trace.c revision 134a108693f8155d2167675ad8127ff6def1425e
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
126	ptrace(PTRACE_SYSCALL, pid, 0, signum);
127}
128
129static enum ecb_status
130event_for_pid(Event * event, void * data)
131{
132	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
133		return ecb_yield;
134	return ecb_cont;
135}
136
137static int
138have_events_for(pid_t pid)
139{
140	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
141}
142
143void
144continue_process(pid_t pid)
145{
146	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
147
148	/* Only really continue the process if there are no events in
149	   the queue for this process.  Otherwise just for the other
150	   events to arrive.  */
151	if (!have_events_for(pid))
152		/* We always trace syscalls to control fork(),
153		 * clone(), execve()... */
154		ptrace(PTRACE_SYSCALL, pid, 0, 0);
155	else
156		debug(DEBUG_PROCESS,
157		      "putting off the continue, events in que.");
158}
159
160/**
161 * This is used for bookkeeping related to PIDs that the event
162 * handlers work with.
163 */
164struct pid_task {
165	pid_t pid;	/* This may be 0 for tasks that exited
166			 * mid-handling.  */
167	int sigstopped : 1;
168	int got_event : 1;
169	int delivered : 1;
170	int vforked : 1;
171} * pids;
172
173struct pid_set {
174	struct pid_task * tasks;
175	size_t count;
176	size_t alloc;
177};
178
179/**
180 * Breakpoint re-enablement.  When we hit a breakpoint, we must
181 * disable it, single-step, and re-enable it.  That single-step can be
182 * done only by one task in a task group, while others are stopped,
183 * otherwise the processes would race for who sees the breakpoint
184 * disabled and who doesn't.  The following is to keep track of it
185 * all.
186 */
187struct process_stopping_handler
188{
189	Event_Handler super;
190
191	/* The task that is doing the re-enablement.  */
192	Process * task_enabling_breakpoint;
193
194	/* The pointer being re-enabled.  */
195	Breakpoint * breakpoint_being_enabled;
196
197	enum {
198		/* We are waiting for everyone to land in t/T.  */
199		psh_stopping = 0,
200
201		/* We are doing the PTRACE_SINGLESTEP.  */
202		psh_singlestep,
203
204		/* We are waiting for all the SIGSTOPs to arrive so
205		 * that we can sink them.  */
206		psh_sinking,
207
208		/* This is for tracking the ugly workaround.  */
209		psh_ugly_workaround,
210	} state;
211
212	int exiting;
213
214	struct pid_set pids;
215};
216
217static struct pid_task *
218get_task_info(struct pid_set * pids, pid_t pid)
219{
220	assert(pid != 0);
221	size_t i;
222	for (i = 0; i < pids->count; ++i)
223		if (pids->tasks[i].pid == pid)
224			return &pids->tasks[i];
225
226	return NULL;
227}
228
229static struct pid_task *
230add_task_info(struct pid_set * pids, pid_t pid)
231{
232	if (pids->count == pids->alloc) {
233		size_t ns = (2 * pids->alloc) ?: 4;
234		struct pid_task * n = realloc(pids->tasks,
235					      sizeof(*pids->tasks) * ns);
236		if (n == NULL)
237			return NULL;
238		pids->tasks = n;
239		pids->alloc = ns;
240	}
241	struct pid_task * task_info = &pids->tasks[pids->count++];
242	memset(task_info, 0, sizeof(*task_info));
243	task_info->pid = pid;
244	return task_info;
245}
246
247static enum pcb_status
248task_stopped(Process * task, void * data)
249{
250	enum process_status st = process_status(task->pid);
251	if (data != NULL)
252		*(enum process_status *)data = st;
253
254	/* If the task is already stopped, don't worry about it.
255	 * Likewise if it managed to become a zombie or terminate in
256	 * the meantime.  This can happen when the whole thread group
257	 * is terminating.  */
258	switch (st) {
259	case ps_invalid:
260	case ps_tracing_stop:
261	case ps_zombie:
262		return pcb_cont;
263	default:
264		return pcb_stop;
265	}
266}
267
268/* Task is blocked if it's stopped, or if it's a vfork parent.  */
269static enum pcb_status
270task_blocked(Process * task, void * data)
271{
272	struct pid_set * pids = data;
273	struct pid_task * task_info = get_task_info(pids, task->pid);
274	if (task_info != NULL
275	    && task_info->vforked)
276		return pcb_cont;
277
278	return task_stopped(task, NULL);
279}
280
281static Event * process_vfork_on_event(Event_Handler * super, Event * event);
282
283static enum pcb_status
284task_vforked(Process * task, void * data)
285{
286	if (task->event_handler != NULL
287	    && task->event_handler->on_event == &process_vfork_on_event)
288		return pcb_stop;
289	return pcb_cont;
290}
291
292static int
293is_vfork_parent(Process * task)
294{
295	return each_task(task->leader, &task_vforked, NULL) != NULL;
296}
297
298static enum pcb_status
299send_sigstop(Process * task, void * data)
300{
301	Process * leader = task->leader;
302	struct pid_set * pids = data;
303
304	/* Look for pre-existing task record, or add new.  */
305	struct pid_task * task_info = get_task_info(pids, task->pid);
306	if (task_info == NULL)
307		task_info = add_task_info(pids, task->pid);
308	if (task_info == NULL) {
309		perror("send_sigstop: add_task_info");
310		destroy_event_handler(leader);
311		/* Signal failure upwards.  */
312		return pcb_stop;
313	}
314
315	/* This task still has not been attached to.  It should be
316	   stopped by the kernel.  */
317	if (task->state == STATE_BEING_CREATED)
318		return pcb_cont;
319
320	/* Don't bother sending SIGSTOP if we are already stopped, or
321	 * if we sent the SIGSTOP already, which happens when we are
322	 * handling "onexit" and inherited the handler from breakpoint
323	 * re-enablement.  */
324	enum process_status st;
325	if (task_stopped(task, &st) == pcb_cont)
326		return pcb_cont;
327	if (task_info->sigstopped) {
328		if (!task_info->delivered)
329			return pcb_cont;
330		task_info->delivered = 0;
331	}
332
333	/* Also don't attempt to stop the process if it's a parent of
334	 * vforked process.  We set up event handler specially to hint
335	 * us.  In that case parent is in D state, which we use to
336	 * weed out unnecessary looping.  */
337	if (st == ps_sleeping
338	    && is_vfork_parent (task)) {
339		task_info->vforked = 1;
340		return pcb_cont;
341	}
342
343	if (task_kill(task->pid, SIGSTOP) >= 0) {
344		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
345		task_info->sigstopped = 1;
346	} else
347		fprintf(stderr,
348			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
349
350	return pcb_cont;
351}
352
353/* On certain kernels, detaching right after a singlestep causes the
354   tracee to be killed with a SIGTRAP (that even though the singlestep
355   was properly caught by waitpid.  The ugly workaround is to put a
356   breakpoint where IP points and let the process continue.  After
357   this the breakpoint can be retracted and the process detached.  */
358static void
359ugly_workaround(Process * proc)
360{
361	void * ip = get_instruction_pointer(proc);
362	Breakpoint * sbp = dict_find_entry(proc->leader->breakpoints, ip);
363	if (sbp != NULL)
364		enable_breakpoint(proc, sbp);
365	else
366		insert_breakpoint(proc, ip, NULL, 1);
367	ptrace(PTRACE_CONT, proc->pid, 0, 0);
368}
369
370static void
371process_stopping_done(struct process_stopping_handler * self, Process * leader)
372{
373	debug(DEBUG_PROCESS, "process stopping done %d",
374	      self->task_enabling_breakpoint->pid);
375	size_t i;
376	if (!self->exiting) {
377		for (i = 0; i < self->pids.count; ++i)
378			if (self->pids.tasks[i].pid != 0
379			    && self->pids.tasks[i].delivered)
380				continue_process(self->pids.tasks[i].pid);
381		continue_process(self->task_enabling_breakpoint->pid);
382		destroy_event_handler(leader);
383	} else {
384		self->state = psh_ugly_workaround;
385		ugly_workaround(self->task_enabling_breakpoint);
386	}
387}
388
389/* Before we detach, we need to make sure that task's IP is on the
390 * edge of an instruction.  So for tasks that have a breakpoint event
391 * in the queue, we adjust the instruction pointer, just like
392 * continue_after_breakpoint does.  */
393static enum ecb_status
394undo_breakpoint(Event * event, void * data)
395{
396	if (event != NULL
397	    && event->proc->leader == data
398	    && event->type == EVENT_BREAKPOINT)
399		set_instruction_pointer(event->proc, event->e_un.brk_addr);
400	return ecb_cont;
401}
402
403static enum pcb_status
404untrace_task(Process * task, void * data)
405{
406	if (task != data)
407		untrace_pid(task->pid);
408	return pcb_cont;
409}
410
411static enum pcb_status
412remove_task(Process * task, void * data)
413{
414	/* Don't untrace leader just yet.  */
415	if (task != data)
416		remove_process(task);
417	return pcb_cont;
418}
419
420static void
421detach_process(Process * leader)
422{
423	each_qd_event(&undo_breakpoint, leader);
424	disable_all_breakpoints(leader);
425
426	/* Now untrace the process, if it was attached to by -p.  */
427	struct opt_p_t * it;
428	for (it = opt_p; it != NULL; it = it->next) {
429		Process * proc = pid2proc(it->pid);
430		if (proc == NULL)
431			continue;
432		if (proc->leader == leader) {
433			each_task(leader, &untrace_task, NULL);
434			break;
435		}
436	}
437	each_task(leader, &remove_task, leader);
438	destroy_event_handler(leader);
439	remove_task(leader, NULL);
440}
441
442static void
443handle_stopping_event(struct pid_task * task_info, Event ** eventp)
444{
445	/* Mark all events, so that we know whom to SIGCONT later.  */
446	if (task_info != NULL)
447		task_info->got_event = 1;
448
449	Event * event = *eventp;
450
451	/* In every state, sink SIGSTOP events for tasks that it was
452	 * sent to.  */
453	if (task_info != NULL
454	    && event->type == EVENT_SIGNAL
455	    && event->e_un.signum == SIGSTOP) {
456		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
457		if (task_info->sigstopped
458		    && !task_info->delivered) {
459			task_info->delivered = 1;
460			*eventp = NULL; // sink the event
461		} else
462			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
463				"sigstopped=%d and delivered=%d\n",
464				task_info->pid, task_info->sigstopped,
465				task_info->delivered);
466	}
467}
468
469/* Some SIGSTOPs may have not been delivered to their respective tasks
470 * yet.  They are still in the queue.  If we have seen an event for
471 * that process, continue it, so that the SIGSTOP can be delivered and
472 * caught by ltrace.  */
473static void
474continue_for_sigstop_delivery(struct pid_set * pids)
475{
476	size_t i;
477	for (i = 0; i < pids->count; ++i) {
478		if (pids->tasks[i].pid != 0
479		    && pids->tasks[i].sigstopped
480		    && !pids->tasks[i].delivered
481		    && pids->tasks[i].got_event) {
482			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
483			      pids->tasks[i].pid);
484			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
485		}
486	}
487}
488
489static int
490event_exit_p(Event * event)
491{
492	return event != NULL && (event->type == EVENT_EXIT
493				 || event->type == EVENT_EXIT_SIGNAL);
494}
495
496static int
497event_exit_or_none_p(Event * event)
498{
499	return event == NULL || event_exit_p(event)
500		|| event->type == EVENT_NONE;
501}
502
503static int
504await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
505		       Event * event)
506{
507	/* If we still didn't get our SIGSTOP, continue the process
508	 * and carry on.  */
509	if (event != NULL && !event_exit_or_none_p(event)
510	    && task_info != NULL && task_info->sigstopped) {
511		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
512		      task_info->pid);
513		/* We should get the signal the first thing
514		 * after this, so it should be OK to continue
515		 * even if we are over a breakpoint.  */
516		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
517
518	} else {
519		/* If all SIGSTOPs were delivered, uninstall the
520		 * handler and continue everyone.  */
521		/* XXX I suspect that we should check tasks that are
522		 * still around.  Is things are now, there should be a
523		 * race between waiting for everyone to stop and one
524		 * of the tasks exiting.  */
525		int all_clear = 1;
526		size_t i;
527		for (i = 0; i < pids->count; ++i)
528			if (pids->tasks[i].pid != 0
529			    && pids->tasks[i].sigstopped
530			    && !pids->tasks[i].delivered) {
531				all_clear = 0;
532				break;
533			}
534		return all_clear;
535	}
536
537	return 0;
538}
539
540static int
541all_stops_accountable(struct pid_set * pids)
542{
543	size_t i;
544	for (i = 0; i < pids->count; ++i)
545		if (pids->tasks[i].pid != 0
546		    && !pids->tasks[i].got_event
547		    && !have_events_for(pids->tasks[i].pid))
548			return 0;
549	return 1;
550}
551
552/* This event handler is installed when we are in the process of
553 * stopping the whole thread group to do the pointer re-enablement for
554 * one of the threads.  We pump all events to the queue for later
555 * processing while we wait for all the threads to stop.  When this
556 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
557 * re-enable, and continue everyone.  */
558static Event *
559process_stopping_on_event(Event_Handler * super, Event * event)
560{
561	struct process_stopping_handler * self = (void *)super;
562	Process * task = event->proc;
563	Process * leader = task->leader;
564	Breakpoint * sbp = self->breakpoint_being_enabled;
565	Process * teb = self->task_enabling_breakpoint;
566
567	debug(DEBUG_PROCESS,
568	      "pid %d; event type %d; state %d",
569	      task->pid, event->type, self->state);
570
571	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
572	if (task_info == NULL)
573		fprintf(stderr, "new task??? %d\n", task->pid);
574	handle_stopping_event(task_info, &event);
575
576	int state = self->state;
577	int event_to_queue = !event_exit_or_none_p(event);
578
579	/* Deactivate the entry if the task exits.  */
580	if (event_exit_p(event) && task_info != NULL)
581		task_info->pid = 0;
582
583	switch (state) {
584	case psh_stopping:
585		/* If everyone is stopped, singlestep.  */
586		if (each_task(leader, &task_blocked, &self->pids) == NULL) {
587			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
588			      teb->pid);
589			if (sbp->enabled)
590				disable_breakpoint(teb, sbp);
591			if (ptrace(PTRACE_SINGLESTEP, teb->pid, 0, 0))
592				perror("PTRACE_SINGLESTEP");
593			self->state = state = psh_singlestep;
594		}
595		break;
596
597	case psh_singlestep: {
598		/* In singlestep state, breakpoint signifies that we
599		 * have now stepped, and can re-enable the breakpoint.  */
600		if (event != NULL && task == teb) {
601			/* Essentially we don't care what event caused
602			 * the thread to stop.  We can do the
603			 * re-enablement now.  */
604			if (sbp->enabled)
605				enable_breakpoint(teb, sbp);
606
607			continue_for_sigstop_delivery(&self->pids);
608
609			self->breakpoint_being_enabled = NULL;
610			self->state = state = psh_sinking;
611
612			if (event->type == EVENT_BREAKPOINT)
613				event = NULL; // handled
614		} else
615			break;
616	}
617
618		/* fall-through */
619
620	case psh_sinking:
621		if (await_sigstop_delivery(&self->pids, task_info, event))
622			process_stopping_done(self, leader);
623		break;
624
625	case psh_ugly_workaround:
626		if (event == NULL)
627			break;
628		if (event->type == EVENT_BREAKPOINT) {
629			undo_breakpoint(event, leader);
630			if (task == teb)
631				self->task_enabling_breakpoint = NULL;
632		}
633		if (self->task_enabling_breakpoint == NULL
634		    && all_stops_accountable(&self->pids)) {
635			undo_breakpoint(event, leader);
636			detach_process(leader);
637			event = NULL; // handled
638		}
639	}
640
641	if (event != NULL && event_to_queue) {
642		enque_event(event);
643		event = NULL; // sink the event
644	}
645
646	return event;
647}
648
649static void
650process_stopping_destroy(Event_Handler * super)
651{
652	struct process_stopping_handler * self = (void *)super;
653	free(self->pids.tasks);
654}
655
656void
657continue_after_breakpoint(Process *proc, Breakpoint *sbp)
658{
659	set_instruction_pointer(proc, sbp->addr);
660	if (sbp->enabled == 0) {
661		continue_process(proc->pid);
662	} else {
663		debug(DEBUG_PROCESS,
664		      "continue_after_breakpoint: pid=%d, addr=%p",
665		      proc->pid, sbp->addr);
666#if defined __sparc__  || defined __ia64___ || defined __mips__
667		/* we don't want to singlestep here */
668		continue_process(proc->pid);
669#else
670		struct process_stopping_handler * handler
671			= calloc(sizeof(*handler), 1);
672		if (handler == NULL) {
673			perror("malloc breakpoint disable handler");
674		fatal:
675			/* Carry on not bothering to re-enable.  */
676			continue_process(proc->pid);
677			return;
678		}
679
680		handler->super.on_event = process_stopping_on_event;
681		handler->super.destroy = process_stopping_destroy;
682		handler->task_enabling_breakpoint = proc;
683		handler->breakpoint_being_enabled = sbp;
684		install_event_handler(proc->leader, &handler->super);
685
686		if (each_task(proc->leader, &send_sigstop,
687			      &handler->pids) != NULL)
688			goto fatal;
689
690		/* And deliver the first fake event, in case all the
691		 * conditions are already fulfilled.  */
692		Event ev;
693		ev.type = EVENT_NONE;
694		ev.proc = proc;
695		process_stopping_on_event(&handler->super, &ev);
696#endif
697	}
698}
699
700/**
701 * Ltrace exit.  When we are about to exit, we have to go through all
702 * the processes, stop them all, remove all the breakpoints, and then
703 * detach the processes that we attached to using -p.  If we left the
704 * other tasks running, they might hit stray return breakpoints and
705 * produce artifacts, so we better stop everyone, even if it's a bit
706 * of extra work.
707 */
708struct ltrace_exiting_handler
709{
710	Event_Handler super;
711	struct pid_set pids;
712};
713
714static Event *
715ltrace_exiting_on_event(Event_Handler * super, Event * event)
716{
717	struct ltrace_exiting_handler * self = (void *)super;
718	Process * task = event->proc;
719	Process * leader = task->leader;
720
721	debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
722
723	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
724	handle_stopping_event(task_info, &event);
725
726	if (event != NULL && event->type == EVENT_BREAKPOINT)
727		undo_breakpoint(event, leader);
728
729	if (await_sigstop_delivery(&self->pids, task_info, event)
730	    && all_stops_accountable(&self->pids))
731		detach_process(leader);
732
733	/* Sink all non-exit events.  We are about to exit, so we
734	 * don't bother with queuing them. */
735	if (event_exit_or_none_p(event))
736		return event;
737
738	return NULL;
739}
740
741static void
742ltrace_exiting_destroy(Event_Handler * super)
743{
744	struct ltrace_exiting_handler * self = (void *)super;
745	free(self->pids.tasks);
746}
747
748static int
749ltrace_exiting_install_handler(Process * proc)
750{
751	/* Only install to leader.  */
752	if (proc->leader != proc)
753		return 0;
754
755	/* Perhaps we are already installed, if the user passed
756	 * several -p options that are tasks of one process.  */
757	if (proc->event_handler != NULL
758	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
759		return 0;
760
761	/* If stopping handler is already present, let it do the
762	 * work.  */
763	if (proc->event_handler != NULL) {
764		assert(proc->event_handler->on_event
765		       == &process_stopping_on_event);
766		struct process_stopping_handler * other
767			= (void *)proc->event_handler;
768		other->exiting = 1;
769		return 0;
770	}
771
772	struct ltrace_exiting_handler * handler
773		= calloc(sizeof(*handler), 1);
774	if (handler == NULL) {
775		perror("malloc exiting handler");
776	fatal:
777		/* XXXXXXXXXXXXXXXXXXX fixme */
778		return -1;
779	}
780
781	handler->super.on_event = ltrace_exiting_on_event;
782	handler->super.destroy = ltrace_exiting_destroy;
783	install_event_handler(proc->leader, &handler->super);
784
785	if (each_task(proc->leader, &send_sigstop,
786		      &handler->pids) != NULL)
787		goto fatal;
788
789	return 0;
790}
791
792/*
793 * When the traced process vforks, it's suspended until the child
794 * process calls _exit or exec*.  In the meantime, the two share the
795 * address space.
796 *
797 * The child process should only ever call _exit or exec*, but we
798 * can't count on that (it's not the role of ltrace to policy, but to
799 * observe).  In any case, we will _at least_ have to deal with
800 * removal of vfork return breakpoint (which we have to smuggle back
801 * in, so that the parent can see it, too), and introduction of exec*
802 * return breakpoint.  Since we already have both breakpoint actions
803 * to deal with, we might as well support it all.
804 *
805 * The gist is that we pretend that the child is in a thread group
806 * with its parent, and handle it as a multi-threaded case, with the
807 * exception that we know that the parent is blocked, and don't
808 * attempt to stop it.  When the child execs, we undo the setup.
809 *
810 * XXX The parent process could be un-suspended before ltrace gets
811 * child exec/exit event.  Make sure this is taken care of.
812 */
813
814struct process_vfork_handler
815{
816	Event_Handler super;
817	void * bp_addr;
818};
819
820static Event *
821process_vfork_on_event(Event_Handler * super, Event * event)
822{
823	struct process_vfork_handler * self = (void *)super;
824	Breakpoint * sbp;
825	assert(self != NULL);
826
827	switch (event->type) {
828	case EVENT_BREAKPOINT:
829		/* Remember the vfork return breakpoint.  */
830		if (self->bp_addr == NULL)
831			self->bp_addr = event->e_un.brk_addr;
832		break;
833
834	case EVENT_EXIT:
835	case EVENT_EXIT_SIGNAL:
836	case EVENT_EXEC:
837		/* Smuggle back in the vfork return breakpoint, so
838		 * that our parent can trip over it once again.  */
839		if (self->bp_addr != NULL) {
840			sbp = dict_find_entry(event->proc->leader->breakpoints,
841					      self->bp_addr);
842			if (sbp != NULL)
843				insert_breakpoint(event->proc->leader,
844						  self->bp_addr, sbp->libsym,
845						  1);
846		}
847
848		continue_process(event->proc->leader->pid);
849
850		/* Remove the leader that we artificially set up
851		 * earlier.  */
852		change_process_leader(event->proc, event->proc);
853		destroy_event_handler(event->proc);
854
855		/* XXXXX this could happen in the middle of handling
856		 * multi-threaded breakpoint.  We must be careful to
857		 * undo the effects that we introduced above (vforked
858		 * = 1 et.al.).  */
859
860	default:
861		;
862	}
863
864	return event;
865}
866
867void
868continue_after_vfork(Process * proc)
869{
870	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
871	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
872	if (handler == NULL) {
873		perror("malloc vfork handler");
874		/* Carry on not bothering to treat the process as
875		 * necessary.  */
876		continue_process(proc->parent->pid);
877		return;
878	}
879
880	/* We must set up custom event handler, so that we see
881	 * exec/exit events for the task itself.  */
882	handler->super.on_event = process_vfork_on_event;
883	install_event_handler(proc, &handler->super);
884
885	/* Make sure that the child is sole thread.  */
886	assert(proc->leader == proc);
887	assert(proc->next == NULL || proc->next->leader != proc);
888
889	/* Make sure that the child's parent is properly set up.  */
890	assert(proc->parent != NULL);
891	assert(proc->parent->leader != NULL);
892
893	change_process_leader(proc, proc->parent->leader);
894}
895
896/* If ltrace gets SIGINT, the processes directly or indirectly run by
897 * ltrace get it too.  We just have to wait long enough for the signal
898 * to be delivered and the process terminated, which we notice and
899 * exit ltrace, too.  So there's not much we need to do there.  We
900 * want to keep tracing those processes as usual, in case they just
901 * SIG_IGN the SIGINT to do their shutdown etc.
902 *
903 * For processes ran on the background, we want to install an exit
904 * handler that stops all the threads, removes all breakpoints, and
905 * detaches.
906 */
907void
908ltrace_exiting(void)
909{
910	struct opt_p_t * it;
911	for (it = opt_p; it != NULL; it = it->next) {
912		Process * proc = pid2proc(it->pid);
913		if (proc == NULL || proc->leader == NULL)
914			continue;
915		if (ltrace_exiting_install_handler(proc->leader) < 0)
916			fprintf(stderr,
917				"Couldn't install exiting handler for %d.\n",
918				proc->pid);
919	}
920}
921
922size_t
923umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
924
925	union {
926		long a;
927		char c[sizeof(long)];
928	} a;
929	int started = 0;
930	size_t offset = 0, bytes_read = 0;
931
932	while (offset < len) {
933		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
934		if (a.a == -1 && errno) {
935			if (started && errno == EIO)
936				return bytes_read;
937			else
938				return -1;
939		}
940		started = 1;
941
942		if (len - offset >= sizeof(long)) {
943			memcpy(laddr + offset, &a.c[0], sizeof(long));
944			bytes_read += sizeof(long);
945		}
946		else {
947			memcpy(laddr + offset, &a.c[0], len - offset);
948			bytes_read += (len - offset);
949		}
950		offset += sizeof(long);
951	}
952
953	return bytes_read;
954}
955
956/* Read a series of bytes starting at the process's memory address
957   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
958   have been read.
959*/
960int
961umovestr(Process *proc, void *addr, int len, void *laddr) {
962	union {
963		long a;
964		char c[sizeof(long)];
965	} a;
966	unsigned i;
967	int offset = 0;
968
969	while (offset < len) {
970		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
971		for (i = 0; i < sizeof(long); i++) {
972			if (a.c[i] && offset + (signed)i < len) {
973				*(char *)(laddr + offset + i) = a.c[i];
974			} else {
975				*(char *)(laddr + offset + i) = '\0';
976				return 0;
977			}
978		}
979		offset += sizeof(long);
980	}
981	*(char *)(laddr + offset) = '\0';
982	return 0;
983}
984