plt.c revision 02a41a5a996ffb774078cafe6311150720d2fd5b
1#include <gelf.h>
2#include <sys/ptrace.h>
3#include <errno.h>
4#include <error.h>
5#include <inttypes.h>
6#include <assert.h>
7#include <string.h>
8
9#include "proc.h"
10#include "common.h"
11#include "library.h"
12#include "breakpoint.h"
13#include "linux-gnu/trace.h"
14
15/* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
16 * new-style "secure" PLT.  We can tell one from the other by the
17 * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
18 * otherwise it's secure.
19 *
20 * BSS PLT works the same way as most architectures: the .plt section
21 * contains trampolines and we put breakpoints to those.  If not
22 * prelinked, .plt contains zeroes, and dynamic linker fills in the
23 * initial set of trampolines, which means that we need to delay
24 * enabling breakpoints until after binary entry point is hit.
25 * Additionally, after first call, dynamic linker updates .plt with
26 * branch to resolved address.  That means that on first hit, we must
27 * do something similar to the PPC64 gambit described below.
28 *
29 * With secure PLT, the .plt section doesn't contain instructions but
30 * addresses.  The real PLT table is stored in .text.  Addresses of
31 * those PLT entries can be computed, and apart from the fact that
32 * they are in .text, they are ordinary PLT entries.
33 *
34 * 64-bit PPC is more involved.  Program linker creates for each
35 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
36 * (where xxxxxxxx is a hexadecimal number).  That stub does the call
37 * dispatch: it loads an address of a function to call from the
38 * section .plt, and branches.  PLT entries themselves are essentially
39 * a curried call to the resolver.  When the symbol is resolved, the
40 * resolver updates the value stored in .plt, and the next time
41 * around, the stub calls the library function directly.  So we make
42 * at most one trip (none if the binary is prelinked) through each PLT
43 * entry, and correspondingly that is useless as a breakpoint site.
44 *
45 * Note the three confusing terms: stubs (that play the role of PLT
46 * entries), PLT entries, .plt section.
47 *
48 * We first check symbol tables and see if we happen to have stub
49 * symbols available.  If yes we just put breakpoints to those, and
50 * treat them as usual breakpoints.  The only tricky part is realizing
51 * that there can be more than one breakpoint per symbol.
52 *
53 * The case that we don't have the stub symbols available is harder.
54 * The following scheme uses two kinds of PLT breakpoints: unresolved
55 * and resolved (to some address).  When the process starts (or when
56 * we attach), we distribute unresolved PLT breakpoints to the PLT
57 * entries (not stubs).  Then we look in .plt, and for each entry
58 * whose value is different than the corresponding PLT entry address,
59 * we assume it was already resolved, and convert the breakpoint to
60 * resolved.  We also rewrite the resolved value in .plt back to the
61 * PLT address.
62 *
63 * When a PLT entry hits a resolved breakpoint (which happens because
64 * we rewrite .plt with the original unresolved addresses), we move
65 * the instruction pointer to the corresponding address and continue
66 * the process as if nothing happened.
67 *
68 * When unresolved PLT entry is called for the first time, we need to
69 * catch the new value that the resolver will write to a .plt slot.
70 * We also need to prevent another thread from racing through and
71 * taking the branch without ltrace noticing.  So when unresolved PLT
72 * entry hits, we have to stop all threads.  We then single-step
73 * through the resolver, until the .plt slot changes.  When it does,
74 * we treat it the same way as above: convert the PLT breakpoint to
75 * resolved, and rewrite the .plt value back to PLT address.  We then
76 * start all threads again.
77 *
78 * As an optimization, we remember the address where the address was
79 * resolved, and put a breakpoint there.  The next time around (when
80 * the next PLT entry is to be resolved), instead of single-stepping
81 * through half the dynamic linker, we just let the thread run and hit
82 * this breakpoint.  When it hits, we know the PLT entry was resolved.
83 *
84 * XXX TODO If we have hardware watch point, we might put a read watch
85 * on .plt slot, and discover the offenders this way.  I don't know
86 * the details, but I assume at most a handful (like, one or two, if
87 * available at all) addresses may be watched at a time, and thus this
88 * would be used as an amendment of the above rather than full-on
89 * solution to PLT tracing on PPC.
90 */
91
92#define PPC_PLT_STUB_SIZE 16
93#define PPC64_PLT_STUB_SIZE 8 //xxx
94
95static inline int
96host_powerpc64()
97{
98#ifdef __powerpc64__
99	return 1;
100#else
101	return 0;
102#endif
103}
104
105int
106read_target_4(struct Process *proc, target_address_t addr, uint32_t *lp)
107{
108	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
109	if (l == -1UL && errno)
110		return -1;
111#ifdef __powerpc64__
112	l >>= 32;
113#endif
114	*lp = l;
115	return 0;
116}
117
118static int
119read_target_8(struct Process *proc, target_address_t addr, uint64_t *lp)
120{
121	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
122	if (l == -1UL && errno)
123		return -1;
124	if (host_powerpc64()) {
125		*lp = l;
126	} else {
127		unsigned long l2 = ptrace(PTRACE_PEEKTEXT, proc->pid,
128					  addr + 4, 0);
129		if (l2 == -1UL && errno)
130			return -1;
131		*lp = ((uint64_t)l << 32) | l2;
132	}
133	return 0;
134}
135
136int
137read_target_long(struct Process *proc, target_address_t addr, uint64_t *lp)
138{
139	if (proc->e_machine == EM_PPC) {
140		uint32_t w;
141		int ret = read_target_4(proc, addr, &w);
142		if (ret >= 0)
143			*lp = (uint64_t)w;
144		return ret;
145	} else {
146		return read_target_8(proc, addr, lp);
147	}
148}
149
150static enum callback_status
151reenable_breakpoint(struct Process *proc, struct breakpoint *bp, void *data)
152{
153	/* We don't need to re-enable non-PLT breakpoints and
154	 * breakpoints that are not PPC32 BSS unprelinked.  */
155	if (bp->libsym == NULL
156	    || bp->libsym->plt_type == LS_TOPLT_NONE
157	    || bp->libsym->lib->arch.bss_plt_prelinked != 0)
158		return CBS_CONT;
159
160	debug(DEBUG_PROCESS, "pid=%d reenable_breakpoint %s",
161	      proc->pid, breakpoint_name(bp));
162
163	assert(proc->e_machine == EM_PPC);
164	uint64_t l;
165	if (read_target_8(proc, bp->addr, &l) < 0) {
166		error(0, errno, "couldn't read PLT value for %s(%p)",
167		      breakpoint_name(bp), bp->addr);
168		return CBS_CONT;
169	}
170
171	/* XXX double cast  */
172	bp->libsym->arch.plt_slot_addr = (GElf_Addr)(uintptr_t)bp->addr;
173
174	/* If necessary, re-enable the breakpoint if it was
175	 * overwritten by the dynamic linker.  */
176	union {
177		uint32_t insn;
178		char buf[4];
179	} u = { .buf = BREAKPOINT_VALUE };
180	if (l >> 32 == u.insn)
181		debug(DEBUG_PROCESS, "pid=%d, breakpoint still present"
182		      " at %p, avoiding reenable", proc->pid, bp->addr);
183	else
184		enable_breakpoint(proc, bp);
185
186	bp->libsym->arch.resolved_value = l;
187
188	return CBS_CONT;
189}
190
191void
192arch_dynlink_done(struct Process *proc)
193{
194	/* On PPC32, .plt of objects that use BSS PLT are overwritten
195	 * by the dynamic linker (unless that object was prelinked).
196	 * We need to re-enable breakpoints in those objects.  */
197	proc_each_breakpoint(proc, NULL, reenable_breakpoint, NULL);
198}
199
200GElf_Addr
201arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
202{
203	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
204		assert(lte->arch.plt_stub_vma != 0);
205		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
206
207	} else if (lte->ehdr.e_machine == EM_PPC) {
208		return rela->r_offset;
209
210	} else {
211		/* If we get here, we don't have stub symbols.  In
212		 * that case we put brakpoints to PLT entries the same
213		 * as the PPC32 secure PLT case does.  */
214		assert(lte->arch.plt_stub_vma != 0);
215		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
216	}
217}
218
219int
220arch_translate_address(struct Process *proc,
221		       target_address_t addr, target_address_t *ret)
222{
223	if (proc->e_machine == EM_PPC64) {
224		assert(host_powerpc64());
225		long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
226		if (l == -1 && errno) {
227			error(0, errno, ".opd translation of %p", addr);
228			return -1;
229		}
230		*ret = (target_address_t)l;
231		return 0;
232	}
233
234	*ret = addr;
235	return 0;
236}
237
238void *
239sym2addr(struct Process *proc, struct library_symbol *sym)
240{
241	return sym->enter_addr;
242}
243
244static GElf_Addr
245get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
246{
247	Elf_Scn *ppcgot_sec = NULL;
248	GElf_Shdr ppcgot_shdr;
249	if (ppcgot != 0
250	    && elf_get_section_covering(lte, ppcgot,
251					&ppcgot_sec, &ppcgot_shdr) < 0)
252		error(0, 0, "DT_PPC_GOT=%#"PRIx64", but no such section found",
253		      ppcgot);
254
255	if (ppcgot_sec != NULL) {
256		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
257		if (data == NULL || data->d_size < 8 ) {
258			error(0, 0, "couldn't read GOT data");
259		} else {
260			// where PPCGOT begins in .got
261			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
262			assert(offset % 4 == 0);
263			uint32_t glink_vma;
264			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
265				error(0, 0, "couldn't read glink VMA address"
266				      " at %zd@GOT", offset);
267				return 0;
268			}
269			if (glink_vma != 0) {
270				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
271				      glink_vma);
272				return (GElf_Addr)glink_vma;
273			}
274		}
275	}
276
277	if (plt_data != NULL) {
278		uint32_t glink_vma;
279		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
280			error(0, 0, "couldn't read glink VMA address");
281			return 0;
282		}
283		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
284		return (GElf_Addr)glink_vma;
285	}
286
287	return 0;
288}
289
290static int
291load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep)
292{
293	Elf_Scn *scn;
294	GElf_Shdr shdr;
295	if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
296	    || scn == NULL) {
297	fail:
298		error(0, 0, "Couldn't get SHT_DYNAMIC: %s",
299		      elf_errmsg(-1));
300		return -1;
301	}
302
303	Elf_Data *data = elf_loaddata(scn, &shdr);
304	if (data == NULL)
305		goto fail;
306
307	size_t j;
308	for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
309		GElf_Dyn dyn;
310		if (gelf_getdyn(data, j, &dyn) == NULL)
311			goto fail;
312
313		if(dyn.d_tag == tag) {
314			*valuep = dyn.d_un.d_ptr;
315			return 0;
316		}
317	}
318
319	return -1;
320}
321
322static int
323load_ppcgot(struct ltelf *lte, GElf_Addr *ppcgotp)
324{
325	return load_dynamic_entry(lte, DT_PPC_GOT, ppcgotp);
326}
327
328static int
329load_ppc64_glink(struct ltelf *lte, GElf_Addr *glinkp)
330{
331	return load_dynamic_entry(lte, DT_PPC64_GLINK, glinkp);
332}
333
334static int
335nonzero_data(Elf_Data *data)
336{
337	/* We are not supposed to get here if there's no PLT.  */
338	assert(data != NULL);
339
340	unsigned char *buf = data->d_buf;
341	if (buf == NULL)
342		return 0;
343
344	size_t i;
345	for (i = 0; i < data->d_size; ++i)
346		if (buf[i] != 0)
347			return 1;
348	return 0;
349}
350
351int
352arch_elf_init(struct ltelf *lte, struct library *lib)
353{
354	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
355
356	/* For PPC32 BSS, it is important whether the binary was
357	 * prelinked.  If .plt section is NODATA, or if it contains
358	 * zeroes, then this library is not prelinked, and we need to
359	 * delay breakpoints.  */
360	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
361		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
362	else
363		/* For cases where it's irrelevant, initialize the
364		 * value to something conspicuous.  */
365		lib->arch.bss_plt_prelinked = -1;
366
367	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
368		GElf_Addr ppcgot;
369		if (load_ppcgot(lte, &ppcgot) < 0) {
370			error(0, 0, "couldn't find DT_PPC_GOT");
371			return -1;
372		}
373		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
374
375		assert (lte->relplt_size % 12 == 0);
376		size_t count = lte->relplt_size / 12; // size of RELA entry
377		lte->arch.plt_stub_vma = glink_vma
378			- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
379		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
380
381	} else if (lte->ehdr.e_machine == EM_PPC64) {
382		GElf_Addr glink_vma;
383		if (load_ppc64_glink(lte, &glink_vma) < 0) {
384			error(0, 0, "couldn't find DT_PPC64_GLINK");
385			return -1;
386		}
387
388		/* The first glink stub starts at offset 32.  */
389		lte->arch.plt_stub_vma = glink_vma + 32;
390	}
391
392	/* On PPC64, look for stub symbols in symbol table.  These are
393	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
394	if (lte->ehdr.e_machine == EM_PPC64
395	    && lte->symtab != NULL && lte->strtab != NULL) {
396
397		/* N.B. We can't simply skip the symbols that we fail
398		 * to read or malloc.  There may be more than one stub
399		 * per symbol name, and if we failed in one but
400		 * succeeded in another, the PLT enabling code would
401		 * have no way to tell that something is missing.  We
402		 * could work around that, of course, but it doesn't
403		 * seem worth the trouble.  So if anything fails, we
404		 * just pretend that we don't have stub symbols at
405		 * all, as if the binary is stripped.  */
406
407		size_t i;
408		for (i = 0; i < lte->symtab_count; ++i) {
409			GElf_Sym sym;
410			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
411				struct library_symbol *sym, *next;
412			fail:
413				for (sym = lte->arch.stubs; sym != NULL; ) {
414					next = sym->next;
415					library_symbol_destroy(sym);
416					free(sym);
417					sym = next;
418				}
419				lte->arch.stubs = NULL;
420				break;
421			}
422
423			const char *name = lte->strtab + sym.st_name;
424
425#define STUBN ".plt_call."
426			if ((name = strstr(name, STUBN)) == NULL)
427				continue;
428			name += sizeof(STUBN) - 1;
429#undef STUBN
430
431			size_t len;
432			const char *ver = strchr(name, '@');
433			if (ver != NULL) {
434				len = ver - name;
435
436			} else {
437				/* If there is "+" at all, check that
438				 * the symbol name ends in "+0".  */
439				const char *add = strrchr(name, '+');
440				if (add != NULL) {
441					assert(strcmp(add, "+0") == 0);
442					len = add - name;
443				} else {
444					len = strlen(name);
445				}
446			}
447
448			char *sym_name = strndup(name, len);
449			struct library_symbol *libsym = malloc(sizeof(*libsym));
450			if (sym_name == NULL || libsym == NULL) {
451			fail2:
452				free(sym_name);
453				free(libsym);
454				goto fail;
455			}
456
457			/* XXX The double cast should be removed when
458			 * target_address_t becomes integral type.  */
459			target_address_t addr = (target_address_t)
460				(uintptr_t)sym.st_value + lte->bias;
461			if (library_symbol_init(libsym, addr, sym_name, 1,
462						LS_TOPLT_EXEC) < 0)
463				goto fail2;
464			libsym->arch.type = PPC64_PLT_STUB;
465			libsym->next = lte->arch.stubs;
466			lte->arch.stubs = libsym;
467		}
468	}
469
470	return 0;
471}
472
473static int
474read_plt_slot_value(struct Process *proc, GElf_Addr addr, GElf_Addr *valp)
475{
476	/* On PPC64, we read from .plt, which contains 8 byte
477	 * addresses.  On PPC32 we read from .plt, which contains 4
478	 * byte instructions, but the PLT is two instructions, and
479	 * either can change.  */
480	uint64_t l;
481	/* XXX double cast.  */
482	if (read_target_8(proc, (target_address_t)(uintptr_t)addr, &l) < 0) {
483		error(0, errno, "ptrace .plt slot value @%#" PRIx64, addr);
484		return -1;
485	}
486
487	*valp = (GElf_Addr)l;
488	return 0;
489}
490
491static int
492unresolve_plt_slot(struct Process *proc, GElf_Addr addr, GElf_Addr value)
493{
494	/* We only modify plt_entry[0], which holds the resolved
495	 * address of the routine.  We keep the TOC and environment
496	 * pointers intact.  Hence the only adjustment that we need to
497	 * do is to IP.  */
498	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
499		error(0, errno, "unresolve .plt slot");
500		return -1;
501	}
502	return 0;
503}
504
505static void
506mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
507{
508	libsym->arch.type = PPC_PLT_RESOLVED;
509	libsym->arch.resolved_value = value;
510}
511
512enum plt_status
513arch_elf_add_plt_entry(struct Process *proc, struct ltelf *lte,
514		       const char *a_name, GElf_Rela *rela, size_t ndx,
515		       struct library_symbol **ret)
516{
517	if (lte->ehdr.e_machine == EM_PPC)
518		return plt_default;
519
520	/* PPC64.  If we have stubs, we return a chain of breakpoint
521	 * sites, one for each stub that corresponds to this PLT
522	 * entry.  */
523	struct library_symbol *chain = NULL;
524	struct library_symbol **symp;
525	for (symp = &lte->arch.stubs; *symp != NULL; ) {
526		struct library_symbol *sym = *symp;
527		if (strcmp(sym->name, a_name) != 0) {
528			symp = &(*symp)->next;
529			continue;
530		}
531
532		/* Re-chain the symbol from stubs to CHAIN.  */
533		*symp = sym->next;
534		sym->next = chain;
535		chain = sym;
536	}
537
538	if (chain != NULL) {
539		*ret = chain;
540		return plt_ok;
541	}
542
543	/* We don't have stub symbols.  Find corresponding .plt slot,
544	 * and check whether it contains the corresponding PLT address
545	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
546	 * want read this from ELF file, but from process image.  That
547	 * makes a difference if we are attaching to a running
548	 * process.  */
549
550	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
551	GElf_Addr plt_slot_addr = rela->r_offset;
552	assert(plt_slot_addr >= lte->plt_addr
553	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
554
555	GElf_Addr plt_slot_value;
556	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
557		return plt_fail;
558
559	char *name = strdup(a_name);
560	struct library_symbol *libsym = malloc(sizeof(*libsym));
561	if (name == NULL || libsym == NULL) {
562		error(0, errno, "allocation for .plt slot");
563	fail:
564		free(name);
565		free(libsym);
566		return plt_fail;
567	}
568
569	/* XXX The double cast should be removed when
570	 * target_address_t becomes integral type.  */
571	if (library_symbol_init(libsym,
572				(target_address_t)(uintptr_t)plt_entry_addr,
573				name, 1, LS_TOPLT_EXEC) < 0)
574		goto fail;
575	libsym->arch.plt_slot_addr = plt_slot_addr;
576
577	if (plt_slot_value == plt_entry_addr || plt_slot_value == 0) {
578		libsym->arch.type = PPC_PLT_UNRESOLVED;
579		libsym->arch.resolved_value = plt_entry_addr;
580
581	} else {
582		/* Unresolve the .plt slot.  If the binary was
583		 * prelinked, this makes the code invalid, because in
584		 * case of prelinked binary, the dynamic linker
585		 * doesn't update .plt[0] and .plt[1] with addresses
586		 * of the resover.  But we don't care, we will never
587		 * need to enter the resolver.  That just means that
588		 * we have to un-un-resolve this back before we
589		 * detach.  */
590
591		if (unresolve_plt_slot(proc, plt_slot_addr, plt_entry_addr) < 0) {
592			library_symbol_destroy(libsym);
593			goto fail;
594		}
595		mark_as_resolved(libsym, plt_slot_value);
596	}
597
598	*ret = libsym;
599	return plt_ok;
600}
601
602void
603arch_elf_destroy(struct ltelf *lte)
604{
605	struct library_symbol *sym;
606	for (sym = lte->arch.stubs; sym != NULL; ) {
607		struct library_symbol *next = sym->next;
608		library_symbol_destroy(sym);
609		free(sym);
610		sym = next;
611	}
612}
613
614static void
615dl_plt_update_bp_on_hit(struct breakpoint *bp, struct Process *proc)
616{
617	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
618	      proc->pid, breakpoint_name(bp), bp->addr);
619	struct process_stopping_handler *self = proc->arch.handler;
620	assert(self != NULL);
621
622	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
623	GElf_Addr value;
624	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
625		return;
626
627	/* On PPC64, we rewrite the slot value.  */
628	if (proc->e_machine == EM_PPC64)
629		unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
630				   libsym->arch.resolved_value);
631	/* We mark the breakpoint as resolved on both arches.  */
632	mark_as_resolved(libsym, value);
633
634	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
635	 * to check that this was run.  It's an error if it
636	 * wasn't.  */
637	proc->arch.handler = NULL;
638
639	breakpoint_turn_off(bp, proc);
640}
641
642static void
643cb_on_all_stopped(struct process_stopping_handler *self)
644{
645	/* Put that in for dl_plt_update_bp_on_hit to see.  */
646	assert(self->task_enabling_breakpoint->arch.handler == NULL);
647	self->task_enabling_breakpoint->arch.handler = self;
648
649	linux_ptrace_disable_and_continue(self);
650}
651
652static enum callback_status
653cb_keep_stepping_p(struct process_stopping_handler *self)
654{
655	struct Process *proc = self->task_enabling_breakpoint;
656	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
657
658	GElf_Addr value;
659	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
660		return CBS_FAIL;
661
662	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
663	 * the PLT entry value.  */
664	if (value == libsym->arch.resolved_value)
665		return CBS_CONT;
666
667	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
668	      proc->pid, value);
669
670	/* The .plt slot got resolved!  We can migrate the breakpoint
671	 * to RESOLVED and stop single-stepping.  */
672	if (proc->e_machine == EM_PPC64
673	    && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
674				  libsym->arch.resolved_value) < 0)
675		return CBS_FAIL;
676
677	/* Resolving on PPC64 consists of overwriting a doubleword in
678	 * .plt.  That doubleword is than read back by a stub, and
679	 * jumped on.  Hopefully we can assume that double word update
680	 * is done on a single place only, as it contains a final
681	 * address.  We still need to look around for any sync
682	 * instruction, but essentially it is safe to optimize away
683	 * the single stepping next time and install a post-update
684	 * breakpoint.
685	 *
686	 * The situation on PPC32 BSS is more complicated.  The
687	 * dynamic linker here updates potentially several
688	 * instructions (XXX currently we assume two) and the rules
689	 * are more complicated.  Sometimes it's enough to adjust just
690	 * one of the addresses--the logic for generating optimal
691	 * dispatch depends on relative addresses of the .plt entry
692	 * and the jump destination.  We can't assume that the some
693	 * instruction block does the update every time.  So on PPC32,
694	 * we turn the optimization off and just step through it each
695	 * time.  */
696	if (proc->e_machine == EM_PPC)
697		goto done;
698
699	/* Install breakpoint to the address where the change takes
700	 * place.  If we fail, then that just means that we'll have to
701	 * singlestep the next time around as well.  */
702	struct Process *leader = proc->leader;
703	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
704		goto done;
705
706	/* We need to install to the next instruction.  ADDR points to
707	 * a store instruction, so moving the breakpoint one
708	 * instruction forward is safe.  */
709	target_address_t addr = get_instruction_pointer(proc) + 4;
710	leader->arch.dl_plt_update_bp = insert_breakpoint(proc, addr, NULL);
711	if (leader->arch.dl_plt_update_bp == NULL)
712		goto done;
713
714	static struct bp_callbacks dl_plt_update_cbs = {
715		.on_hit = dl_plt_update_bp_on_hit,
716	};
717	leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
718
719	/* Turn it off for now.  We will turn it on again when we hit
720	 * the PLT entry that needs this.  */
721	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
722
723done:
724	mark_as_resolved(libsym, value);
725
726	return CBS_STOP;
727}
728
729static void
730ppc_plt_bp_continue(struct breakpoint *bp, struct Process *proc)
731{
732	switch (bp->libsym->arch.type) {
733		target_address_t rv;
734		struct Process *leader;
735		void (*on_all_stopped)(struct process_stopping_handler *);
736		enum callback_status (*keep_stepping_p)
737			(struct process_stopping_handler *);
738
739	case PPC_DEFAULT:
740		assert(proc->e_machine == EM_PPC);
741		assert(bp->libsym != NULL);
742		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
743		/* fall-through */
744
745	case PPC_PLT_UNRESOLVED:
746		on_all_stopped = NULL;
747		keep_stepping_p = NULL;
748		leader = proc->leader;
749
750		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
751		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
752					  proc) >= 0)
753			on_all_stopped = cb_on_all_stopped;
754		else
755			keep_stepping_p = cb_keep_stepping_p;
756
757		if (process_install_stopping_handler
758		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
759			error(0, 0, "ppc_plt_bp_continue: couldn't install"
760			      " event handler");
761			continue_after_breakpoint(proc, bp);
762		}
763		return;
764
765	case PPC_PLT_RESOLVED:
766		if (proc->e_machine == EM_PPC) {
767			continue_after_breakpoint(proc, bp);
768			return;
769		}
770
771		/* XXX The double cast should be removed when
772		 * target_address_t becomes integral type.  */
773		rv = (target_address_t)
774			(uintptr_t)bp->libsym->arch.resolved_value;
775		set_instruction_pointer(proc, rv);
776		continue_process(proc->pid);
777		return;
778
779	case PPC64_PLT_STUB:
780		/* These should never hit here.  */
781		break;
782	}
783
784	assert(bp->libsym->arch.type != bp->libsym->arch.type);
785	abort();
786}
787
788void
789arch_library_init(struct library *lib)
790{
791}
792
793void
794arch_library_destroy(struct library *lib)
795{
796}
797
798void
799arch_library_clone(struct library *retp, struct library *lib)
800{
801}
802
803int
804arch_library_symbol_init(struct library_symbol *libsym)
805{
806	/* We set type explicitly in the code above, where we have the
807	 * necessary context.  This is for calls from ltrace-elf.c and
808	 * such.  */
809	libsym->arch.type = PPC_DEFAULT;
810	return 0;
811}
812
813void
814arch_library_symbol_destroy(struct library_symbol *libsym)
815{
816}
817
818int
819arch_library_symbol_clone(struct library_symbol *retp,
820			  struct library_symbol *libsym)
821{
822	retp->arch = libsym->arch;
823	return 0;
824}
825
826/* For some symbol types, we need to set up custom callbacks.  XXX we
827 * don't need PROC here, we can store the data in BP if it is of
828 * interest to us.  */
829int
830arch_breakpoint_init(struct Process *proc, struct breakpoint *bp)
831{
832	/* Artificial and entry-point breakpoints are plain.  */
833	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
834		return 0;
835
836	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
837	if (proc->e_machine == EM_PPC
838	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
839		return 0;
840
841	/* On PPC64, stub PLT breakpoints are plain.  */
842	if (proc->e_machine == EM_PPC64
843	    && bp->libsym->arch.type == PPC64_PLT_STUB)
844		return 0;
845
846	static struct bp_callbacks cbs = {
847		.on_continue = ppc_plt_bp_continue,
848	};
849	breakpoint_set_callbacks(bp, &cbs);
850	return 0;
851}
852
853void
854arch_breakpoint_destroy(struct breakpoint *bp)
855{
856}
857
858int
859arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
860{
861	retp->arch = sbp->arch;
862	return 0;
863}
864
865int
866arch_process_init(struct Process *proc)
867{
868	proc->arch.dl_plt_update_bp = NULL;
869	proc->arch.handler = NULL;
870	return 0;
871}
872
873void
874arch_process_destroy(struct Process *proc)
875{
876}
877
878int
879arch_process_clone(struct Process *retp, struct Process *proc)
880{
881	retp->arch = proc->arch;
882	return 0;
883}
884
885int
886arch_process_exec(struct Process *proc)
887{
888	return arch_process_init(proc);
889}
890