plt.c revision b8deb4d589d57c49d510b1b463b3904cb4964557
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2012 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2004,2008,2009 Juan Cespedes
5 * Copyright (C) 2006 Paul Gilliam
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23#include <gelf.h>
24#include <sys/ptrace.h>
25#include <errno.h>
26#include <error.h>
27#include <inttypes.h>
28#include <assert.h>
29#include <string.h>
30
31#include "proc.h"
32#include "common.h"
33#include "library.h"
34#include "breakpoint.h"
35#include "linux-gnu/trace.h"
36#include "backend.h"
37
38/* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
39 * new-style "secure" PLT.  We can tell one from the other by the
40 * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
41 * otherwise it's secure.
42 *
43 * BSS PLT works the same way as most architectures: the .plt section
44 * contains trampolines and we put breakpoints to those.  If not
45 * prelinked, .plt contains zeroes, and dynamic linker fills in the
46 * initial set of trampolines, which means that we need to delay
47 * enabling breakpoints until after binary entry point is hit.
48 * Additionally, after first call, dynamic linker updates .plt with
49 * branch to resolved address.  That means that on first hit, we must
50 * do something similar to the PPC64 gambit described below.
51 *
52 * With secure PLT, the .plt section doesn't contain instructions but
53 * addresses.  The real PLT table is stored in .text.  Addresses of
54 * those PLT entries can be computed, and apart from the fact that
55 * they are in .text, they are ordinary PLT entries.
56 *
57 * 64-bit PPC is more involved.  Program linker creates for each
58 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
59 * (where xxxxxxxx is a hexadecimal number).  That stub does the call
60 * dispatch: it loads an address of a function to call from the
61 * section .plt, and branches.  PLT entries themselves are essentially
62 * a curried call to the resolver.  When the symbol is resolved, the
63 * resolver updates the value stored in .plt, and the next time
64 * around, the stub calls the library function directly.  So we make
65 * at most one trip (none if the binary is prelinked) through each PLT
66 * entry, and correspondingly that is useless as a breakpoint site.
67 *
68 * Note the three confusing terms: stubs (that play the role of PLT
69 * entries), PLT entries, .plt section.
70 *
71 * We first check symbol tables and see if we happen to have stub
72 * symbols available.  If yes we just put breakpoints to those, and
73 * treat them as usual breakpoints.  The only tricky part is realizing
74 * that there can be more than one breakpoint per symbol.
75 *
76 * The case that we don't have the stub symbols available is harder.
77 * The following scheme uses two kinds of PLT breakpoints: unresolved
78 * and resolved (to some address).  When the process starts (or when
79 * we attach), we distribute unresolved PLT breakpoints to the PLT
80 * entries (not stubs).  Then we look in .plt, and for each entry
81 * whose value is different than the corresponding PLT entry address,
82 * we assume it was already resolved, and convert the breakpoint to
83 * resolved.  We also rewrite the resolved value in .plt back to the
84 * PLT address.
85 *
86 * When a PLT entry hits a resolved breakpoint (which happens because
87 * we rewrite .plt with the original unresolved addresses), we move
88 * the instruction pointer to the corresponding address and continue
89 * the process as if nothing happened.
90 *
91 * When unresolved PLT entry is called for the first time, we need to
92 * catch the new value that the resolver will write to a .plt slot.
93 * We also need to prevent another thread from racing through and
94 * taking the branch without ltrace noticing.  So when unresolved PLT
95 * entry hits, we have to stop all threads.  We then single-step
96 * through the resolver, until the .plt slot changes.  When it does,
97 * we treat it the same way as above: convert the PLT breakpoint to
98 * resolved, and rewrite the .plt value back to PLT address.  We then
99 * start all threads again.
100 *
101 * As an optimization, we remember the address where the address was
102 * resolved, and put a breakpoint there.  The next time around (when
103 * the next PLT entry is to be resolved), instead of single-stepping
104 * through half the dynamic linker, we just let the thread run and hit
105 * this breakpoint.  When it hits, we know the PLT entry was resolved.
106 *
107 * XXX TODO If we have hardware watch point, we might put a read watch
108 * on .plt slot, and discover the offenders this way.  I don't know
109 * the details, but I assume at most a handful (like, one or two, if
110 * available at all) addresses may be watched at a time, and thus this
111 * would be used as an amendment of the above rather than full-on
112 * solution to PLT tracing on PPC.
113 */
114
115#define PPC_PLT_STUB_SIZE 16
116#define PPC64_PLT_STUB_SIZE 8 //xxx
117
118static inline int
119host_powerpc64()
120{
121#ifdef __powerpc64__
122	return 1;
123#else
124	return 0;
125#endif
126}
127
128int
129read_target_4(struct Process *proc, arch_addr_t addr, uint32_t *lp)
130{
131	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
132	if (l == -1UL && errno)
133		return -1;
134#ifdef __powerpc64__
135	l >>= 32;
136#endif
137	*lp = l;
138	return 0;
139}
140
141static int
142read_target_8(struct Process *proc, arch_addr_t addr, uint64_t *lp)
143{
144	unsigned long l = ptrace(PTRACE_PEEKTEXT, proc->pid, addr, 0);
145	if (l == -1UL && errno)
146		return -1;
147	if (host_powerpc64()) {
148		*lp = l;
149	} else {
150		unsigned long l2 = ptrace(PTRACE_PEEKTEXT, proc->pid,
151					  addr + 4, 0);
152		if (l2 == -1UL && errno)
153			return -1;
154		*lp = ((uint64_t)l << 32) | l2;
155	}
156	return 0;
157}
158
159int
160read_target_long(struct Process *proc, arch_addr_t addr, uint64_t *lp)
161{
162	if (proc->e_machine == EM_PPC) {
163		uint32_t w;
164		int ret = read_target_4(proc, addr, &w);
165		if (ret >= 0)
166			*lp = (uint64_t)w;
167		return ret;
168	} else {
169		return read_target_8(proc, addr, lp);
170	}
171}
172
173static enum callback_status
174activate_delayed(struct library_symbol *libsym, void *data)
175{
176	struct Process *proc = data;
177	if (libsym->delayed) {
178		if (read_target_8(proc, libsym->enter_addr,
179				  &libsym->arch.resolved_value) < 0) {
180			error(0, errno, "couldn't read PLT value for %s(%p)",
181			      libsym->name, libsym->enter_addr);
182			return CBS_FAIL;
183		}
184
185		if (proc_activate_delayed_symbol(proc, libsym) < 0)
186			return CBS_FAIL;
187		/* XXX double cast  */
188		libsym->arch.plt_slot_addr
189			= (GElf_Addr)(uintptr_t)libsym->enter_addr;
190	}
191	return CBS_CONT;
192}
193
194void
195arch_dynlink_done(struct Process *proc)
196{
197	proc_each_symbol(proc, NULL, activate_delayed, proc);
198}
199
200GElf_Addr
201arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
202{
203	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
204		assert(lte->arch.plt_stub_vma != 0);
205		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
206
207	} else if (lte->ehdr.e_machine == EM_PPC) {
208		return rela->r_offset;
209
210	} else {
211		/* If we get here, we don't have stub symbols.  In
212		 * that case we put brakpoints to PLT entries the same
213		 * as the PPC32 secure PLT case does.  */
214		assert(lte->arch.plt_stub_vma != 0);
215		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
216	}
217}
218
219/* This entry point is called when ltelf is not available
220 * anymore--during runtime.  At that point we don't have to concern
221 * ourselves with bias, as the values in OPD have been resolved
222 * already.  */
223int
224arch_translate_address_dyn(struct Process *proc,
225			   arch_addr_t addr, arch_addr_t *ret)
226{
227	if (proc->e_machine == EM_PPC64) {
228		uint64_t value;
229		if (read_target_8(proc, addr, &value) < 0) {
230			error(0, errno, "dynamic .opd translation of %p", addr);
231			return -1;
232		}
233		/* XXX The double cast should be removed when
234		 * arch_addr_t becomes integral type.  */
235		*ret = (arch_addr_t)(uintptr_t)value;
236		return 0;
237	}
238
239	*ret = addr;
240	return 0;
241}
242
243int
244arch_translate_address(struct ltelf *lte,
245		       arch_addr_t addr, arch_addr_t *ret)
246{
247	if (lte->ehdr.e_machine == EM_PPC64) {
248		/* XXX The double cast should be removed when
249		 * arch_addr_t becomes integral type.  */
250		GElf_Xword offset
251			= (GElf_Addr)(uintptr_t)addr - lte->arch.opd_base;
252		uint64_t value;
253		if (elf_read_u64(lte->arch.opd_data, offset, &value) < 0) {
254			error(0, 0, "static .opd translation of %p: %s", addr,
255			      elf_errmsg(-1));
256			return -1;
257		}
258		*ret = (arch_addr_t)(uintptr_t)(value + lte->bias);
259		return 0;
260	}
261
262	*ret = addr;
263	return 0;
264}
265
266static int
267load_opd_data(struct ltelf *lte, struct library *lib)
268{
269	Elf_Scn *sec;
270	GElf_Shdr shdr;
271	if (elf_get_section_named(lte, ".opd", &sec, &shdr) < 0) {
272	fail:
273		fprintf(stderr, "couldn't find .opd data\n");
274		return -1;
275	}
276
277	lte->arch.opd_data = elf_rawdata(sec, NULL);
278	if (lte->arch.opd_data == NULL)
279		goto fail;
280
281	lte->arch.opd_base = shdr.sh_addr + lte->bias;
282	lte->arch.opd_size = shdr.sh_size;
283
284	return 0;
285}
286
287void *
288sym2addr(struct Process *proc, struct library_symbol *sym)
289{
290	return sym->enter_addr;
291}
292
293static GElf_Addr
294get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
295{
296	Elf_Scn *ppcgot_sec = NULL;
297	GElf_Shdr ppcgot_shdr;
298	if (ppcgot != 0
299	    && elf_get_section_covering(lte, ppcgot,
300					&ppcgot_sec, &ppcgot_shdr) < 0)
301		error(0, 0, "DT_PPC_GOT=%#"PRIx64", but no such section found",
302		      ppcgot);
303
304	if (ppcgot_sec != NULL) {
305		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
306		if (data == NULL || data->d_size < 8 ) {
307			error(0, 0, "couldn't read GOT data");
308		} else {
309			// where PPCGOT begins in .got
310			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
311			assert(offset % 4 == 0);
312			uint32_t glink_vma;
313			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
314				error(0, 0, "couldn't read glink VMA address"
315				      " at %zd@GOT", offset);
316				return 0;
317			}
318			if (glink_vma != 0) {
319				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
320				      glink_vma);
321				return (GElf_Addr)glink_vma;
322			}
323		}
324	}
325
326	if (plt_data != NULL) {
327		uint32_t glink_vma;
328		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
329			error(0, 0, "couldn't read glink VMA address");
330			return 0;
331		}
332		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
333		return (GElf_Addr)glink_vma;
334	}
335
336	return 0;
337}
338
339static int
340load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep)
341{
342	Elf_Scn *scn;
343	GElf_Shdr shdr;
344	if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
345	    || scn == NULL) {
346	fail:
347		error(0, 0, "Couldn't get SHT_DYNAMIC: %s",
348		      elf_errmsg(-1));
349		return -1;
350	}
351
352	Elf_Data *data = elf_loaddata(scn, &shdr);
353	if (data == NULL)
354		goto fail;
355
356	size_t j;
357	for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
358		GElf_Dyn dyn;
359		if (gelf_getdyn(data, j, &dyn) == NULL)
360			goto fail;
361
362		if(dyn.d_tag == tag) {
363			*valuep = dyn.d_un.d_ptr;
364			return 0;
365		}
366	}
367
368	return -1;
369}
370
371static int
372load_ppcgot(struct ltelf *lte, GElf_Addr *ppcgotp)
373{
374	return load_dynamic_entry(lte, DT_PPC_GOT, ppcgotp);
375}
376
377static int
378load_ppc64_glink(struct ltelf *lte, GElf_Addr *glinkp)
379{
380	return load_dynamic_entry(lte, DT_PPC64_GLINK, glinkp);
381}
382
383static int
384nonzero_data(Elf_Data *data)
385{
386	/* We are not supposed to get here if there's no PLT.  */
387	assert(data != NULL);
388
389	unsigned char *buf = data->d_buf;
390	if (buf == NULL)
391		return 0;
392
393	size_t i;
394	for (i = 0; i < data->d_size; ++i)
395		if (buf[i] != 0)
396			return 1;
397	return 0;
398}
399
400int
401arch_elf_init(struct ltelf *lte, struct library *lib)
402{
403	if (lte->ehdr.e_machine == EM_PPC64
404	    && load_opd_data(lte, lib) < 0)
405		return -1;
406
407	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
408
409	/* For PPC32 BSS, it is important whether the binary was
410	 * prelinked.  If .plt section is NODATA, or if it contains
411	 * zeroes, then this library is not prelinked, and we need to
412	 * delay breakpoints.  */
413	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
414		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
415	else
416		/* For cases where it's irrelevant, initialize the
417		 * value to something conspicuous.  */
418		lib->arch.bss_plt_prelinked = -1;
419
420	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
421		GElf_Addr ppcgot;
422		if (load_ppcgot(lte, &ppcgot) < 0) {
423			error(0, 0, "couldn't find DT_PPC_GOT");
424			return -1;
425		}
426		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
427
428		assert (lte->relplt_size % 12 == 0);
429		size_t count = lte->relplt_size / 12; // size of RELA entry
430		lte->arch.plt_stub_vma = glink_vma
431			- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
432		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
433
434	} else if (lte->ehdr.e_machine == EM_PPC64) {
435		GElf_Addr glink_vma;
436		if (load_ppc64_glink(lte, &glink_vma) < 0) {
437			error(0, 0, "couldn't find DT_PPC64_GLINK");
438			return -1;
439		}
440
441		/* The first glink stub starts at offset 32.  */
442		lte->arch.plt_stub_vma = glink_vma + 32;
443	}
444
445	/* On PPC64, look for stub symbols in symbol table.  These are
446	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
447	if (lte->ehdr.e_machine == EM_PPC64
448	    && lte->symtab != NULL && lte->strtab != NULL) {
449
450		/* N.B. We can't simply skip the symbols that we fail
451		 * to read or malloc.  There may be more than one stub
452		 * per symbol name, and if we failed in one but
453		 * succeeded in another, the PLT enabling code would
454		 * have no way to tell that something is missing.  We
455		 * could work around that, of course, but it doesn't
456		 * seem worth the trouble.  So if anything fails, we
457		 * just pretend that we don't have stub symbols at
458		 * all, as if the binary is stripped.  */
459
460		size_t i;
461		for (i = 0; i < lte->symtab_count; ++i) {
462			GElf_Sym sym;
463			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
464				struct library_symbol *sym, *next;
465			fail:
466				for (sym = lte->arch.stubs; sym != NULL; ) {
467					next = sym->next;
468					library_symbol_destroy(sym);
469					free(sym);
470					sym = next;
471				}
472				lte->arch.stubs = NULL;
473				break;
474			}
475
476			const char *name = lte->strtab + sym.st_name;
477
478#define STUBN ".plt_call."
479			if ((name = strstr(name, STUBN)) == NULL)
480				continue;
481			name += sizeof(STUBN) - 1;
482#undef STUBN
483
484			size_t len;
485			const char *ver = strchr(name, '@');
486			if (ver != NULL) {
487				len = ver - name;
488
489			} else {
490				/* If there is "+" at all, check that
491				 * the symbol name ends in "+0".  */
492				const char *add = strrchr(name, '+');
493				if (add != NULL) {
494					assert(strcmp(add, "+0") == 0);
495					len = add - name;
496				} else {
497					len = strlen(name);
498				}
499			}
500
501			char *sym_name = strndup(name, len);
502			struct library_symbol *libsym = malloc(sizeof(*libsym));
503			if (sym_name == NULL || libsym == NULL) {
504			fail2:
505				free(sym_name);
506				free(libsym);
507				goto fail;
508			}
509
510			/* XXX The double cast should be removed when
511			 * arch_addr_t becomes integral type.  */
512			arch_addr_t addr = (arch_addr_t)
513				(uintptr_t)sym.st_value + lte->bias;
514			if (library_symbol_init(libsym, addr, sym_name, 1,
515						LS_TOPLT_EXEC) < 0)
516				goto fail2;
517			libsym->arch.type = PPC64_PLT_STUB;
518			libsym->next = lte->arch.stubs;
519			lte->arch.stubs = libsym;
520		}
521	}
522
523	return 0;
524}
525
526static int
527read_plt_slot_value(struct Process *proc, GElf_Addr addr, GElf_Addr *valp)
528{
529	/* On PPC64, we read from .plt, which contains 8 byte
530	 * addresses.  On PPC32 we read from .plt, which contains 4
531	 * byte instructions, but the PLT is two instructions, and
532	 * either can change.  */
533	uint64_t l;
534	/* XXX double cast.  */
535	if (read_target_8(proc, (arch_addr_t)(uintptr_t)addr, &l) < 0) {
536		error(0, errno, "ptrace .plt slot value @%#" PRIx64, addr);
537		return -1;
538	}
539
540	*valp = (GElf_Addr)l;
541	return 0;
542}
543
544static int
545unresolve_plt_slot(struct Process *proc, GElf_Addr addr, GElf_Addr value)
546{
547	/* We only modify plt_entry[0], which holds the resolved
548	 * address of the routine.  We keep the TOC and environment
549	 * pointers intact.  Hence the only adjustment that we need to
550	 * do is to IP.  */
551	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
552		error(0, errno, "unresolve .plt slot");
553		return -1;
554	}
555	return 0;
556}
557
558static void
559mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
560{
561	libsym->arch.type = PPC_PLT_RESOLVED;
562	libsym->arch.resolved_value = value;
563}
564
565enum plt_status
566arch_elf_add_plt_entry(struct Process *proc, struct ltelf *lte,
567		       const char *a_name, GElf_Rela *rela, size_t ndx,
568		       struct library_symbol **ret)
569{
570	if (lte->ehdr.e_machine == EM_PPC) {
571		if (lte->arch.secure_plt)
572			return plt_default;
573
574		struct library_symbol *libsym = NULL;
575		if (default_elf_add_plt_entry(proc, lte, a_name, rela, ndx,
576					      &libsym) < 0)
577			return plt_fail;
578
579		/* On PPC32 with BSS PLT, delay the symbol until
580		 * dynamic linker is done.  */
581		assert(!libsym->delayed);
582		libsym->delayed = 1;
583
584		*ret = libsym;
585		return plt_ok;
586	}
587
588	/* PPC64.  If we have stubs, we return a chain of breakpoint
589	 * sites, one for each stub that corresponds to this PLT
590	 * entry.  */
591	struct library_symbol *chain = NULL;
592	struct library_symbol **symp;
593	for (symp = &lte->arch.stubs; *symp != NULL; ) {
594		struct library_symbol *sym = *symp;
595		if (strcmp(sym->name, a_name) != 0) {
596			symp = &(*symp)->next;
597			continue;
598		}
599
600		/* Re-chain the symbol from stubs to CHAIN.  */
601		*symp = sym->next;
602		sym->next = chain;
603		chain = sym;
604	}
605
606	if (chain != NULL) {
607		*ret = chain;
608		return plt_ok;
609	}
610
611	/* We don't have stub symbols.  Find corresponding .plt slot,
612	 * and check whether it contains the corresponding PLT address
613	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
614	 * want read this from ELF file, but from process image.  That
615	 * makes a difference if we are attaching to a running
616	 * process.  */
617
618	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
619	GElf_Addr plt_slot_addr = rela->r_offset;
620	assert(plt_slot_addr >= lte->plt_addr
621	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
622
623	GElf_Addr plt_slot_value;
624	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0)
625		return plt_fail;
626
627	char *name = strdup(a_name);
628	struct library_symbol *libsym = malloc(sizeof(*libsym));
629	if (name == NULL || libsym == NULL) {
630		error(0, errno, "allocation for .plt slot");
631	fail:
632		free(name);
633		free(libsym);
634		return plt_fail;
635	}
636
637	/* XXX The double cast should be removed when
638	 * arch_addr_t becomes integral type.  */
639	if (library_symbol_init(libsym,
640				(arch_addr_t)(uintptr_t)plt_entry_addr,
641				name, 1, LS_TOPLT_EXEC) < 0)
642		goto fail;
643	libsym->arch.plt_slot_addr = plt_slot_addr;
644
645	if (plt_slot_value == plt_entry_addr || plt_slot_value == 0) {
646		libsym->arch.type = PPC_PLT_UNRESOLVED;
647		libsym->arch.resolved_value = plt_entry_addr;
648
649	} else {
650		/* Unresolve the .plt slot.  If the binary was
651		 * prelinked, this makes the code invalid, because in
652		 * case of prelinked binary, the dynamic linker
653		 * doesn't update .plt[0] and .plt[1] with addresses
654		 * of the resover.  But we don't care, we will never
655		 * need to enter the resolver.  That just means that
656		 * we have to un-un-resolve this back before we
657		 * detach.  */
658
659		if (unresolve_plt_slot(proc, plt_slot_addr, plt_entry_addr) < 0) {
660			library_symbol_destroy(libsym);
661			goto fail;
662		}
663		mark_as_resolved(libsym, plt_slot_value);
664	}
665
666	*ret = libsym;
667	return plt_ok;
668}
669
670void
671arch_elf_destroy(struct ltelf *lte)
672{
673	struct library_symbol *sym;
674	for (sym = lte->arch.stubs; sym != NULL; ) {
675		struct library_symbol *next = sym->next;
676		library_symbol_destroy(sym);
677		free(sym);
678		sym = next;
679	}
680}
681
682static void
683dl_plt_update_bp_on_hit(struct breakpoint *bp, struct Process *proc)
684{
685	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
686	      proc->pid, breakpoint_name(bp), bp->addr);
687	struct process_stopping_handler *self = proc->arch.handler;
688	assert(self != NULL);
689
690	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
691	GElf_Addr value;
692	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
693		return;
694
695	/* On PPC64, we rewrite the slot value.  */
696	if (proc->e_machine == EM_PPC64)
697		unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
698				   libsym->arch.resolved_value);
699	/* We mark the breakpoint as resolved on both arches.  */
700	mark_as_resolved(libsym, value);
701
702	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
703	 * to check that this was run.  It's an error if it
704	 * wasn't.  */
705	proc->arch.handler = NULL;
706
707	breakpoint_turn_off(bp, proc);
708}
709
710static void
711cb_on_all_stopped(struct process_stopping_handler *self)
712{
713	/* Put that in for dl_plt_update_bp_on_hit to see.  */
714	assert(self->task_enabling_breakpoint->arch.handler == NULL);
715	self->task_enabling_breakpoint->arch.handler = self;
716
717	linux_ptrace_disable_and_continue(self);
718}
719
720static enum callback_status
721cb_keep_stepping_p(struct process_stopping_handler *self)
722{
723	struct Process *proc = self->task_enabling_breakpoint;
724	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
725
726	GElf_Addr value;
727	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
728		return CBS_FAIL;
729
730	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
731	 * the PLT entry value.  */
732	if (value == libsym->arch.resolved_value)
733		return CBS_CONT;
734
735	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
736	      proc->pid, value);
737
738	/* The .plt slot got resolved!  We can migrate the breakpoint
739	 * to RESOLVED and stop single-stepping.  */
740	if (proc->e_machine == EM_PPC64
741	    && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
742				  libsym->arch.resolved_value) < 0)
743		return CBS_FAIL;
744
745	/* Resolving on PPC64 consists of overwriting a doubleword in
746	 * .plt.  That doubleword is than read back by a stub, and
747	 * jumped on.  Hopefully we can assume that double word update
748	 * is done on a single place only, as it contains a final
749	 * address.  We still need to look around for any sync
750	 * instruction, but essentially it is safe to optimize away
751	 * the single stepping next time and install a post-update
752	 * breakpoint.
753	 *
754	 * The situation on PPC32 BSS is more complicated.  The
755	 * dynamic linker here updates potentially several
756	 * instructions (XXX currently we assume two) and the rules
757	 * are more complicated.  Sometimes it's enough to adjust just
758	 * one of the addresses--the logic for generating optimal
759	 * dispatch depends on relative addresses of the .plt entry
760	 * and the jump destination.  We can't assume that the some
761	 * instruction block does the update every time.  So on PPC32,
762	 * we turn the optimization off and just step through it each
763	 * time.  */
764	if (proc->e_machine == EM_PPC)
765		goto done;
766
767	/* Install breakpoint to the address where the change takes
768	 * place.  If we fail, then that just means that we'll have to
769	 * singlestep the next time around as well.  */
770	struct Process *leader = proc->leader;
771	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
772		goto done;
773
774	/* We need to install to the next instruction.  ADDR points to
775	 * a store instruction, so moving the breakpoint one
776	 * instruction forward is safe.  */
777	arch_addr_t addr = get_instruction_pointer(proc) + 4;
778	leader->arch.dl_plt_update_bp = insert_breakpoint(proc, addr, NULL);
779	if (leader->arch.dl_plt_update_bp == NULL)
780		goto done;
781
782	static struct bp_callbacks dl_plt_update_cbs = {
783		.on_hit = dl_plt_update_bp_on_hit,
784	};
785	leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
786
787	/* Turn it off for now.  We will turn it on again when we hit
788	 * the PLT entry that needs this.  */
789	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
790
791done:
792	mark_as_resolved(libsym, value);
793
794	return CBS_STOP;
795}
796
797static void
798jump_to_entry_point(struct Process *proc, struct breakpoint *bp)
799{
800	/* XXX The double cast should be removed when
801	 * arch_addr_t becomes integral type.  */
802	arch_addr_t rv = (arch_addr_t)
803		(uintptr_t)bp->libsym->arch.resolved_value;
804	set_instruction_pointer(proc, rv);
805}
806
807static void
808ppc_plt_bp_continue(struct breakpoint *bp, struct Process *proc)
809{
810	switch (bp->libsym->arch.type) {
811		struct Process *leader;
812		void (*on_all_stopped)(struct process_stopping_handler *);
813		enum callback_status (*keep_stepping_p)
814			(struct process_stopping_handler *);
815
816	case PPC_DEFAULT:
817		assert(proc->e_machine == EM_PPC);
818		assert(bp->libsym != NULL);
819		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
820		/* Fall through.  */
821
822	case PPC_PLT_UNRESOLVED:
823		on_all_stopped = NULL;
824		keep_stepping_p = NULL;
825		leader = proc->leader;
826
827		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
828		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
829					  proc) >= 0)
830			on_all_stopped = cb_on_all_stopped;
831		else
832			keep_stepping_p = cb_keep_stepping_p;
833
834		if (process_install_stopping_handler
835		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
836			error(0, 0, "ppc_plt_bp_continue: couldn't install"
837			      " event handler");
838			continue_after_breakpoint(proc, bp);
839		}
840		return;
841
842	case PPC_PLT_RESOLVED:
843		if (proc->e_machine == EM_PPC) {
844			continue_after_breakpoint(proc, bp);
845			return;
846		}
847
848		jump_to_entry_point(proc, bp);
849		continue_process(proc->pid);
850		return;
851
852	case PPC64_PLT_STUB:
853		/* These should never hit here.  */
854		break;
855	}
856
857	assert(bp->libsym->arch.type != bp->libsym->arch.type);
858	abort();
859}
860
861/* When a process is in a PLT stub, it may have already read the data
862 * in .plt that we changed.  If we detach now, it will jump to PLT
863 * entry and continue to the dynamic linker, where it will SIGSEGV,
864 * because zeroth .plt slot is not filled in prelinked binaries, and
865 * the dynamic linker needs that data.  Moreover, the process may
866 * actually have hit the breakpoint already.  This functions tries to
867 * detect both cases and do any fix-ups necessary to mend this
868 * situation.  */
869static enum callback_status
870detach_task_cb(struct Process *task, void *data)
871{
872	struct breakpoint *bp = data;
873
874	if (get_instruction_pointer(task) == bp->addr) {
875		debug(DEBUG_PROCESS, "%d at %p, which is PLT slot",
876		      task->pid, bp->addr);
877		jump_to_entry_point(task, bp);
878		return CBS_CONT;
879	}
880
881	/* XXX There's still a window of several instructions where we
882	 * might catch the task inside a stub such that it has already
883	 * read destination address from .plt, but hasn't jumped yet,
884	 * thus avoiding the breakpoint.  */
885
886	return CBS_CONT;
887}
888
889static void
890ppc_plt_bp_retract(struct breakpoint *bp, struct Process *proc)
891{
892	/* On PPC64, we rewrite .plt with PLT entry addresses.  This
893	 * needs to be undone.  Unfortunately, the program may have
894	 * made decisions based on that value */
895	if (proc->e_machine == EM_PPC64
896	    && bp->libsym != NULL
897	    && bp->libsym->arch.type == PPC_PLT_RESOLVED) {
898		each_task(proc->leader, NULL, detach_task_cb, bp);
899		unresolve_plt_slot(proc, bp->libsym->arch.plt_slot_addr,
900				   bp->libsym->arch.resolved_value);
901	}
902}
903
904void
905arch_library_init(struct library *lib)
906{
907}
908
909void
910arch_library_destroy(struct library *lib)
911{
912}
913
914void
915arch_library_clone(struct library *retp, struct library *lib)
916{
917}
918
919int
920arch_library_symbol_init(struct library_symbol *libsym)
921{
922	/* We set type explicitly in the code above, where we have the
923	 * necessary context.  This is for calls from ltrace-elf.c and
924	 * such.  */
925	libsym->arch.type = PPC_DEFAULT;
926	return 0;
927}
928
929void
930arch_library_symbol_destroy(struct library_symbol *libsym)
931{
932}
933
934int
935arch_library_symbol_clone(struct library_symbol *retp,
936			  struct library_symbol *libsym)
937{
938	retp->arch = libsym->arch;
939	return 0;
940}
941
942/* For some symbol types, we need to set up custom callbacks.  XXX we
943 * don't need PROC here, we can store the data in BP if it is of
944 * interest to us.  */
945int
946arch_breakpoint_init(struct Process *proc, struct breakpoint *bp)
947{
948	/* Artificial and entry-point breakpoints are plain.  */
949	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
950		return 0;
951
952	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
953	if (proc->e_machine == EM_PPC
954	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
955		return 0;
956
957	/* On PPC64, stub PLT breakpoints are plain.  */
958	if (proc->e_machine == EM_PPC64
959	    && bp->libsym->arch.type == PPC64_PLT_STUB)
960		return 0;
961
962	static struct bp_callbacks cbs = {
963		.on_continue = ppc_plt_bp_continue,
964		.on_retract = ppc_plt_bp_retract,
965	};
966	breakpoint_set_callbacks(bp, &cbs);
967	return 0;
968}
969
970void
971arch_breakpoint_destroy(struct breakpoint *bp)
972{
973}
974
975int
976arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
977{
978	retp->arch = sbp->arch;
979	return 0;
980}
981
982int
983arch_process_init(struct Process *proc)
984{
985	proc->arch.dl_plt_update_bp = NULL;
986	proc->arch.handler = NULL;
987	return 0;
988}
989
990void
991arch_process_destroy(struct Process *proc)
992{
993}
994
995int
996arch_process_clone(struct Process *retp, struct Process *proc)
997{
998	retp->arch = proc->arch;
999	return 0;
1000}
1001
1002int
1003arch_process_exec(struct Process *proc)
1004{
1005	return arch_process_init(proc);
1006}
1007