trace.c revision 590c80862c009608fd70e976a282473234d92265
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	Process *proc;
126
127	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
128
129	proc = pid2proc(pid);
130	ptrace(PTRACE_SYSCALL, pid, 0, signum);
131}
132
133static enum ecb_status
134event_for_pid(Event * event, void * data)
135{
136	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
137		return ecb_yield;
138	return ecb_cont;
139}
140
141static int
142have_events_for(pid_t pid)
143{
144	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
145}
146
147void
148continue_process(pid_t pid)
149{
150	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
151
152	/* Only really continue the process if there are no events in
153	   the queue for this process.  Otherwise just for the other
154	   events to arrive.  */
155	if (!have_events_for(pid))
156		/* We always trace syscalls to control fork(),
157		 * clone(), execve()... */
158		ptrace(PTRACE_SYSCALL, pid, 0, 0);
159	else
160		debug(DEBUG_PROCESS,
161		      "putting off the continue, events in que.");
162}
163
164/**
165 * This is used for bookkeeping related to PIDs that the event
166 * handlers work with.
167 */
168struct pid_task {
169	pid_t pid;	/* This may be 0 for tasks that exited
170			 * mid-handling.  */
171	int sigstopped;
172	int got_event;
173	int delivered;
174} * pids;
175
176struct pid_set {
177	struct pid_task * tasks;
178	size_t count;
179	size_t alloc;
180};
181
182/**
183 * Breakpoint re-enablement.  When we hit a breakpoint, we must
184 * disable it, single-step, and re-enable it.  That single-step can be
185 * done only by one task in a task group, while others are stopped,
186 * otherwise the processes would race for who sees the breakpoint
187 * disabled and who doesn't.  The following is to keep track of it
188 * all.
189 */
190struct process_stopping_handler
191{
192	Event_Handler super;
193
194	/* The task that is doing the re-enablement.  */
195	Process * task_enabling_breakpoint;
196
197	/* The pointer being re-enabled.  */
198	Breakpoint * breakpoint_being_enabled;
199
200	enum {
201		/* We are waiting for everyone to land in t/T.  */
202		psh_stopping = 0,
203
204		/* We are doing the PTRACE_SINGLESTEP.  */
205		psh_singlestep,
206
207		/* We are waiting for all the SIGSTOPs to arrive so
208		 * that we can sink them.  */
209		psh_sinking,
210
211		/* This is for tracking the ugly workaround.  */
212		psh_ugly_workaround,
213	} state;
214
215	int exiting;
216
217	struct pid_set pids;
218};
219
220static enum pcb_status
221task_stopped(Process * task, void * data)
222{
223	/* If the task is already stopped, don't worry about it.
224	 * Likewise if it managed to become a zombie or terminate in
225	 * the meantime.  This can happen when the whole thread group
226	 * is terminating.  */
227	switch (process_status(task->pid)) {
228	case ps_invalid:
229	case ps_tracing_stop:
230	case ps_zombie:
231		return pcb_cont;
232	default:
233		return pcb_stop;
234	}
235}
236
237static struct pid_task *
238get_task_info(struct pid_set * pids, pid_t pid)
239{
240	assert(pid != 0);
241	size_t i;
242	for (i = 0; i < pids->count; ++i)
243		if (pids->tasks[i].pid == pid)
244			return &pids->tasks[i];
245
246	return NULL;
247}
248
249static struct pid_task *
250add_task_info(struct pid_set * pids, pid_t pid)
251{
252	if (pids->count == pids->alloc) {
253		size_t ns = (2 * pids->alloc) ?: 4;
254		struct pid_task * n = realloc(pids->tasks,
255					      sizeof(*pids->tasks) * ns);
256		if (n == NULL)
257			return NULL;
258		pids->tasks = n;
259		pids->alloc = ns;
260	}
261	struct pid_task * task_info = &pids->tasks[pids->count++];
262	memset(task_info, 0, sizeof(*task_info));
263	task_info->pid = pid;
264	return task_info;
265}
266
267static enum pcb_status
268send_sigstop(Process * task, void * data)
269{
270	Process * leader = task->leader;
271	struct pid_set * pids = data;
272
273	/* Look for pre-existing task record, or add new.  */
274	struct pid_task * task_info = get_task_info(pids, task->pid);
275	if (task_info == NULL)
276		task_info = add_task_info(pids, task->pid);
277	if (task_info == NULL) {
278		perror("send_sigstop: add_task_info");
279		destroy_event_handler(leader);
280		/* Signal failure upwards.  */
281		return pcb_stop;
282	}
283
284	/* This task still has not been attached to.  It should be
285	   stopped by the kernel.  */
286	if (task->state == STATE_BEING_CREATED)
287		return pcb_cont;
288
289	/* Don't bother sending SIGSTOP if we are already stopped, or
290	 * if we sent the SIGSTOP already, which happens when we
291	 * inherit the handler from breakpoint re-enablement.  */
292	if (task_stopped(task, NULL) == pcb_cont)
293		return pcb_cont;
294	if (task_info->sigstopped) {
295		if (!task_info->delivered)
296			return pcb_cont;
297		task_info->delivered = 0;
298	}
299
300	if (task_kill(task->pid, SIGSTOP) >= 0) {
301		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
302		task_info->sigstopped = 1;
303	} else
304		fprintf(stderr,
305			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
306
307	return pcb_cont;
308}
309
310static void
311ugly_workaround(Process * proc, int cont)
312{
313	void * ip = get_instruction_pointer(proc);
314	Breakpoint * sbp = dict_find_entry(proc->leader->breakpoints, ip);
315	if (sbp != NULL)
316		enable_breakpoint(proc, sbp);
317	else
318		insert_breakpoint(proc, ip, NULL, 1);
319	if (cont)
320		ptrace(PTRACE_CONT, proc->pid, 0, 0);
321}
322
323static void
324process_stopping_done(struct process_stopping_handler * self, Process * leader)
325{
326	debug(DEBUG_PROCESS, "process stopping done %d",
327	      self->task_enabling_breakpoint->pid);
328	size_t i;
329	if (!self->exiting) {
330		for (i = 0; i < self->pids.count; ++i)
331			if (self->pids.tasks[i].pid != 0
332			    && self->pids.tasks[i].delivered)
333				continue_process(self->pids.tasks[i].pid);
334		continue_process(self->task_enabling_breakpoint->pid);
335		destroy_event_handler(leader);
336	} else {
337		self->state = psh_ugly_workaround;
338		ugly_workaround(self->task_enabling_breakpoint, 1);
339	}
340}
341
342/* Before we detach, we need to make sure that task's IP is on the
343 * edge of an instruction.  So for tasks that have a breakpoint event
344 * in the queue, we adjust the instruction pointer, just like
345 * continue_after_breakpoint does.  */
346static enum ecb_status
347undo_breakpoint(Event * event, void * data)
348{
349	if (event != NULL
350	    && event->proc->leader == data
351	    && event->type == EVENT_BREAKPOINT)
352		set_instruction_pointer(event->proc, event->e_un.brk_addr);
353	return ecb_cont;
354}
355
356static enum pcb_status
357untrace_task(Process * task, void * data)
358{
359	if (task != data)
360		untrace_pid(task->pid);
361	return pcb_cont;
362}
363
364static enum pcb_status
365remove_task(Process * task, void * data)
366{
367	/* Don't untrace leader just yet.  */
368	if (task != data)
369		remove_process(task);
370	return pcb_cont;
371}
372
373static void
374detach_process(Process * leader)
375{
376	each_qd_event(&undo_breakpoint, leader);
377	disable_all_breakpoints(leader);
378
379	/* Now untrace the process, if it was attached to by -p.  */
380	struct opt_p_t * it;
381	for (it = opt_p; it != NULL; it = it->next) {
382		Process * proc = pid2proc(it->pid);
383		if (proc == NULL)
384			continue;
385		if (proc->leader == leader) {
386			each_task(leader, &untrace_task, NULL);
387			break;
388		}
389	}
390	each_task(leader, &remove_task, leader);
391	destroy_event_handler(leader);
392	remove_task(leader, NULL);
393}
394
395static void
396handle_stopping_event(struct pid_task * task_info, Event ** eventp)
397{
398	/* Mark all events, so that we know whom to SIGCONT later.  */
399	if (task_info != NULL)
400		task_info->got_event = 1;
401
402	Event * event = *eventp;
403
404	/* In every state, sink SIGSTOP events for tasks that it was
405	 * sent to.  */
406	if (task_info != NULL
407	    && event->type == EVENT_SIGNAL
408	    && event->e_un.signum == SIGSTOP) {
409		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
410		if (task_info->sigstopped
411		    && !task_info->delivered) {
412			task_info->delivered = 1;
413			*eventp = NULL; // sink the event
414		} else
415			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
416				"sigstopped=%d and delivered=%d\n",
417				task_info->pid, task_info->sigstopped,
418				task_info->delivered);
419	}
420}
421
422/* Some SIGSTOPs may have not been delivered to their respective tasks
423 * yet.  They are still in the queue.  If we have seen an event for
424 * that process, continue it, so that the SIGSTOP can be delivered and
425 * caught by ltrace.  */
426static void
427continue_for_sigstop_delivery(struct pid_set * pids)
428{
429	size_t i;
430	for (i = 0; i < pids->count; ++i) {
431		if (pids->tasks[i].pid != 0
432		    && pids->tasks[i].sigstopped
433		    && !pids->tasks[i].delivered
434		    && pids->tasks[i].got_event) {
435			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
436			      pids->tasks[i].pid);
437			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
438		}
439	}
440}
441
442static int
443event_exit_p(Event * event)
444{
445	return event != NULL && (event->type == EVENT_EXIT
446				 || event->type == EVENT_EXIT_SIGNAL);
447}
448
449static int
450event_exit_or_none_p(Event * event)
451{
452	return event == NULL || event_exit_p(event)
453		|| event->type == EVENT_NONE;
454}
455
456static int
457await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
458		       Event * event)
459{
460	/* If we still didn't get our SIGSTOP, continue the process
461	 * and carry on.  */
462	if (event != NULL && !event_exit_or_none_p(event)
463	    && task_info != NULL && task_info->sigstopped) {
464		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
465		      task_info->pid);
466		/* We should get the signal the first thing
467		 * after this, so it should be OK to continue
468		 * even if we are over a breakpoint.  */
469		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
470
471	} else {
472		/* If all SIGSTOPs were delivered, uninstall the
473		 * handler and continue everyone.  */
474		/* XXX I suspect that we should check tasks that are
475		 * still around.  Is things are now, there should be a
476		 * race between waiting for everyone to stop and one
477		 * of the tasks exiting.  */
478		int all_clear = 1;
479		size_t i;
480		for (i = 0; i < pids->count; ++i)
481			if (pids->tasks[i].pid != 0
482			    && pids->tasks[i].sigstopped
483			    && !pids->tasks[i].delivered) {
484				all_clear = 0;
485				break;
486			}
487		return all_clear;
488	}
489
490	return 0;
491}
492
493static int
494all_stops_accountable(struct pid_set * pids)
495{
496	size_t i;
497	for (i = 0; i < pids->count; ++i)
498		if (pids->tasks[i].pid != 0
499		    && !pids->tasks[i].got_event
500		    && !have_events_for(pids->tasks[i].pid))
501			return 0;
502	return 1;
503}
504
505/* This event handler is installed when we are in the process of
506 * stopping the whole thread group to do the pointer re-enablement for
507 * one of the threads.  We pump all events to the queue for later
508 * processing while we wait for all the threads to stop.  When this
509 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
510 * re-enable, and continue everyone.  */
511static Event *
512process_stopping_on_event(Event_Handler * super, Event * event)
513{
514	struct process_stopping_handler * self = (void *)super;
515	Process * task = event->proc;
516	Process * leader = task->leader;
517	Breakpoint * sbp = self->breakpoint_being_enabled;
518	Process * teb = self->task_enabling_breakpoint;
519
520	debug(DEBUG_PROCESS,
521	      "pid %d; event type %d; state %d",
522	      task->pid, event->type, self->state);
523
524	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
525	if (task_info == NULL)
526		fprintf(stderr, "new task??? %d\n", task->pid);
527	handle_stopping_event(task_info, &event);
528
529	int state = self->state;
530	int event_to_queue = !event_exit_or_none_p(event);
531
532	/* Deactivate the entry if the task exits.  */
533	if (event_exit_p(event) && task_info != NULL)
534		task_info->pid = 0;
535
536	switch (state) {
537	case psh_stopping:
538		/* If everyone is stopped, singlestep.  */
539		if (each_task(leader, &task_stopped, NULL) == NULL) {
540			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
541			      teb->pid);
542			if (sbp->enabled)
543				disable_breakpoint(teb, sbp);
544			if (ptrace(PTRACE_SINGLESTEP, teb->pid, 0, 0))
545				perror("PTRACE_SINGLESTEP");
546			self->state = state = psh_singlestep;
547		}
548		break;
549
550	case psh_singlestep: {
551		/* In singlestep state, breakpoint signifies that we
552		 * have now stepped, and can re-enable the breakpoint.  */
553		if (event != NULL && task == teb) {
554			/* Essentially we don't care what event caused
555			 * the thread to stop.  We can do the
556			 * re-enablement now.  */
557			if (sbp->enabled)
558				enable_breakpoint(teb, sbp);
559
560			continue_for_sigstop_delivery(&self->pids);
561
562			self->breakpoint_being_enabled = NULL;
563			self->state = state = psh_sinking;
564
565			if (event->type == EVENT_BREAKPOINT)
566				event = NULL; // handled
567		} else
568			break;
569	}
570
571		/* fall-through */
572
573	case psh_sinking:
574		if (await_sigstop_delivery(&self->pids, task_info, event))
575			process_stopping_done(self, leader);
576		break;
577
578	case psh_ugly_workaround:
579		if (event == NULL)
580			break;
581		if (event->type == EVENT_BREAKPOINT) {
582			undo_breakpoint(event, leader);
583			if (task == teb)
584				self->task_enabling_breakpoint = NULL;
585		}
586		if (self->task_enabling_breakpoint == NULL
587		    && all_stops_accountable(&self->pids)) {
588			undo_breakpoint(event, leader);
589			detach_process(leader);
590			event = NULL; // handled
591		}
592	}
593
594	if (event != NULL && event_to_queue) {
595		enque_event(event);
596		event = NULL; // sink the event
597	}
598
599	return event;
600}
601
602static void
603process_stopping_destroy(Event_Handler * super)
604{
605	struct process_stopping_handler * self = (void *)super;
606	free(self->pids.tasks);
607}
608
609void
610continue_after_breakpoint(Process *proc, Breakpoint *sbp)
611{
612	set_instruction_pointer(proc, sbp->addr);
613	if (sbp->enabled == 0) {
614		continue_process(proc->pid);
615	} else {
616		debug(DEBUG_PROCESS,
617		      "continue_after_breakpoint: pid=%d, addr=%p",
618		      proc->pid, sbp->addr);
619#if defined __sparc__  || defined __ia64___ || defined __mips__
620		/* we don't want to singlestep here */
621		continue_process(proc->pid);
622#else
623		struct process_stopping_handler * handler
624			= calloc(sizeof(*handler), 1);
625		if (handler == NULL) {
626			perror("malloc breakpoint disable handler");
627		fatal:
628			/* Carry on not bothering to re-enable.  */
629			continue_process(proc->pid);
630			return;
631		}
632
633		handler->super.on_event = process_stopping_on_event;
634		handler->super.destroy = process_stopping_destroy;
635		handler->task_enabling_breakpoint = proc;
636		handler->breakpoint_being_enabled = sbp;
637		install_event_handler(proc->leader, &handler->super);
638
639		if (each_task(proc->leader, &send_sigstop,
640			      &handler->pids) != NULL)
641			goto fatal;
642
643		/* And deliver the first fake event, in case all the
644		 * conditions are already fulfilled.  */
645		Event ev;
646		ev.type = EVENT_NONE;
647		ev.proc = proc;
648		process_stopping_on_event(&handler->super, &ev);
649#endif
650	}
651}
652
653/**
654 * Ltrace exit.  When we are about to exit, we have to go through all
655 * the processes, stop them all, remove all the breakpoints, and then
656 * detach the processes that we attached to using -p.  If we left the
657 * other tasks running, they might hit stray return breakpoints and
658 * produce artifacts, so we better stop everyone, even if it's a bit
659 * of extra work.
660 */
661struct ltrace_exiting_handler
662{
663	Event_Handler super;
664	struct pid_set pids;
665};
666
667static Event *
668ltrace_exiting_on_event(Event_Handler * super, Event * event)
669{
670	struct ltrace_exiting_handler * self = (void *)super;
671	Process * task = event->proc;
672	Process * leader = task->leader;
673
674	debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
675
676	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
677	handle_stopping_event(task_info, &event);
678
679	if (event != NULL && event->type == EVENT_BREAKPOINT)
680		undo_breakpoint(event, leader);
681
682	if (await_sigstop_delivery(&self->pids, task_info, event)
683	    && all_stops_accountable(&self->pids))
684		detach_process(leader);
685
686	/* Sink all non-exit events.  We are about to exit, so we
687	 * don't bother with queuing them. */
688	if (event_exit_or_none_p(event))
689		return event;
690
691	return NULL;
692}
693
694static void
695ltrace_exiting_destroy(Event_Handler * super)
696{
697	struct ltrace_exiting_handler * self = (void *)super;
698	free(self->pids.tasks);
699}
700
701static int
702ltrace_exiting_install_handler(Process * proc)
703{
704	/* Only install to leader.  */
705	if (proc->leader != proc)
706		return 0;
707
708	/* Perhaps we are already installed, if the user passed
709	 * several -p options that are tasks of one process.  */
710	if (proc->event_handler != NULL
711	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
712		return 0;
713
714	/* If stopping handler is already present, let it do the
715	 * work.  */
716	if (proc->event_handler != NULL) {
717		assert(proc->event_handler->on_event
718		       == &process_stopping_on_event);
719		struct process_stopping_handler * other
720			= (void *)proc->event_handler;
721		other->exiting = 1;
722		return 0;
723	}
724
725	struct ltrace_exiting_handler * handler
726		= calloc(sizeof(*handler), 1);
727	if (handler == NULL) {
728		perror("malloc exiting handler");
729	fatal:
730		/* XXXXXXXXXXXXXXXXXXX fixme */
731		return -1;
732	}
733
734	handler->super.on_event = ltrace_exiting_on_event;
735	handler->super.destroy = ltrace_exiting_destroy;
736	install_event_handler(proc->leader, &handler->super);
737
738	if (each_task(proc->leader, &send_sigstop,
739		      &handler->pids) != NULL)
740		goto fatal;
741
742	return 0;
743}
744
745/* If ltrace gets SIGINT, the processes directly or indirectly run by
746 * ltrace get it too.  We just have to wait long enough for the signal
747 * to be delivered and the process terminated, which we notice and
748 * exit ltrace, too.  So there's not much we need to do there.  We
749 * want to keep tracing those processes as usual, in case they just
750 * SIG_IGN the SIGINT to do their shutdown etc.
751 *
752 * For processes ran on the background, we want to install an exit
753 * handler that stops all the threads, removes all breakpoints, and
754 * detaches.
755 */
756void
757ltrace_exiting(void)
758{
759	struct opt_p_t * it;
760	for (it = opt_p; it != NULL; it = it->next) {
761		Process * proc = pid2proc(it->pid);
762		if (proc == NULL || proc->leader == NULL)
763			continue;
764		if (ltrace_exiting_install_handler(proc->leader) < 0)
765			fprintf(stderr,
766				"Couldn't install exiting handler for %d.\n",
767				proc->pid);
768	}
769}
770
771size_t
772umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
773
774	union {
775		long a;
776		char c[sizeof(long)];
777	} a;
778	int started = 0;
779	size_t offset = 0, bytes_read = 0;
780
781	while (offset < len) {
782		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
783		if (a.a == -1 && errno) {
784			if (started && errno == EIO)
785				return bytes_read;
786			else
787				return -1;
788		}
789		started = 1;
790
791		if (len - offset >= sizeof(long)) {
792			memcpy(laddr + offset, &a.c[0], sizeof(long));
793			bytes_read += sizeof(long);
794		}
795		else {
796			memcpy(laddr + offset, &a.c[0], len - offset);
797			bytes_read += (len - offset);
798		}
799		offset += sizeof(long);
800	}
801
802	return bytes_read;
803}
804
805/* Read a series of bytes starting at the process's memory address
806   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
807   have been read.
808*/
809int
810umovestr(Process *proc, void *addr, int len, void *laddr) {
811	union {
812		long a;
813		char c[sizeof(long)];
814	} a;
815	unsigned i;
816	int offset = 0;
817
818	while (offset < len) {
819		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
820		for (i = 0; i < sizeof(long); i++) {
821			if (a.c[i] && offset + (signed)i < len) {
822				*(char *)(laddr + offset + i) = a.c[i];
823			} else {
824				*(char *)(laddr + offset + i) = '\0';
825				return 0;
826			}
827		}
828		offset += sizeof(long);
829	}
830	*(char *)(laddr + offset) = '\0';
831	return 0;
832}
833