yaml2obj.cpp revision c0f15f67038ef3967c2c728d050ad6da0c098f10
1//===- yaml2obj - Convert YAML to a binary object file --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This program takes a YAML description of an object file and outputs the
11// binary equivalent.
12//
13// This is used for writing tests that require binary files.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/StringMap.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/Support/COFF.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/Endian.h"
25#include "llvm/Support/ManagedStatic.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/Support/PrettyStackTrace.h"
28#include "llvm/Support/Signals.h"
29#include "llvm/Support/SourceMgr.h"
30#include "llvm/Support/YAMLTraits.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Support/system_error.h"
33#include <vector>
34
35using namespace llvm;
36
37static cl::opt<std::string>
38  Input(cl::Positional, cl::desc("<input>"), cl::init("-"));
39
40template<class T>
41typename llvm::enable_if_c<std::numeric_limits<T>::is_integer, bool>::type
42getAs(const llvm::yaml::ScalarNode *SN, T &Result) {
43  SmallString<4> Storage;
44  StringRef Value = SN->getValue(Storage);
45  if (Value.getAsInteger(0, Result))
46    return false;
47  return true;
48}
49
50// Given a container with begin and end with ::value_type of a character type.
51// Iterate through pairs of characters in the the set of [a-fA-F0-9] ignoring
52// all other characters.
53struct hex_pair_iterator {
54  StringRef::const_iterator Current, End;
55  typedef SmallVector<char, 2> value_type;
56  value_type Pair;
57  bool IsDone;
58
59  hex_pair_iterator(StringRef C)
60    : Current(C.begin()), End(C.end()), IsDone(false) {
61    // Initalize Pair.
62    ++*this;
63  }
64
65  // End iterator.
66  hex_pair_iterator() : Current(), End(), IsDone(true) {}
67
68  value_type operator *() const {
69    return Pair;
70  }
71
72  hex_pair_iterator operator ++() {
73    // We're at the end of the input.
74    if (Current == End) {
75      IsDone = true;
76      return *this;
77    }
78    Pair = value_type();
79    for (; Current != End && Pair.size() != 2; ++Current) {
80      // Is a valid hex digit.
81      if ((*Current >= '0' && *Current <= '9') ||
82          (*Current >= 'a' && *Current <= 'f') ||
83          (*Current >= 'A' && *Current <= 'F'))
84        Pair.push_back(*Current);
85    }
86    // Hit the end without getting 2 hex digits. Pair is invalid.
87    if (Pair.size() != 2)
88      IsDone = true;
89    return *this;
90  }
91
92  bool operator ==(const hex_pair_iterator Other) {
93    return (IsDone == Other.IsDone) ||
94           (Current == Other.Current && End == Other.End);
95  }
96
97  bool operator !=(const hex_pair_iterator Other) {
98    return !(*this == Other);
99  }
100};
101
102template <class ContainerOut>
103static bool hexStringToByteArray(StringRef Str, ContainerOut &Out) {
104  for (hex_pair_iterator I(Str), E; I != E; ++I) {
105    typename hex_pair_iterator::value_type Pair = *I;
106    typename ContainerOut::value_type Byte;
107    if (StringRef(Pair.data(), 2).getAsInteger(16, Byte))
108      return false;
109    Out.push_back(Byte);
110  }
111  return true;
112}
113
114// The structure of the yaml files is not an exact 1:1 match to COFF. In order
115// to use yaml::IO, we use these structures which are closer to the source.
116namespace COFFYAML {
117  struct Section {
118    COFF::section Header;
119    StringRef SectionData;
120    std::vector<COFF::relocation> Relocations;
121    StringRef Name;
122    Section() {
123      memset(&Header, 0, sizeof(COFF::section));
124    }
125  };
126
127  struct Symbol {
128    COFF::symbol Header;
129    COFF::SymbolBaseType SimpleType;
130    COFF::SymbolComplexType ComplexType;
131    StringRef AuxillaryData;
132    StringRef Name;
133    Symbol() {
134      memset(&Header, 0, sizeof(COFF::symbol));
135    }
136  };
137
138  struct Object {
139    COFF::header Header;
140    std::vector<Section> Sections;
141    std::vector<Symbol> Symbols;
142    Object() {
143      memset(&Header, 0, sizeof(COFF::header));
144    }
145  };
146}
147
148/// This parses a yaml stream that represents a COFF object file.
149/// See docs/yaml2obj for the yaml scheema.
150struct COFFParser {
151  COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
152    // A COFF string table always starts with a 4 byte size field. Offsets into
153    // it include this size, so allocate it now.
154    StringTable.append(4, 0);
155  }
156
157  bool parseSections() {
158    for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
159           e = Obj.Sections.end(); i != e; ++i) {
160      COFFYAML::Section &Sec = *i;
161
162      // If the name is less than 8 bytes, store it in place, otherwise
163      // store it in the string table.
164      StringRef Name = Sec.Name;
165
166      if (Name.size() <= COFF::NameSize) {
167        std::copy(Name.begin(), Name.end(), Sec.Header.Name);
168      } else {
169        // Add string to the string table and format the index for output.
170        unsigned Index = getStringIndex(Name);
171        std::string str = utostr(Index);
172        if (str.size() > 7) {
173          errs() << "String table got too large";
174          return false;
175        }
176        Sec.Header.Name[0] = '/';
177        std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
178      }
179    }
180    return true;
181  }
182
183  bool parseSymbols() {
184    for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
185           e = Obj.Symbols.end(); i != e; ++i) {
186      COFFYAML::Symbol &Sym = *i;
187
188      // If the name is less than 8 bytes, store it in place, otherwise
189      // store it in the string table.
190      StringRef Name = Sym.Name;
191      if (Name.size() <= COFF::NameSize) {
192        std::copy(Name.begin(), Name.end(), Sym.Header.Name);
193      } else {
194        // Add string to the string table and format the index for output.
195        unsigned Index = getStringIndex(Name);
196        *reinterpret_cast<support::aligned_ulittle32_t*>(
197            Sym.Header.Name + 4) = Index;
198      }
199
200      Sym.Header.Type = Sym.SimpleType;
201      Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
202    }
203    return true;
204  }
205
206  bool parse() {
207    if (!parseSections())
208      return false;
209    if (!parseSymbols())
210      return false;
211    return true;
212  }
213
214  unsigned getStringIndex(StringRef Str) {
215    StringMap<unsigned>::iterator i = StringTableMap.find(Str);
216    if (i == StringTableMap.end()) {
217      unsigned Index = StringTable.size();
218      StringTable.append(Str.begin(), Str.end());
219      StringTable.push_back(0);
220      StringTableMap[Str] = Index;
221      return Index;
222    }
223    return i->second;
224  }
225
226  COFFYAML::Object &Obj;
227
228  StringMap<unsigned> StringTableMap;
229  std::string StringTable;
230};
231
232// Take a CP and assign addresses and sizes to everything. Returns false if the
233// layout is not valid to do.
234static bool layoutCOFF(COFFParser &CP) {
235  uint32_t SectionTableStart = 0;
236  uint32_t SectionTableSize  = 0;
237
238  // The section table starts immediately after the header, including the
239  // optional header.
240  SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader;
241  SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size();
242
243  uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
244
245  // Assign each section data address consecutively.
246  for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
247                                                e = CP.Obj.Sections.end();
248                                                i != e; ++i) {
249    if (!i->SectionData.empty()) {
250      i->Header.SizeOfRawData = i->SectionData.size()/2;
251      i->Header.PointerToRawData = CurrentSectionDataOffset;
252      CurrentSectionDataOffset += i->Header.SizeOfRawData;
253      if (!i->Relocations.empty()) {
254        i->Header.PointerToRelocations = CurrentSectionDataOffset;
255        i->Header.NumberOfRelocations = i->Relocations.size();
256        CurrentSectionDataOffset += i->Header.NumberOfRelocations *
257          COFF::RelocationSize;
258      }
259      // TODO: Handle alignment.
260    } else {
261      i->Header.SizeOfRawData = 0;
262      i->Header.PointerToRawData = 0;
263    }
264  }
265
266  uint32_t SymbolTableStart = CurrentSectionDataOffset;
267
268  // Calculate number of symbols.
269  uint32_t NumberOfSymbols = 0;
270  for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
271                                               e = CP.Obj.Symbols.end();
272                                               i != e; ++i) {
273    unsigned AuxBytes = i->AuxillaryData.size() / 2;
274    if (AuxBytes % COFF::SymbolSize != 0) {
275      errs() << "AuxillaryData size not a multiple of symbol size!\n";
276      return false;
277    }
278    i->Header.NumberOfAuxSymbols = AuxBytes / COFF::SymbolSize;
279    NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols;
280  }
281
282  // Store all the allocated start addresses in the header.
283  CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
284  CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
285  CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
286
287  *reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
288    = CP.StringTable.size();
289
290  return true;
291}
292
293template <typename value_type>
294struct binary_le_impl {
295  value_type Value;
296  binary_le_impl(value_type V) : Value(V) {}
297};
298
299template <typename value_type>
300raw_ostream &operator <<( raw_ostream &OS
301                        , const binary_le_impl<value_type> &BLE) {
302  char Buffer[sizeof(BLE.Value)];
303  support::endian::write<value_type, support::little, support::unaligned>(
304    Buffer, BLE.Value);
305  OS.write(Buffer, sizeof(BLE.Value));
306  return OS;
307}
308
309template <typename value_type>
310binary_le_impl<value_type> binary_le(value_type V) {
311  return binary_le_impl<value_type>(V);
312}
313
314bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
315  OS << binary_le(CP.Obj.Header.Machine)
316     << binary_le(CP.Obj.Header.NumberOfSections)
317     << binary_le(CP.Obj.Header.TimeDateStamp)
318     << binary_le(CP.Obj.Header.PointerToSymbolTable)
319     << binary_le(CP.Obj.Header.NumberOfSymbols)
320     << binary_le(CP.Obj.Header.SizeOfOptionalHeader)
321     << binary_le(CP.Obj.Header.Characteristics);
322
323  // Output section table.
324  for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
325                                                e = CP.Obj.Sections.end();
326                                                i != e; ++i) {
327    OS.write(i->Header.Name, COFF::NameSize);
328    OS << binary_le(i->Header.VirtualSize)
329       << binary_le(i->Header.VirtualAddress)
330       << binary_le(i->Header.SizeOfRawData)
331       << binary_le(i->Header.PointerToRawData)
332       << binary_le(i->Header.PointerToRelocations)
333       << binary_le(i->Header.PointerToLineNumbers)
334       << binary_le(i->Header.NumberOfRelocations)
335       << binary_le(i->Header.NumberOfLineNumbers)
336       << binary_le(i->Header.Characteristics);
337  }
338
339  // Output section data.
340  for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
341                                                e = CP.Obj.Sections.end();
342                                                i != e; ++i) {
343    if (!i->SectionData.empty()) {
344      std::vector<uint8_t> Data;
345      if (!hexStringToByteArray(i->SectionData, Data)) {
346        errs() << "SectionData must be a collection of pairs of hex bytes";
347        return false;
348      }
349
350      OS.write(reinterpret_cast<const char*>(&Data[0]), Data.size());
351    }
352    for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) {
353      const COFF::relocation &R = i->Relocations[I2];
354      OS << binary_le(R.VirtualAddress)
355         << binary_le(R.SymbolTableIndex)
356         << binary_le(R.Type);
357    }
358  }
359
360  // Output symbol table.
361
362  for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
363                                                     e = CP.Obj.Symbols.end();
364                                                     i != e; ++i) {
365    OS.write(i->Header.Name, COFF::NameSize);
366    OS << binary_le(i->Header.Value)
367       << binary_le(i->Header.SectionNumber)
368       << binary_le(i->Header.Type)
369       << binary_le(i->Header.StorageClass)
370       << binary_le(i->Header.NumberOfAuxSymbols);
371    if (!i->AuxillaryData.empty()) {
372      std::vector<uint8_t> AuxSymbols;
373      if (!hexStringToByteArray(i->AuxillaryData, AuxSymbols)) {
374        errs() << "AuxillaryData must be a collection of pairs of hex bytes";
375        return false;
376      }
377
378      OS.write(reinterpret_cast<const char*>(&AuxSymbols[0]),
379               AuxSymbols.size());
380    }
381  }
382
383  // Output string table.
384  OS.write(&CP.StringTable[0], CP.StringTable.size());
385  return true;
386}
387
388LLVM_YAML_IS_SEQUENCE_VECTOR(COFF::relocation)
389LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Section)
390LLVM_YAML_IS_SEQUENCE_VECTOR(COFFYAML::Symbol)
391
392namespace llvm {
393
394namespace COFF {
395  Characteristics operator|(Characteristics a, Characteristics b) {
396    uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
397    return static_cast<Characteristics>(Ret);
398  }
399
400  SectionCharacteristics
401  operator|(SectionCharacteristics a, SectionCharacteristics b) {
402    uint32_t Ret = static_cast<uint32_t>(a) | static_cast<uint32_t>(b);
403    return static_cast<SectionCharacteristics>(Ret);
404  }
405}
406
407namespace yaml {
408
409#define BCase(X) IO.bitSetCase(Value, #X, COFF::X);
410
411template <>
412struct ScalarBitSetTraits<COFF::SectionCharacteristics> {
413  static void bitset(IO &IO, COFF::SectionCharacteristics &Value) {
414    BCase(IMAGE_SCN_TYPE_NO_PAD);
415    BCase(IMAGE_SCN_CNT_CODE);
416    BCase(IMAGE_SCN_CNT_INITIALIZED_DATA);
417    BCase(IMAGE_SCN_CNT_UNINITIALIZED_DATA);
418    BCase(IMAGE_SCN_LNK_OTHER);
419    BCase(IMAGE_SCN_LNK_INFO);
420    BCase(IMAGE_SCN_LNK_REMOVE);
421    BCase(IMAGE_SCN_LNK_COMDAT);
422    BCase(IMAGE_SCN_GPREL);
423    BCase(IMAGE_SCN_MEM_PURGEABLE);
424    BCase(IMAGE_SCN_MEM_16BIT);
425    BCase(IMAGE_SCN_MEM_LOCKED);
426    BCase(IMAGE_SCN_MEM_PRELOAD);
427    BCase(IMAGE_SCN_ALIGN_1BYTES);
428    BCase(IMAGE_SCN_ALIGN_2BYTES);
429    BCase(IMAGE_SCN_ALIGN_4BYTES);
430    BCase(IMAGE_SCN_ALIGN_8BYTES);
431    BCase(IMAGE_SCN_ALIGN_16BYTES);
432    BCase(IMAGE_SCN_ALIGN_32BYTES);
433    BCase(IMAGE_SCN_ALIGN_64BYTES);
434    BCase(IMAGE_SCN_ALIGN_128BYTES);
435    BCase(IMAGE_SCN_ALIGN_256BYTES);
436    BCase(IMAGE_SCN_ALIGN_512BYTES);
437    BCase(IMAGE_SCN_ALIGN_1024BYTES);
438    BCase(IMAGE_SCN_ALIGN_2048BYTES);
439    BCase(IMAGE_SCN_ALIGN_4096BYTES);
440    BCase(IMAGE_SCN_ALIGN_8192BYTES);
441    BCase(IMAGE_SCN_LNK_NRELOC_OVFL);
442    BCase(IMAGE_SCN_MEM_DISCARDABLE);
443    BCase(IMAGE_SCN_MEM_NOT_CACHED);
444    BCase(IMAGE_SCN_MEM_NOT_PAGED);
445    BCase(IMAGE_SCN_MEM_SHARED);
446    BCase(IMAGE_SCN_MEM_EXECUTE);
447    BCase(IMAGE_SCN_MEM_READ);
448    BCase(IMAGE_SCN_MEM_WRITE);
449  }
450};
451
452template <>
453struct ScalarBitSetTraits<COFF::Characteristics> {
454  static void bitset(IO &IO, COFF::Characteristics &Value) {
455    BCase(IMAGE_FILE_RELOCS_STRIPPED);
456    BCase(IMAGE_FILE_EXECUTABLE_IMAGE);
457    BCase(IMAGE_FILE_LINE_NUMS_STRIPPED);
458    BCase(IMAGE_FILE_LOCAL_SYMS_STRIPPED);
459    BCase(IMAGE_FILE_AGGRESSIVE_WS_TRIM);
460    BCase(IMAGE_FILE_LARGE_ADDRESS_AWARE);
461    BCase(IMAGE_FILE_BYTES_REVERSED_LO);
462    BCase(IMAGE_FILE_32BIT_MACHINE);
463    BCase(IMAGE_FILE_DEBUG_STRIPPED);
464    BCase(IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP);
465    BCase(IMAGE_FILE_NET_RUN_FROM_SWAP);
466    BCase(IMAGE_FILE_SYSTEM);
467    BCase(IMAGE_FILE_DLL);
468    BCase(IMAGE_FILE_UP_SYSTEM_ONLY);
469    BCase(IMAGE_FILE_BYTES_REVERSED_HI);
470  }
471};
472#undef BCase
473
474#define ECase(X) IO.enumCase(Value, #X, COFF::X);
475
476template <>
477struct ScalarEnumerationTraits<COFF::SymbolComplexType> {
478  static void enumeration(IO &IO, COFF::SymbolComplexType &Value) {
479    ECase(IMAGE_SYM_DTYPE_NULL);
480    ECase(IMAGE_SYM_DTYPE_POINTER);
481    ECase(IMAGE_SYM_DTYPE_FUNCTION);
482    ECase(IMAGE_SYM_DTYPE_ARRAY);
483  }
484};
485
486template <>
487struct ScalarEnumerationTraits<COFF::SymbolStorageClass> {
488  static void enumeration(IO &IO, COFF::SymbolStorageClass &Value) {
489    ECase(IMAGE_SYM_CLASS_END_OF_FUNCTION);
490    ECase(IMAGE_SYM_CLASS_NULL);
491    ECase(IMAGE_SYM_CLASS_AUTOMATIC);
492    ECase(IMAGE_SYM_CLASS_EXTERNAL);
493    ECase(IMAGE_SYM_CLASS_STATIC);
494    ECase(IMAGE_SYM_CLASS_REGISTER);
495    ECase(IMAGE_SYM_CLASS_EXTERNAL_DEF);
496    ECase(IMAGE_SYM_CLASS_LABEL);
497    ECase(IMAGE_SYM_CLASS_UNDEFINED_LABEL);
498    ECase(IMAGE_SYM_CLASS_MEMBER_OF_STRUCT);
499    ECase(IMAGE_SYM_CLASS_ARGUMENT);
500    ECase(IMAGE_SYM_CLASS_STRUCT_TAG);
501    ECase(IMAGE_SYM_CLASS_MEMBER_OF_UNION);
502    ECase(IMAGE_SYM_CLASS_UNION_TAG);
503    ECase(IMAGE_SYM_CLASS_TYPE_DEFINITION);
504    ECase(IMAGE_SYM_CLASS_UNDEFINED_STATIC);
505    ECase(IMAGE_SYM_CLASS_ENUM_TAG);
506    ECase(IMAGE_SYM_CLASS_MEMBER_OF_ENUM);
507    ECase(IMAGE_SYM_CLASS_REGISTER_PARAM);
508    ECase(IMAGE_SYM_CLASS_BIT_FIELD);
509    ECase(IMAGE_SYM_CLASS_BLOCK);
510    ECase(IMAGE_SYM_CLASS_FUNCTION);
511    ECase(IMAGE_SYM_CLASS_END_OF_STRUCT);
512    ECase(IMAGE_SYM_CLASS_FILE);
513    ECase(IMAGE_SYM_CLASS_SECTION);
514    ECase(IMAGE_SYM_CLASS_WEAK_EXTERNAL);
515    ECase(IMAGE_SYM_CLASS_CLR_TOKEN);
516  }
517};
518
519template <>
520struct ScalarEnumerationTraits<COFF::SymbolBaseType> {
521  static void enumeration(IO &IO, COFF::SymbolBaseType &Value) {
522    ECase(IMAGE_SYM_TYPE_NULL);
523    ECase(IMAGE_SYM_TYPE_VOID);
524    ECase(IMAGE_SYM_TYPE_CHAR);
525    ECase(IMAGE_SYM_TYPE_SHORT);
526    ECase(IMAGE_SYM_TYPE_INT);
527    ECase(IMAGE_SYM_TYPE_LONG);
528    ECase(IMAGE_SYM_TYPE_FLOAT);
529    ECase(IMAGE_SYM_TYPE_DOUBLE);
530    ECase(IMAGE_SYM_TYPE_STRUCT);
531    ECase(IMAGE_SYM_TYPE_UNION);
532    ECase(IMAGE_SYM_TYPE_ENUM);
533    ECase(IMAGE_SYM_TYPE_MOE);
534    ECase(IMAGE_SYM_TYPE_BYTE);
535    ECase(IMAGE_SYM_TYPE_WORD);
536    ECase(IMAGE_SYM_TYPE_UINT);
537    ECase(IMAGE_SYM_TYPE_DWORD);
538  }
539};
540
541template <>
542struct ScalarEnumerationTraits<COFF::MachineTypes> {
543  static void enumeration(IO &IO, COFF::MachineTypes &Value) {
544    ECase(IMAGE_FILE_MACHINE_UNKNOWN);
545    ECase(IMAGE_FILE_MACHINE_AM33);
546    ECase(IMAGE_FILE_MACHINE_AMD64);
547    ECase(IMAGE_FILE_MACHINE_ARM);
548    ECase(IMAGE_FILE_MACHINE_ARMV7);
549    ECase(IMAGE_FILE_MACHINE_EBC);
550    ECase(IMAGE_FILE_MACHINE_I386);
551    ECase(IMAGE_FILE_MACHINE_IA64);
552    ECase(IMAGE_FILE_MACHINE_M32R);
553    ECase(IMAGE_FILE_MACHINE_MIPS16);
554    ECase(IMAGE_FILE_MACHINE_MIPSFPU);
555    ECase(IMAGE_FILE_MACHINE_MIPSFPU16);
556    ECase(IMAGE_FILE_MACHINE_POWERPC);
557    ECase(IMAGE_FILE_MACHINE_POWERPCFP);
558    ECase(IMAGE_FILE_MACHINE_R4000);
559    ECase(IMAGE_FILE_MACHINE_SH3);
560    ECase(IMAGE_FILE_MACHINE_SH3DSP);
561    ECase(IMAGE_FILE_MACHINE_SH4);
562    ECase(IMAGE_FILE_MACHINE_SH5);
563    ECase(IMAGE_FILE_MACHINE_THUMB);
564    ECase(IMAGE_FILE_MACHINE_WCEMIPSV2);
565  }
566};
567
568template <>
569struct ScalarEnumerationTraits<COFF::RelocationTypeX86> {
570  static void enumeration(IO &IO, COFF::RelocationTypeX86 &Value) {
571    ECase(IMAGE_REL_I386_ABSOLUTE);
572    ECase(IMAGE_REL_I386_DIR16);
573    ECase(IMAGE_REL_I386_REL16);
574    ECase(IMAGE_REL_I386_DIR32);
575    ECase(IMAGE_REL_I386_DIR32NB);
576    ECase(IMAGE_REL_I386_SEG12);
577    ECase(IMAGE_REL_I386_SECTION);
578    ECase(IMAGE_REL_I386_SECREL);
579    ECase(IMAGE_REL_I386_TOKEN);
580    ECase(IMAGE_REL_I386_SECREL7);
581    ECase(IMAGE_REL_I386_REL32);
582    ECase(IMAGE_REL_AMD64_ABSOLUTE);
583    ECase(IMAGE_REL_AMD64_ADDR64);
584    ECase(IMAGE_REL_AMD64_ADDR32);
585    ECase(IMAGE_REL_AMD64_ADDR32NB);
586    ECase(IMAGE_REL_AMD64_REL32);
587    ECase(IMAGE_REL_AMD64_REL32_1);
588    ECase(IMAGE_REL_AMD64_REL32_2);
589    ECase(IMAGE_REL_AMD64_REL32_3);
590    ECase(IMAGE_REL_AMD64_REL32_4);
591    ECase(IMAGE_REL_AMD64_REL32_5);
592    ECase(IMAGE_REL_AMD64_SECTION);
593    ECase(IMAGE_REL_AMD64_SECREL);
594    ECase(IMAGE_REL_AMD64_SECREL7);
595    ECase(IMAGE_REL_AMD64_TOKEN);
596    ECase(IMAGE_REL_AMD64_SREL32);
597    ECase(IMAGE_REL_AMD64_PAIR);
598    ECase(IMAGE_REL_AMD64_SSPAN32);
599  }
600};
601
602#undef ECase
603
604template <>
605struct MappingTraits<COFFYAML::Symbol> {
606  struct NStorageClass {
607    NStorageClass(IO&) : StorageClass(COFF::SymbolStorageClass(0)) {
608    }
609    NStorageClass(IO&, uint8_t S) : StorageClass(COFF::SymbolStorageClass(S)) {
610    }
611    uint8_t denormalize(IO &) {
612      return StorageClass;
613    }
614
615    COFF::SymbolStorageClass StorageClass;
616  };
617
618  static void mapping(IO &IO, COFFYAML::Symbol &S) {
619    MappingNormalization<NStorageClass, uint8_t> NS(IO, S.Header.StorageClass);
620
621    IO.mapRequired("SimpleType", S.SimpleType);
622    IO.mapOptional("NumberOfAuxSymbols", S.Header.NumberOfAuxSymbols);
623    IO.mapRequired("Name", S.Name);
624    IO.mapRequired("StorageClass", NS->StorageClass);
625    IO.mapOptional("AuxillaryData", S.AuxillaryData); // FIXME: typo
626    IO.mapRequired("ComplexType", S.ComplexType);
627    IO.mapRequired("Value", S.Header.Value);
628    IO.mapRequired("SectionNumber", S.Header.SectionNumber);
629  }
630};
631
632template <>
633struct MappingTraits<COFF::header> {
634  struct NMachine {
635    NMachine(IO&) : Machine(COFF::MachineTypes(0)) {
636    }
637    NMachine(IO&, uint16_t M) : Machine(COFF::MachineTypes(M)) {
638    }
639    uint16_t denormalize(IO &) {
640      return Machine;
641    }
642    COFF::MachineTypes Machine;
643  };
644
645  struct NCharacteristics {
646    NCharacteristics(IO&) : Characteristics(COFF::Characteristics(0)) {
647    }
648    NCharacteristics(IO&, uint16_t C) :
649      Characteristics(COFF::Characteristics(C)) {
650    }
651    uint16_t denormalize(IO &) {
652      return Characteristics;
653    }
654
655    COFF::Characteristics Characteristics;
656  };
657
658  static void mapping(IO &IO, COFF::header &H) {
659    MappingNormalization<NMachine, uint16_t> NM(IO, H.Machine);
660    MappingNormalization<NCharacteristics, uint16_t> NC(IO, H.Characteristics);
661
662    IO.mapRequired("Machine", NM->Machine);
663    IO.mapOptional("Characteristics", NC->Characteristics);
664  }
665};
666
667template <>
668struct MappingTraits<COFF::relocation> {
669  struct NType {
670    NType(IO &) : Type(COFF::RelocationTypeX86(0)) {
671    }
672    NType(IO &, uint16_t T) : Type(COFF::RelocationTypeX86(T)) {
673    }
674    uint16_t denormalize(IO &) {
675      return Type;
676    }
677    COFF::RelocationTypeX86 Type;
678  };
679
680  static void mapping(IO &IO, COFF::relocation &Rel) {
681    MappingNormalization<NType, uint16_t> NT(IO, Rel.Type);
682
683    IO.mapRequired("Type", NT->Type);
684    IO.mapRequired("VirtualAddress", Rel.VirtualAddress);
685    IO.mapRequired("SymbolTableIndex", Rel.SymbolTableIndex);
686  }
687};
688
689template <>
690struct MappingTraits<COFFYAML::Section> {
691  struct NCharacteristics {
692    NCharacteristics(IO &) : Characteristics(COFF::SectionCharacteristics(0)) {
693    }
694    NCharacteristics(IO &, uint32_t C) :
695      Characteristics(COFF::SectionCharacteristics(C)) {
696    }
697    uint32_t denormalize(IO &) {
698      return Characteristics;
699    }
700    COFF::SectionCharacteristics Characteristics;
701  };
702
703  static void mapping(IO &IO, COFFYAML::Section &Sec) {
704    MappingNormalization<NCharacteristics, uint32_t> NC(IO,
705                                                    Sec.Header.Characteristics);
706    IO.mapOptional("Relocations", Sec.Relocations);
707    IO.mapRequired("SectionData", Sec.SectionData);
708    IO.mapRequired("Characteristics", NC->Characteristics);
709    IO.mapRequired("Name", Sec.Name);
710  }
711};
712
713template <>
714struct MappingTraits<COFFYAML::Object> {
715  static void mapping(IO &IO, COFFYAML::Object &Obj) {
716    IO.mapRequired("sections", Obj.Sections);
717    IO.mapRequired("header", Obj.Header);
718    IO.mapRequired("symbols", Obj.Symbols);
719  }
720};
721} // end namespace yaml
722} // end namespace llvm
723
724int main(int argc, char **argv) {
725  cl::ParseCommandLineOptions(argc, argv);
726  sys::PrintStackTraceOnErrorSignal();
727  PrettyStackTraceProgram X(argc, argv);
728  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
729
730  OwningPtr<MemoryBuffer> Buf;
731  if (MemoryBuffer::getFileOrSTDIN(Input, Buf))
732    return 1;
733
734  yaml::Input YIn(Buf->getBuffer());
735  COFFYAML::Object Doc;
736  YIn >> Doc;
737  if (YIn.error()) {
738    errs() << "yaml2obj: Failed to parse YAML file!\n";
739    return 1;
740  }
741
742  COFFParser CP(Doc);
743  if (!CP.parse()) {
744    errs() << "yaml2obj: Failed to parse YAML file!\n";
745    return 1;
746  }
747
748  if (!layoutCOFF(CP)) {
749    errs() << "yaml2obj: Failed to layout COFF file!\n";
750    return 1;
751  }
752  if (!writeCOFF(CP, outs())) {
753    errs() << "yaml2obj: Failed to write COFF file!\n";
754    return 1;
755  }
756}
757