unwinds, we know there is
452  // nothing to rewrite.
453  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
454    // Now that everything is happy, we have one final detail.  The PHI nodes in
455    // the exception destination block still have entries due to the original
456    // invoke instruction.  Eliminate these entries (which might even delete the
457    // PHI node) now.
458    InvokeDest->removePredecessor(II->getParent());
459    return;
460  }
461
462  InvokeInliningInfo Invoke(II);
463
464  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
465    if (InlinedCodeInfo.ContainsCalls)
466      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
467        // Honor a request to skip the next block.  We don't need to
468        // consider UnwindInsts in this case either.
469        ++BB;
470        continue;
471      }
472
473    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
474      // An UnwindInst requires special handling when it gets inlined into an
475      // invoke site.  Once this happens, we know that the unwind would cause
476      // a control transfer to the invoke exception destination, so we can
477      // transform it into a direct branch to the exception destination.
478      BranchInst::Create(InvokeDest, UI);
479
480      // Delete the unwind instruction!
481      UI->eraseFromParent();
482
483      // Update any PHI nodes in the exceptional block to indicate that
484      // there is now a new entry in them.
485      Invoke.addIncomingPHIValuesFor(BB);
486    }
487
488    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
489      Invoke.forwardResume(RI);
490  }
491
492  // Now that everything is happy, we have one final detail.  The PHI nodes in
493  // the exception destination block still have entries due to the original
494  // invoke instruction.  Eliminate these entries (which might even delete the
495  // PHI node) now.
496  InvokeDest->removePredecessor(II->getParent());
497}
498
499/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
500/// into the caller, update the specified callgraph to reflect the changes we
501/// made.  Note that it's possible that not all code was copied over, so only
502/// some edges of the callgraph may remain.
503static void UpdateCallGraphAfterInlining(CallSite CS,
504                                         Function::iterator FirstNewBlock,
505                                         ValueToValueMapTy &VMap,
506                                         InlineFunctionInfo &IFI) {
507  CallGraph &CG = *IFI.CG;
508  const Function *Caller = CS.getInstruction()->getParent()->getParent();
509  const Function *Callee = CS.getCalledFunction();
510  CallGraphNode *CalleeNode = CG[Callee];
511  CallGraphNode *CallerNode = CG[Caller];
512
513  // Since we inlined some uninlined call sites in the callee into the caller,
514  // add edges from the caller to all of the callees of the callee.
515  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
516
517  // Consider the case where CalleeNode == CallerNode.
518  CallGraphNode::CalledFunctionsVector CallCache;
519  if (CalleeNode == CallerNode) {
520    CallCache.assign(I, E);
521    I = CallCache.begin();
522    E = CallCache.end();
523  }
524
525  for (; I != E; ++I) {
526    const Value *OrigCall = I->first;
527
528    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
529    // Only copy the edge if the call was inlined!
530    if (VMI == VMap.end() || VMI->second == 0)
531      continue;
532
533    // If the call was inlined, but then constant folded, there is no edge to
534    // add.  Check for this case.
535    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
536    if (NewCall == 0) continue;
537
538    // Remember that this call site got inlined for the client of
539    // InlineFunction.
540    IFI.InlinedCalls.push_back(NewCall);
541
542    // It's possible that inlining the callsite will cause it to go from an
543    // indirect to a direct call by resolving a function pointer.  If this
544    // happens, set the callee of the new call site to a more precise
545    // destination.  This can also happen if the call graph node of the caller
546    // was just unnecessarily imprecise.
547    if (I->second->getFunction() == 0)
548      if (Function *F = CallSite(NewCall).getCalledFunction()) {
549        // Indirect call site resolved to direct call.
550        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
551
552        continue;
553      }
554
555    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
556  }
557
558  // Update the call graph by deleting the edge from Callee to Caller.  We must
559  // do this after the loop above in case Caller and Callee are the same.
560  CallerNode->removeCallEdgeFor(CS);
561}
562
563/// HandleByValArgument - When inlining a call site that has a byval argument,
564/// we have to make the implicit memcpy explicit by adding it.
565static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
566                                  const Function *CalledFunc,
567                                  InlineFunctionInfo &IFI,
568                                  unsigned ByValAlignment) {
569  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
570
571  // If the called function is readonly, then it could not mutate the caller's
572  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
573  // temporary.
574  if (CalledFunc->onlyReadsMemory()) {
575    // If the byval argument has a specified alignment that is greater than the
576    // passed in pointer, then we either have to round up the input pointer or
577    // give up on this transformation.
578    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
579      return Arg;
580
581    // If the pointer is already known to be sufficiently aligned, or if we can
582    // round it up to a larger alignment, then we don't need a temporary.
583    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
584                                   IFI.TD) >= ByValAlignment)
585      return Arg;
586
587    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
588    // for code quality, but rarely happens and is required for correctness.
589  }
590
591  LLVMContext &Context = Arg->getContext();
592
593  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
594
595  // Create the alloca.  If we have TargetData, use nice alignment.
596  unsigned Align = 1;
597  if (IFI.TD)
598    Align = IFI.TD->getPrefTypeAlignment(AggTy);
599
600  // If the byval had an alignment specified, we *must* use at least that
601  // alignment, as it is required by the byval argument (and uses of the
602  // pointer inside the callee).
603  Align = std::max(Align, ByValAlignment);
604
605  Function *Caller = TheCall->getParent()->getParent();
606
607  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
608                                    &*Caller->begin()->begin());
609  // Emit a memcpy.
610  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
611  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
612                                                 Intrinsic::memcpy,
613                                                 Tys);
614  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
615  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
616
617  Value *Size;
618  if (IFI.TD == 0)
619    Size = ConstantExpr::getSizeOf(AggTy);
620  else
621    Size = ConstantInt::get(Type::getInt64Ty(Context),
622                            IFI.TD->getTypeStoreSize(AggTy));
623
624  // Always generate a memcpy of alignment 1 here because we don't know
625  // the alignment of the src pointer.  Other optimizations can infer
626  // better alignment.
627  Value *CallArgs[] = {
628    DestCast, SrcCast, Size,
629    ConstantInt::get(Type::getInt32Ty(Context), 1),
630    ConstantInt::getFalse(Context) // isVolatile
631  };
632  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
633
634  // Uses of the argument in the function should use our new alloca
635  // instead.
636  return NewAlloca;
637}
638
639// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
640// intrinsic.
641static bool isUsedByLifetimeMarker(Value *V) {
642  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
643       ++UI) {
644    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
645      switch (II->getIntrinsicID()) {
646      default: break;
647      case Intrinsic::lifetime_start:
648      case Intrinsic::lifetime_end:
649        return true;
650      }
651    }
652  }
653  return false;
654}
655
656// hasLifetimeMarkers - Check whether the given alloca already has
657// lifetime.start or lifetime.end intrinsics.
658static bool hasLifetimeMarkers(AllocaInst *AI) {
659  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
660  if (AI->getType() == Int8PtrTy)
661    return isUsedByLifetimeMarker(AI);
662
663  // Do a scan to find all the casts to i8*.
664  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
665       ++I) {
666    if (I->getType() != Int8PtrTy) continue;
667    if (I->stripPointerCasts() != AI) continue;
668    if (isUsedByLifetimeMarker(*I))
669      return true;
670  }
671  return false;
672}
673
674/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
675/// update InlinedAtEntry of a DebugLoc.
676static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
677                                    const DebugLoc &InlinedAtDL,
678                                    LLVMContext &Ctx) {
679  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
680    DebugLoc NewInlinedAtDL
681      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
682    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
683                         NewInlinedAtDL.getAsMDNode(Ctx));
684  }
685
686  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
687                       InlinedAtDL.getAsMDNode(Ctx));
688}
689
690/// fixupLineNumbers - Update inlined instructions' line numbers to
691/// to encode location where these instructions are inlined.
692static void fixupLineNumbers(Function *Fn, Function::iterator FI,
693                              Instruction *TheCall) {
694  DebugLoc TheCallDL = TheCall->getDebugLoc();
695  if (TheCallDL.isUnknown())
696    return;
697
698  for (; FI != Fn->end(); ++FI) {
699    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
700         BI != BE; ++BI) {
701      DebugLoc DL = BI->getDebugLoc();
702      if (!DL.isUnknown()) {
703        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
704        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
705          LLVMContext &Ctx = BI->getContext();
706          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
707          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
708                                                   InlinedAt, Ctx));
709        }
710      }
711    }
712  }
713}
714
715/// InlineFunction - This function inlines the called function into the basic
716/// block of the caller.  This returns false if it is not possible to inline
717/// this call.  The program is still in a well defined state if this occurs
718/// though.
719///
720/// Note that this only does one level of inlining.  For example, if the
721/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
722/// exists in the instruction stream.  Similarly this will inline a recursive
723/// function by one level.
724bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
725  Instruction *TheCall = CS.getInstruction();
726  LLVMContext &Context = TheCall->getContext();
727  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
728         "Instruction not in function!");
729
730  // If IFI has any state in it, zap it before we fill it in.
731  IFI.reset();
732
733  const Function *CalledFunc = CS.getCalledFunction();
734  if (CalledFunc == 0 ||          // Can't inline external function or indirect
735      CalledFunc->isDeclaration() || // call, or call to a vararg function!
736      CalledFunc->getFunctionType()->isVarArg()) return false;
737
738  // If the call to the callee is not a tail call, we must clear the 'tail'
739  // flags on any calls that we inline.
740  bool MustClearTailCallFlags =
741    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
742
743  // If the call to the callee cannot throw, set the 'nounwind' flag on any
744  // calls that we inline.
745  bool MarkNoUnwind = CS.doesNotThrow();
746
747  BasicBlock *OrigBB = TheCall->getParent();
748  Function *Caller = OrigBB->getParent();
749
750  // GC poses two hazards to inlining, which only occur when the callee has GC:
751  //  1. If the caller has no GC, then the callee's GC must be propagated to the
752  //     caller.
753  //  2. If the caller has a differing GC, it is invalid to inline.
754  if (CalledFunc->hasGC()) {
755    if (!Caller->hasGC())
756      Caller->setGC(CalledFunc->getGC());
757    else if (CalledFunc->getGC() != Caller->getGC())
758      return false;
759  }
760
761  // Get the personality function from the callee if it contains a landing pad.
762  Value *CalleePersonality = 0;
763  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
764       I != E; ++I)
765    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
766      const BasicBlock *BB = II->getUnwindDest();
767      const LandingPadInst *LP = BB->getLandingPadInst();
768      CalleePersonality = LP->getPersonalityFn();
769      break;
770    }
771
772  // Find the personality function used by the landing pads of the caller. If it
773  // exists, then check to see that it matches the personality function used in
774  // the callee.
775  if (CalleePersonality) {
776    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
777         I != E; ++I)
778      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
779        const BasicBlock *BB = II->getUnwindDest();
780        const LandingPadInst *LP = BB->getLandingPadInst();
781
782        // If the personality functions match, then we can perform the
783        // inlining. Otherwise, we can't inline.
784        // TODO: This isn't 100% true. Some personality functions are proper
785        //       supersets of others and can be used in place of the other.
786        if (LP->getPersonalityFn() != CalleePersonality)
787          return false;
788
789        break;
790      }
791  }
792
793  // Get an iterator to the last basic block in the function, which will have
794  // the new function inlined after it.
795  Function::iterator LastBlock = &Caller->back();
796
797  // Make sure to capture all of the return instructions from the cloned
798  // function.
799  SmallVector<ReturnInst*, 8> Returns;
800  ClonedCodeInfo InlinedFunctionInfo;
801  Function::iterator FirstNewBlock;
802
803  { // Scope to destroy VMap after cloning.
804    ValueToValueMapTy VMap;
805
806    assert(CalledFunc->arg_size() == CS.arg_size() &&
807           "No varargs calls can be inlined!");
808
809    // Calculate the vector of arguments to pass into the function cloner, which
810    // matches up the formal to the actual argument values.
811    CallSite::arg_iterator AI = CS.arg_begin();
812    unsigned ArgNo = 0;
813    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
814         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
815      Value *ActualArg = *AI;
816
817      // When byval arguments actually inlined, we need to make the copy implied
818      // by them explicit.  However, we don't do this if the callee is readonly
819      // or readnone, because the copy would be unneeded: the callee doesn't
820      // modify the struct.
821      if (CS.isByValArgument(ArgNo)) {
822        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
823                                        CalledFunc->getParamAlignment(ArgNo+1));
824
825        // Calls that we inline may use the new alloca, so we need to clear
826        // their 'tail' flags if HandleByValArgument introduced a new alloca and
827        // the callee has calls.
828        MustClearTailCallFlags |= ActualArg != *AI;
829      }
830
831      VMap[I] = ActualArg;
832    }
833
834    // We want the inliner to prune the code as it copies.  We would LOVE to
835    // have no dead or constant instructions leftover after inlining occurs
836    // (which can happen, e.g., because an argument was constant), but we'll be
837    // happy with whatever the cloner can do.
838    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
839                              /*ModuleLevelChanges=*/false, Returns, ".i",
840                              &InlinedFunctionInfo, IFI.TD, TheCall);
841
842    // Remember the first block that is newly cloned over.
843    FirstNewBlock = LastBlock; ++FirstNewBlock;
844
845    // Update the callgraph if requested.
846    if (IFI.CG)
847      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
848
849    // Update inlined instructions' line number information.
850    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
851  }
852
853  // If there are any alloca instructions in the block that used to be the entry
854  // block for the callee, move them to the entry block of the caller.  First
855  // calculate which instruction they should be inserted before.  We insert the
856  // instructions at the end of the current alloca list.
857  {
858    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
859    for (BasicBlock::iterator I = FirstNewBlock->begin(),
860         E = FirstNewBlock->end(); I != E; ) {
861      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
862      if (AI == 0) continue;
863
864      // If the alloca is now dead, remove it.  This often occurs due to code
865      // specialization.
866      if (AI->use_empty()) {
867        AI->eraseFromParent();
868        continue;
869      }
870
871      if (!isa<Constant>(AI->getArraySize()))
872        continue;
873
874      // Keep track of the static allocas that we inline into the caller.
875      IFI.StaticAllocas.push_back(AI);
876
877      // Scan for the block of allocas that we can move over, and move them
878      // all at once.
879      while (isa<AllocaInst>(I) &&
880             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
881        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
882        ++I;
883      }
884
885      // Transfer all of the allocas over in a block.  Using splice means
886      // that the instructions aren't removed from the symbol table, then
887      // reinserted.
888      Caller->getEntryBlock().getInstList().splice(InsertPoint,
889                                                   FirstNewBlock->getInstList(),
890                                                   AI, I);
891    }
892  }
893
894  // Leave lifetime markers for the static alloca's, scoping them to the
895  // function we just inlined.
896  if (!IFI.StaticAllocas.empty()) {
897    IRBuilder<> builder(FirstNewBlock->begin());
898    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
899      AllocaInst *AI = IFI.StaticAllocas[ai];
900
901      // If the alloca is already scoped to something smaller than the whole
902      // function then there's no need to add redundant, less accurate markers.
903      if (hasLifetimeMarkers(AI))
904        continue;
905
906      builder.CreateLifetimeStart(AI);
907      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
908        IRBuilder<> builder(Returns[ri]);
909        builder.CreateLifetimeEnd(AI);
910      }
911    }
912  }
913
914  // If the inlined code contained dynamic alloca instructions, wrap the inlined
915  // code with llvm.stacksave/llvm.stackrestore intrinsics.
916  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
917    Module *M = Caller->getParent();
918    // Get the two intrinsics we care about.
919    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
920    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
921
922    // Insert the llvm.stacksave.
923    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
924      .CreateCall(StackSave, "savedstack");
925
926    // Insert a call to llvm.stackrestore before any return instructions in the
927    // inlined function.
928    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
929      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
930    }
931
932    // Count the number of StackRestore calls we insert.
933    unsigned NumStackRestores = Returns.size();
934
935    // If we are inlining an invoke instruction, insert restores before each
936    // unwind.  These unwinds will be rewritten into branches later.
937    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
938      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
939           BB != E; ++BB)
940        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
941          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
942          ++NumStackRestores;
943        }
944    }
945  }
946
947  // If we are inlining tail call instruction through a call site that isn't
948  // marked 'tail', we must remove the tail marker for any calls in the inlined
949  // code.  Also, calls inlined through a 'nounwind' call site should be marked
950  // 'nounwind'.
951  if (InlinedFunctionInfo.ContainsCalls &&
952      (MustClearTailCallFlags || MarkNoUnwind)) {
953    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
954         BB != E; ++BB)
955      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
956        if (CallInst *CI = dyn_cast<CallInst>(I)) {
957          if (MustClearTailCallFlags)
958            CI->setTailCall(false);
959          if (MarkNoUnwind)
960            CI->setDoesNotThrow();
961        }
962  }
963
964  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
965  // instructions are unreachable.
966  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
967    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
968         BB != E; ++BB) {
969      TerminatorInst *Term = BB->getTerminator();
970      if (isa<UnwindInst>(Term)) {
971        new UnreachableInst(Context, Term);
972        BB->getInstList().erase(Term);
973      }
974    }
975
976  // If we are inlining for an invoke instruction, we must make sure to rewrite
977  // any inlined 'unwind' instructions into branches to the invoke exception
978  // destination, and call instructions into invoke instructions.
979  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
980    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
981
982  // If we cloned in _exactly one_ basic block, and if that block ends in a
983  // return instruction, we splice the body of the inlined callee directly into
984  // the calling basic block.
985  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
986    // Move all of the instructions right before the call.
987    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
988                                 FirstNewBlock->begin(), FirstNewBlock->end());
989    // Remove the cloned basic block.
990    Caller->getBasicBlockList().pop_back();
991
992    // If the call site was an invoke instruction, add a branch to the normal
993    // destination.
994    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
995      BranchInst::Create(II->getNormalDest(), TheCall);
996
997    // If the return instruction returned a value, replace uses of the call with
998    // uses of the returned value.
999    if (!TheCall->use_empty()) {
1000      ReturnInst *R = Returns[0];
1001      if (TheCall == R->getReturnValue())
1002        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1003      else
1004        TheCall->replaceAllUsesWith(R->getReturnValue());
1005    }
1006    // Since we are now done with the Call/Invoke, we can delete it.
1007    TheCall->eraseFromParent();
1008
1009    // Since we are now done with the return instruction, delete it also.
1010    Returns[0]->eraseFromParent();
1011
1012    // We are now done with the inlining.
1013    return true;
1014  }
1015
1016  // Otherwise, we have the normal case, of more than one block to inline or
1017  // multiple return sites.
1018
1019  // We want to clone the entire callee function into the hole between the
1020  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1021  // this is an invoke instruction or a call instruction.
1022  BasicBlock *AfterCallBB;
1023  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1024
1025    // Add an unconditional branch to make this look like the CallInst case...
1026    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1027
1028    // Split the basic block.  This guarantees that no PHI nodes will have to be
1029    // updated due to new incoming edges, and make the invoke case more
1030    // symmetric to the call case.
1031    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
1032                                          CalledFunc->getName()+".exit");
1033
1034  } else {  // It's a call
1035    // If this is a call instruction, we need to split the basic block that
1036    // the call lives in.
1037    //
1038    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1039                                          CalledFunc->getName()+".exit");
1040  }
1041
1042  // Change the branch that used to go to AfterCallBB to branch to the first
1043  // basic block of the inlined function.
1044  //
1045  TerminatorInst *Br = OrigBB->getTerminator();
1046  assert(Br && Br->getOpcode() == Instruction::Br &&
1047         "splitBasicBlock broken!");
1048  Br->setOperand(0, FirstNewBlock);
1049
1050
1051  // Now that the function is correct, make it a little bit nicer.  In
1052  // particular, move the basic blocks inserted from the end of the function
1053  // into the space made by splitting the source basic block.
1054  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1055                                     FirstNewBlock, Caller->end());
1056
1057  // Handle all of the return instructions that we just cloned in, and eliminate
1058  // any users of the original call/invoke instruction.
1059  Type *RTy = CalledFunc->getReturnType();
1060
1061  PHINode *PHI = 0;
1062  if (Returns.size() > 1) {
1063    // The PHI node should go at the front of the new basic block to merge all
1064    // possible incoming values.
1065    if (!TheCall->use_empty()) {
1066      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1067                            AfterCallBB->begin());
1068      // Anything that used the result of the function call should now use the
1069      // PHI node as their operand.
1070      TheCall->replaceAllUsesWith(PHI);
1071    }
1072
1073    // Loop over all of the return instructions adding entries to the PHI node
1074    // as appropriate.
1075    if (PHI) {
1076      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1077        ReturnInst *RI = Returns[i];
1078        assert(RI->getReturnValue()->getType() == PHI->getType() &&
1079               "Ret value not consistent in function!");
1080        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1081      }
1082    }
1083
1084
1085    // Add a branch to the merge points and remove return instructions.
1086    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1087      ReturnInst *RI = Returns[i];
1088      BranchInst::Create(AfterCallBB, RI);
1089      RI->eraseFromParent();
1090    }
1091  } else if (!Returns.empty()) {
1092    // Otherwise, if there is exactly one return value, just replace anything
1093    // using the return value of the call with the computed value.
1094    if (!TheCall->use_empty()) {
1095      if (TheCall == Returns[0]->getReturnValue())
1096        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1097      else
1098        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1099    }
1100
1101    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1102    BasicBlock *ReturnBB = Returns[0]->getParent();
1103    ReturnBB->replaceAllUsesWith(AfterCallBB);
1104
1105    // Splice the code from the return block into the block that it will return
1106    // to, which contains the code that was after the call.
1107    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1108                                      ReturnBB->getInstList());
1109
1110    // Delete the return instruction now and empty ReturnBB now.
1111    Returns[0]->eraseFromParent();
1112    ReturnBB->eraseFromParent();
1113  } else if (!TheCall->use_empty()) {
1114    // No returns, but something is using the return value of the call.  Just
1115    // nuke the result.
1116    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1117  }
1118
1119  // Since we are now done with the Call/Invoke, we can delete it.
1120  TheCall->eraseFromParent();
1121
1122  // We should always be able to fold the entry block of the function into the
1123  // single predecessor of the block...
1124  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1125  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1126
1127  // Splice the code entry block into calling block, right before the
1128  // unconditional branch.
1129  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1130  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1131
1132  // Remove the unconditional branch.
1133  OrigBB->getInstList().erase(Br);
1134
1135  // Now we can remove the CalleeEntry block, which is now empty.
1136  Caller->getBasicBlockList().erase(CalleeEntry);
1137
1138  // If we inserted a phi node, check to see if it has a single value (e.g. all
1139  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1140  // block other optimizations.
1141  if (PHI) {
1142    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1143      PHI->replaceAllUsesWith(V);
1144      PHI->eraseFromParent();
1145    }
1146  }
1147
1148  return true;
1149}
1150