trace.c revision 18c970711cd2597d52c2f146d97350d62980ec2c
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	Process *proc;
126
127	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
128
129	proc = pid2proc(pid);
130	ptrace(PTRACE_SYSCALL, pid, 0, signum);
131}
132
133static enum ecb_status
134event_for_pid(Event * event, void * data)
135{
136	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
137		return ecb_yield;
138	return ecb_cont;
139}
140
141static int
142have_events_for(pid_t pid)
143{
144	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
145}
146
147void
148continue_process(pid_t pid)
149{
150	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
151	//printf("continue_process %d\n", pid);
152
153	/* Only really continue the process if there are no events in
154	   the queue for this process.  Otherwise just for the other
155	   events to arrive.  */
156	if (!have_events_for(pid))
157		/* We always trace syscalls to control fork(),
158		 * clone(), execve()... */
159		ptrace(PTRACE_SYSCALL, pid, 0, 0);
160	else
161		debug(DEBUG_PROCESS,
162		      "putting off the continue, events in que.");
163}
164
165/**
166 * This is used for bookkeeping related to PIDs that the event
167 * handlers work with.
168 */
169struct pid_task {
170	pid_t pid;	/* This may be 0 for tasks that exited
171			 * mid-handling.  */
172	int sigstopped;
173	int got_event;
174	int delivered;
175} * pids;
176
177struct pid_set {
178	struct pid_task * tasks;
179	size_t count;
180	size_t alloc;
181};
182
183/**
184 * Breakpoint re-enablement.  When we hit a breakpoint, we must
185 * disable it, single-step, and re-enable it.  That single-step can be
186 * done only by one task in a task group, while others are stopped,
187 * otherwise the processes would race for who sees the breakpoint
188 * disabled and who doesn't.  The following is to keep track of it
189 * all.
190 */
191struct process_stopping_handler
192{
193	Event_Handler super;
194
195	/* The task that is doing the re-enablement.  */
196	Process * task_enabling_breakpoint;
197
198	/* The pointer being re-enabled.  */
199	Breakpoint * breakpoint_being_enabled;
200
201	enum {
202		/* We are waiting for everyone to land in t/T.  */
203		psh_stopping = 0,
204
205		/* We are doing the PTRACE_SINGLESTEP.  */
206		psh_singlestep,
207
208		/* We are waiting for all the SIGSTOPs to arrive so
209		 * that we can sink them.  */
210		psh_sinking,
211	} state;
212
213	struct pid_set pids;
214};
215
216static enum pcb_status
217task_stopped(Process * task, void * data)
218{
219	/* If the task is already stopped, don't worry about it.
220	 * Likewise if it managed to become a zombie or terminate in
221	 * the meantime.  This can happen when the whole thread group
222	 * is terminating.  */
223	switch (process_status(task->pid)) {
224	case ps_invalid:
225	case ps_tracing_stop:
226	case ps_zombie:
227		return pcb_cont;
228	default:
229		return pcb_stop;
230	}
231}
232
233static struct pid_task *
234get_task_info(struct pid_set * pids, pid_t pid)
235{
236	assert(pid != 0);
237	size_t i;
238	for (i = 0; i < pids->count; ++i)
239		if (pids->tasks[i].pid == pid)
240			return &pids->tasks[i];
241
242	return NULL;
243}
244
245static struct pid_task *
246add_task_info(struct pid_set * pids, pid_t pid)
247{
248	if (pids->count == pids->alloc) {
249		size_t ns = (2 * pids->alloc) ?: 4;
250		struct pid_task * n = realloc(pids->tasks,
251					      sizeof(*pids->tasks) * ns);
252		if (n == NULL)
253			return NULL;
254		pids->tasks = n;
255		pids->alloc = ns;
256	}
257	struct pid_task * task_info = &pids->tasks[pids->count++];
258	memset(task_info, 0, sizeof(*task_info));
259	task_info->pid = pid;
260	return task_info;
261}
262
263static enum pcb_status
264send_sigstop(Process * task, void * data)
265{
266	Process * leader = task->leader;
267	struct pid_set * pids = data;
268
269	/* Look for pre-existing task record, or add new.  */
270	struct pid_task * task_info = get_task_info(pids, task->pid);
271	if (task_info == NULL)
272		task_info = add_task_info(pids, task->pid);
273	if (task_info == NULL) {
274		perror("send_sigstop: add_task_info");
275		destroy_event_handler(leader);
276		/* Signal failure upwards.  */
277		return pcb_stop;
278	}
279
280	/* This task still has not been attached to.  It should be
281	   stopped by the kernel.  */
282	if (task->state == STATE_BEING_CREATED)
283		return pcb_cont;
284
285	/* Don't bother sending SIGSTOP if we are already stopped, or
286	 * if we sent the SIGSTOP already, which happens when we
287	 * inherit the handler from breakpoint re-enablement.  */
288	if (task_stopped(task, NULL) == pcb_cont)
289		return pcb_cont;
290	if (task_info->sigstopped) {
291		if (!task_info->delivered)
292			return pcb_cont;
293		task_info->delivered = 0;
294	}
295
296	if (task_kill(task->pid, SIGSTOP) >= 0) {
297		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
298		task_info->sigstopped = 1;
299	} else
300		fprintf(stderr,
301			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
302
303	return pcb_cont;
304}
305
306static void
307process_stopping_done(struct process_stopping_handler * self, Process * leader)
308{
309	debug(DEBUG_PROCESS, "process stopping done %d",
310	      self->task_enabling_breakpoint->pid);
311	size_t i;
312	for (i = 0; i < self->pids.count; ++i)
313		if (self->pids.tasks[i].pid != 0
314		    && self->pids.tasks[i].delivered)
315			continue_process(self->pids.tasks[i].pid);
316	continue_process(self->task_enabling_breakpoint->pid);
317	destroy_event_handler(leader);
318}
319
320static void
321handle_stopping_event(struct pid_task * task_info, Event ** eventp)
322{
323	/* Mark all events, so that we know whom to SIGCONT later.  */
324	if (task_info != NULL && task_info->sigstopped)
325		task_info->got_event = 1;
326
327	Event * event = *eventp;
328
329	/* In every state, sink SIGSTOP events for tasks that it was
330	 * sent to.  */
331	if (task_info != NULL
332	    && event->type == EVENT_SIGNAL
333	    && event->e_un.signum == SIGSTOP) {
334		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
335		if (task_info->sigstopped
336		    && !task_info->delivered) {
337			task_info->delivered = 1;
338			*eventp = NULL; // sink the event
339		} else
340			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
341				"sigstopped=%d and delivered=%d\n",
342				task_info->pid, task_info->sigstopped,
343				task_info->delivered);
344	}
345}
346
347/* Some SIGSTOPs may have not been delivered to their respective tasks
348 * yet.  They are still in the queue.  If we have seen an event for
349 * that process, continue it, so that the SIGSTOP can be delivered and
350 * caught by ltrace.  */
351static void
352continue_for_sigstop_delivery(struct pid_set * pids)
353{
354	size_t i;
355	for (i = 0; i < pids->count; ++i) {
356		if (pids->tasks[i].pid != 0
357		    && pids->tasks[i].sigstopped
358		    && !pids->tasks[i].delivered
359		    && pids->tasks[i].got_event) {
360			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
361			      pids->tasks[i].pid);
362			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
363		}
364	}
365}
366
367static int
368event_exit_p(Event * event)
369{
370	return event != NULL && (event->type == EVENT_EXIT
371				 || event->type == EVENT_EXIT_SIGNAL);
372}
373
374static int
375event_exit_or_none_p(Event * event)
376{
377	return event == NULL || event_exit_p(event)
378		|| event->type == EVENT_NONE;
379}
380
381static int
382await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
383		       Event * event)
384{
385	/* If we still didn't get our SIGSTOP, continue the process
386	 * and carry on.  */
387	if (event != NULL && !event_exit_or_none_p(event)
388	    && task_info != NULL && task_info->sigstopped) {
389		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
390		      task_info->pid);
391		/* We should get the signal the first thing
392		 * after this, so it should be OK to continue
393		 * even if we are over a breakpoint.  */
394		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
395
396	} else {
397		/* If all SIGSTOPs were delivered, uninstall the
398		 * handler and continue everyone.  */
399		/* XXX I suspect that we should check tasks that are
400		 * still around.  Is things are now, there should be a
401		 * race between waiting for everyone to stop and one
402		 * of the tasks exiting.  */
403		int all_clear = 1;
404		size_t i;
405		for (i = 0; i < pids->count; ++i)
406			if (pids->tasks[i].pid != 0
407			    && pids->tasks[i].sigstopped
408			    && !pids->tasks[i].delivered) {
409				all_clear = 0;
410				break;
411			}
412		return all_clear;
413	}
414
415	return 0;
416}
417
418/* This event handler is installed when we are in the process of
419 * stopping the whole thread group to do the pointer re-enablement for
420 * one of the threads.  We pump all events to the queue for later
421 * processing while we wait for all the threads to stop.  When this
422 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
423 * re-enable, and continue everyone.  */
424static Event *
425process_stopping_on_event(Event_Handler * super, Event * event)
426{
427	struct process_stopping_handler * self = (void *)super;
428	Process * task = event->proc;
429	Process * leader = task->leader;
430
431	debug(DEBUG_PROCESS,
432	      "pid %d; event type %d; state %d",
433	      task->pid, event->type, self->state);
434
435	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
436	if (task_info == NULL)
437		fprintf(stderr, "new task??? %d\n", task->pid);
438	handle_stopping_event(task_info, &event);
439
440	int state = self->state;
441	int event_to_queue = !event_exit_or_none_p(event);
442
443	/* Deactivate the entry if the task exits.  */
444	if (event_exit_p(event) && task_info != NULL)
445		task_info->pid = 0;
446
447	switch (state) {
448	case psh_stopping:
449		/* If everyone is stopped, singlestep.  */
450		if (each_task(leader, &task_stopped, NULL) == NULL) {
451			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
452			      self->task_enabling_breakpoint->pid);
453			if (ptrace(PTRACE_SINGLESTEP,
454				   self->task_enabling_breakpoint->pid, 0, 0))
455				perror("PTRACE_SINGLESTEP");
456			self->state = state = psh_singlestep;
457		}
458		break;
459
460	case psh_singlestep: {
461		/* In singlestep state, breakpoint signifies that we
462		 * have now stepped, and can re-enable the breakpoint.  */
463		if (event != NULL
464		    && task == self->task_enabling_breakpoint) {
465			/* Essentially we don't care what event caused
466			 * the thread to stop.  We can do the
467			 * re-enablement now.  */
468			enable_breakpoint(self->task_enabling_breakpoint,
469					  self->breakpoint_being_enabled);
470
471			continue_for_sigstop_delivery(&self->pids);
472
473			self->breakpoint_being_enabled = NULL;
474			self->state = state = psh_sinking;
475
476			if (event->type == EVENT_BREAKPOINT)
477				event = NULL; // handled
478		} else
479			break;
480	}
481
482		/* fall-through */
483
484	case psh_sinking:
485		if (await_sigstop_delivery(&self->pids, task_info, event))
486			process_stopping_done(self, leader);
487	}
488
489	if (event != NULL && event_to_queue) {
490		enque_event(event);
491		event = NULL; // sink the event
492	}
493
494	return event;
495}
496
497static void
498process_stopping_destroy(Event_Handler * super)
499{
500	struct process_stopping_handler * self = (void *)super;
501	if (self->breakpoint_being_enabled != NULL)
502		enable_breakpoint(self->task_enabling_breakpoint,
503				  self->breakpoint_being_enabled);
504	free(self->pids.tasks);
505}
506
507void
508continue_after_breakpoint(Process *proc, Breakpoint *sbp)
509{
510	if (sbp->enabled)
511		disable_breakpoint(proc, sbp);
512
513	set_instruction_pointer(proc, sbp->addr);
514	if (sbp->enabled == 0) {
515		continue_process(proc->pid);
516	} else {
517		debug(DEBUG_PROCESS,
518		      "continue_after_breakpoint: pid=%d, addr=%p",
519		      proc->pid, sbp->addr);
520#if defined __sparc__  || defined __ia64___ || defined __mips__
521		/* we don't want to singlestep here */
522		continue_process(proc->pid);
523#else
524		struct process_stopping_handler * handler
525			= calloc(sizeof(*handler), 1);
526		if (handler == NULL) {
527			perror("malloc breakpoint disable handler");
528		fatal:
529			/* Carry on not bothering to re-enable.  */
530			continue_process(proc->pid);
531			return;
532		}
533
534		handler->super.on_event = process_stopping_on_event;
535		handler->super.destroy = process_stopping_destroy;
536		handler->task_enabling_breakpoint = proc;
537		handler->breakpoint_being_enabled = sbp;
538		install_event_handler(proc->leader, &handler->super);
539
540		if (each_task(proc->leader, &send_sigstop,
541			      &handler->pids) != NULL)
542			goto fatal;
543
544		/* And deliver the first fake event, in case all the
545		 * conditions are already fulfilled.  */
546		Event ev;
547		ev.type = EVENT_NONE;
548		ev.proc = proc;
549		process_stopping_on_event(&handler->super, &ev);
550#endif
551	}
552}
553
554/**
555 * Ltrace exit.  When we are about to exit, we have to go through all
556 * the processes, stop them all, remove all the breakpoints, and then
557 * detach the processes that we attached to using -p.  If we left the
558 * other tasks running, they might hit stray return breakpoints and
559 * produce artifacts, so we better stop everyone, even if it's a bit
560 * of extra work.
561 */
562struct ltrace_exiting_handler
563{
564	Event_Handler super;
565	struct pid_set pids;
566};
567
568static enum pcb_status
569remove_task(Process * task, void * data)
570{
571	/* Don't untrace leader just yet.  */
572	if (task != data)
573		remove_process(task);
574	return pcb_cont;
575}
576
577static enum pcb_status
578untrace_task(Process * task, void * data)
579{
580	untrace_pid(task->pid);
581	return pcb_cont;
582}
583
584static Event *
585ltrace_exiting_on_event(Event_Handler * super, Event * event)
586{
587	struct ltrace_exiting_handler * self = (void *)super;
588	Process * task = event->proc;
589	Process * leader = task->leader;
590
591	debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
592
593	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
594	handle_stopping_event(task_info, &event);
595
596	if (await_sigstop_delivery(&self->pids, task_info, event)) {
597		debug(DEBUG_PROCESS, "all SIGSTOPs delivered %d", leader->pid);
598		disable_all_breakpoints(leader);
599
600		/* Now untrace the process, if it was attached to by -p.  */
601		struct opt_p_t * it;
602		for (it = opt_p; it != NULL; it = it->next) {
603			Process * proc = pid2proc(it->pid);
604			if (proc == NULL)
605				continue;
606			if (proc->leader == leader) {
607				each_task(leader, &untrace_task, NULL);
608				break;
609			}
610		}
611
612		each_task(leader, &remove_task, leader);
613		destroy_event_handler(leader);
614		remove_task(leader, NULL);
615		return NULL;
616	}
617
618	/* Sink all non-exit events.  We are about to exit, so we
619	 * don't bother with queuing them. */
620	if (event_exit_or_none_p(event))
621		return event;
622	else
623		return NULL;
624}
625
626static void
627ltrace_exiting_destroy(Event_Handler * super)
628{
629	struct ltrace_exiting_handler * self = (void *)super;
630	free(self->pids.tasks);
631}
632
633static int
634ltrace_exiting_install_handler(Process * proc)
635{
636	/* Only install to leader.  */
637	if (proc->leader != proc)
638		return 0;
639
640	/* Perhaps we are already installed, if the user passed
641	 * several -p options that are tasks of one process.  */
642	if (proc->event_handler != NULL
643	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
644		return 0;
645
646	struct ltrace_exiting_handler * handler
647		= calloc(sizeof(*handler), 1);
648	if (handler == NULL) {
649		perror("malloc exiting handler");
650	fatal:
651		/* XXXXXXXXXXXXXXXXXXX fixme */
652		return -1;
653	}
654
655	/* If we are in the middle of breakpoint, extract the
656	 * pid-state information from that handler so that we can take
657	 * over the SIGSTOP handling.  */
658	if (proc->event_handler != NULL) {
659		debug(DEBUG_PROCESS, "taking over breakpoint handling");
660		assert(proc->event_handler->on_event
661		       == &process_stopping_on_event);
662		struct process_stopping_handler * other
663			= (void *)proc->event_handler;
664		size_t i;
665		for (i = 0; i < other->pids.count; ++i) {
666			struct pid_task * oti = &other->pids.tasks[i];
667			if (oti->pid == 0)
668				continue;
669
670			struct pid_task * task_info
671				= add_task_info(&handler->pids, oti->pid);
672			if (task_info == NULL) {
673				perror("ltrace_exiting_install_handler"
674				       ":add_task_info");
675				goto fatal;
676			}
677			/* Copy over the state.  */
678			*task_info = *oti;
679		}
680
681		/* And destroy the original handler.  */
682		destroy_event_handler(proc);
683	}
684
685	handler->super.on_event = ltrace_exiting_on_event;
686	handler->super.destroy = ltrace_exiting_destroy;
687	install_event_handler(proc->leader, &handler->super);
688
689	if (each_task(proc->leader, &send_sigstop,
690		      &handler->pids) != NULL)
691		goto fatal;
692
693	return 0;
694}
695
696/* If ltrace gets SIGINT, the processes directly or indirectly run by
697 * ltrace get it too.  We just have to wait long enough for the signal
698 * to be delivered and the process terminated, which we notice and
699 * exit ltrace, too.  So there's not much we need to do there.  We
700 * want to keep tracing those processes as usual, in case they just
701 * SIG_IGN the SIGINT to do their shutdown etc.
702 *
703 * For processes ran on the background, we want to install an exit
704 * handler that stops all the threads, removes all breakpoints, and
705 * detaches.
706 */
707void
708ltrace_exiting(void)
709{
710	struct opt_p_t * it;
711	for (it = opt_p; it != NULL; it = it->next) {
712		Process * proc = pid2proc(it->pid);
713		if (proc == NULL || proc->leader == NULL)
714			continue;
715		if (ltrace_exiting_install_handler(proc->leader) < 0)
716			fprintf(stderr,
717				"Couldn't install exiting handler for %d.\n",
718				proc->pid);
719	}
720}
721
722size_t
723umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
724
725	union {
726		long a;
727		char c[sizeof(long)];
728	} a;
729	int started = 0;
730	size_t offset = 0, bytes_read = 0;
731
732	while (offset < len) {
733		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
734		if (a.a == -1 && errno) {
735			if (started && errno == EIO)
736				return bytes_read;
737			else
738				return -1;
739		}
740		started = 1;
741
742		if (len - offset >= sizeof(long)) {
743			memcpy(laddr + offset, &a.c[0], sizeof(long));
744			bytes_read += sizeof(long);
745		}
746		else {
747			memcpy(laddr + offset, &a.c[0], len - offset);
748			bytes_read += (len - offset);
749		}
750		offset += sizeof(long);
751	}
752
753	return bytes_read;
754}
755
756/* Read a series of bytes starting at the process's memory address
757   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
758   have been read.
759*/
760int
761umovestr(Process *proc, void *addr, int len, void *laddr) {
762	union {
763		long a;
764		char c[sizeof(long)];
765	} a;
766	unsigned i;
767	int offset = 0;
768
769	while (offset < len) {
770		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
771		for (i = 0; i < sizeof(long); i++) {
772			if (a.c[i] && offset + (signed)i < len) {
773				*(char *)(laddr + offset + i) = a.c[i];
774			} else {
775				*(char *)(laddr + offset + i) = '\0';
776				return 0;
777			}
778		}
779		offset += sizeof(long);
780	}
781	*(char *)(laddr + offset) = '\0';
782	return 0;
783}
784