trace.c revision a9d6a6732c5b0b692a40ac073695332078a73738
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2007,2011,2012,2013 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2010 Joe Damato
5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
6 * Copyright (C) 2006 Ian Wienand
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24#include "config.h"
25
26#include <asm/unistd.h>
27#include <sys/types.h>
28#include <sys/wait.h>
29#include <assert.h>
30#include <errno.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34#include <unistd.h>
35
36#ifdef HAVE_LIBSELINUX
37# include <selinux/selinux.h>
38#endif
39
40#include "linux-gnu/trace.h"
41#include "linux-gnu/trace-defs.h"
42#include "backend.h"
43#include "breakpoint.h"
44#include "debug.h"
45#include "events.h"
46#include "options.h"
47#include "proc.h"
48#include "ptrace.h"
49#include "type.h"
50
51void
52trace_fail_warning(pid_t pid)
53{
54	/* This was adapted from GDB.  */
55#ifdef HAVE_LIBSELINUX
56	static int checked = 0;
57	if (checked)
58		return;
59	checked = 1;
60
61	/* -1 is returned for errors, 0 if it has no effect, 1 if
62	 * PTRACE_ATTACH is forbidden.  */
63	if (security_get_boolean_active("deny_ptrace") == 1)
64		fprintf(stderr,
65"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
66"tracing other processes.  You can disable this process attach protection by\n"
67"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
68#endif /* HAVE_LIBSELINUX */
69}
70
71void
72trace_me(void)
73{
74	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
75	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
76		perror("PTRACE_TRACEME");
77		trace_fail_warning(getpid());
78		exit(1);
79	}
80}
81
82/* There's a (hopefully) brief period of time after the child process
83 * forks when we can't trace it yet.  Here we wait for kernel to
84 * prepare the process.  */
85int
86wait_for_proc(pid_t pid)
87{
88	/* man ptrace: PTRACE_ATTACH attaches to the process specified
89	   in pid.  The child is sent a SIGSTOP, but will not
90	   necessarily have stopped by the completion of this call;
91	   use wait() to wait for the child to stop. */
92	if (waitpid(pid, NULL, __WALL) != pid) {
93		perror ("trace_pid: waitpid");
94		return -1;
95	}
96
97	return 0;
98}
99
100int
101trace_pid(pid_t pid)
102{
103	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
104	/* This shouldn't emit error messages, as there are legitimate
105	 * reasons that the PID can't be attached: like it may have
106	 * already ended.  */
107	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
108		return -1;
109
110	return wait_for_proc(pid);
111}
112
113void
114trace_set_options(struct process *proc)
115{
116	if (proc->tracesysgood & 0x80)
117		return;
118
119	pid_t pid = proc->pid;
120	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
121
122	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
123		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
124		PTRACE_O_TRACEEXEC;
125	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
126	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
127		perror("PTRACE_SETOPTIONS");
128		return;
129	}
130	proc->tracesysgood |= 0x80;
131}
132
133void
134untrace_pid(pid_t pid) {
135	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
136	ptrace(PTRACE_DETACH, pid, 0, 0);
137}
138
139void
140continue_after_signal(pid_t pid, int signum)
141{
142	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
143	      pid, signum);
144	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
145}
146
147static enum ecb_status
148event_for_pid(Event *event, void *data)
149{
150	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
151		return ECB_YIELD;
152	return ECB_CONT;
153}
154
155static int
156have_events_for(pid_t pid)
157{
158	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
159}
160
161void
162continue_process(pid_t pid)
163{
164	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
165
166	/* Only really continue the process if there are no events in
167	   the queue for this process.  Otherwise just wait for the
168	   other events to arrive.  */
169	if (!have_events_for(pid))
170		/* We always trace syscalls to control fork(),
171		 * clone(), execve()... */
172		ptrace(PTRACE_SYSCALL, pid, 0, 0);
173	else
174		debug(DEBUG_PROCESS,
175		      "putting off the continue, events in que.");
176}
177
178static struct pid_task *
179get_task_info(struct pid_set *pids, pid_t pid)
180{
181	assert(pid != 0);
182	size_t i;
183	for (i = 0; i < pids->count; ++i)
184		if (pids->tasks[i].pid == pid)
185			return &pids->tasks[i];
186
187	return NULL;
188}
189
190static struct pid_task *
191add_task_info(struct pid_set *pids, pid_t pid)
192{
193	if (pids->count == pids->alloc) {
194		size_t ns = (2 * pids->alloc) ?: 4;
195		struct pid_task *n = realloc(pids->tasks,
196					     sizeof(*pids->tasks) * ns);
197		if (n == NULL)
198			return NULL;
199		pids->tasks = n;
200		pids->alloc = ns;
201	}
202	struct pid_task * task_info = &pids->tasks[pids->count++];
203	memset(task_info, 0, sizeof(*task_info));
204	task_info->pid = pid;
205	return task_info;
206}
207
208static enum callback_status
209task_stopped(struct process *task, void *data)
210{
211	enum process_status st = process_status(task->pid);
212	if (data != NULL)
213		*(enum process_status *)data = st;
214
215	/* If the task is already stopped, don't worry about it.
216	 * Likewise if it managed to become a zombie or terminate in
217	 * the meantime.  This can happen when the whole thread group
218	 * is terminating.  */
219	switch (st) {
220	case PS_INVALID:
221	case PS_TRACING_STOP:
222	case PS_ZOMBIE:
223		return CBS_CONT;
224	case PS_SLEEPING:
225	case PS_STOP:
226	case PS_OTHER:
227		return CBS_STOP;
228	}
229
230	abort ();
231}
232
233/* Task is blocked if it's stopped, or if it's a vfork parent.  */
234static enum callback_status
235task_blocked(struct process *task, void *data)
236{
237	struct pid_set *pids = data;
238	struct pid_task *task_info = get_task_info(pids, task->pid);
239	if (task_info != NULL
240	    && task_info->vforked)
241		return CBS_CONT;
242
243	return task_stopped(task, NULL);
244}
245
246static Event *process_vfork_on_event(struct event_handler *super, Event *event);
247
248static enum callback_status
249task_vforked(struct process *task, void *data)
250{
251	if (task->event_handler != NULL
252	    && task->event_handler->on_event == &process_vfork_on_event)
253		return CBS_STOP;
254	return CBS_CONT;
255}
256
257static int
258is_vfork_parent(struct process *task)
259{
260	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
261}
262
263static enum callback_status
264send_sigstop(struct process *task, void *data)
265{
266	struct process *leader = task->leader;
267	struct pid_set *pids = data;
268
269	/* Look for pre-existing task record, or add new.  */
270	struct pid_task *task_info = get_task_info(pids, task->pid);
271	if (task_info == NULL)
272		task_info = add_task_info(pids, task->pid);
273	if (task_info == NULL) {
274		perror("send_sigstop: add_task_info");
275		destroy_event_handler(leader);
276		/* Signal failure upwards.  */
277		return CBS_STOP;
278	}
279
280	/* This task still has not been attached to.  It should be
281	   stopped by the kernel.  */
282	if (task->state == STATE_BEING_CREATED)
283		return CBS_CONT;
284
285	/* Don't bother sending SIGSTOP if we are already stopped, or
286	 * if we sent the SIGSTOP already, which happens when we are
287	 * handling "onexit" and inherited the handler from breakpoint
288	 * re-enablement.  */
289	enum process_status st;
290	if (task_stopped(task, &st) == CBS_CONT)
291		return CBS_CONT;
292	if (task_info->sigstopped) {
293		if (!task_info->delivered)
294			return CBS_CONT;
295		task_info->delivered = 0;
296	}
297
298	/* Also don't attempt to stop the process if it's a parent of
299	 * vforked process.  We set up event handler specially to hint
300	 * us.  In that case parent is in D state, which we use to
301	 * weed out unnecessary looping.  */
302	if (st == PS_SLEEPING
303	    && is_vfork_parent(task)) {
304		task_info->vforked = 1;
305		return CBS_CONT;
306	}
307
308	if (task_kill(task->pid, SIGSTOP) >= 0) {
309		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
310		task_info->sigstopped = 1;
311	} else
312		fprintf(stderr,
313			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
314
315	return CBS_CONT;
316}
317
318/* On certain kernels, detaching right after a singlestep causes the
319   tracee to be killed with a SIGTRAP (that even though the singlestep
320   was properly caught by waitpid.  The ugly workaround is to put a
321   breakpoint where IP points and let the process continue.  After
322   this the breakpoint can be retracted and the process detached.  */
323static void
324ugly_workaround(struct process *proc)
325{
326	void *ip = get_instruction_pointer(proc);
327	struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip);
328	if (sbp != NULL)
329		enable_breakpoint(proc, sbp);
330	else
331		insert_breakpoint(proc, ip, NULL);
332	ptrace(PTRACE_CONT, proc->pid, 0, 0);
333}
334
335static void
336process_stopping_done(struct process_stopping_handler *self,
337		      struct process *leader)
338{
339	debug(DEBUG_PROCESS, "process stopping done %d",
340	      self->task_enabling_breakpoint->pid);
341
342	if (!self->exiting) {
343		size_t i;
344		for (i = 0; i < self->pids.count; ++i)
345			if (self->pids.tasks[i].pid != 0
346			    && (self->pids.tasks[i].delivered
347				|| self->pids.tasks[i].sysret))
348				continue_process(self->pids.tasks[i].pid);
349		continue_process(self->task_enabling_breakpoint->pid);
350	}
351
352	if (self->exiting) {
353	ugly_workaround:
354		self->state = PSH_UGLY_WORKAROUND;
355		ugly_workaround(self->task_enabling_breakpoint);
356	} else {
357		switch ((self->ugly_workaround_p)(self)) {
358		case CBS_FAIL:
359			/* xxx handle me */
360		case CBS_STOP:
361			break;
362		case CBS_CONT:
363			goto ugly_workaround;
364		}
365		destroy_event_handler(leader);
366	}
367}
368
369/* Before we detach, we need to make sure that task's IP is on the
370 * edge of an instruction.  So for tasks that have a breakpoint event
371 * in the queue, we adjust the instruction pointer, just like
372 * continue_after_breakpoint does.  */
373static enum ecb_status
374undo_breakpoint(Event *event, void *data)
375{
376	if (event != NULL
377	    && event->proc->leader == data
378	    && event->type == EVENT_BREAKPOINT)
379		set_instruction_pointer(event->proc, event->e_un.brk_addr);
380	return ECB_CONT;
381}
382
383static enum callback_status
384untrace_task(struct process *task, void *data)
385{
386	if (task != data)
387		untrace_pid(task->pid);
388	return CBS_CONT;
389}
390
391static enum callback_status
392remove_task(struct process *task, void *data)
393{
394	/* Don't untrace leader just yet.  */
395	if (task != data)
396		remove_process(task);
397	return CBS_CONT;
398}
399
400static enum callback_status
401retract_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data)
402{
403	breakpoint_on_retract(bp, proc);
404	return CBS_CONT;
405}
406
407static void
408detach_process(struct process *leader)
409{
410	each_qd_event(&undo_breakpoint, leader);
411	disable_all_breakpoints(leader);
412	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
413
414	/* Now untrace the process, if it was attached to by -p.  */
415	struct opt_p_t *it;
416	for (it = opt_p; it != NULL; it = it->next) {
417		struct process *proc = pid2proc(it->pid);
418		if (proc == NULL)
419			continue;
420		if (proc->leader == leader) {
421			each_task(leader, NULL, &untrace_task, NULL);
422			break;
423		}
424	}
425	each_task(leader, NULL, &remove_task, leader);
426	destroy_event_handler(leader);
427	remove_task(leader, NULL);
428}
429
430static void
431handle_stopping_event(struct pid_task *task_info, Event **eventp)
432{
433	/* Mark all events, so that we know whom to SIGCONT later.  */
434	if (task_info != NULL)
435		task_info->got_event = 1;
436
437	Event *event = *eventp;
438
439	/* In every state, sink SIGSTOP events for tasks that it was
440	 * sent to.  */
441	if (task_info != NULL
442	    && event->type == EVENT_SIGNAL
443	    && event->e_un.signum == SIGSTOP) {
444		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
445		if (task_info->sigstopped
446		    && !task_info->delivered) {
447			task_info->delivered = 1;
448			*eventp = NULL; // sink the event
449		} else
450			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
451				"sigstopped=%d and delivered=%d\n",
452				task_info->pid, task_info->sigstopped,
453				task_info->delivered);
454	}
455}
456
457/* Some SIGSTOPs may have not been delivered to their respective tasks
458 * yet.  They are still in the queue.  If we have seen an event for
459 * that process, continue it, so that the SIGSTOP can be delivered and
460 * caught by ltrace.  We don't mind that the process is after
461 * breakpoint (and therefore potentially doesn't have aligned IP),
462 * because the signal will be delivered without the process actually
463 * starting.  */
464static void
465continue_for_sigstop_delivery(struct pid_set *pids)
466{
467	size_t i;
468	for (i = 0; i < pids->count; ++i) {
469		if (pids->tasks[i].pid != 0
470		    && pids->tasks[i].sigstopped
471		    && !pids->tasks[i].delivered
472		    && pids->tasks[i].got_event) {
473			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
474			      pids->tasks[i].pid);
475			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
476		}
477	}
478}
479
480static int
481event_exit_p(Event *event)
482{
483	return event != NULL && (event->type == EVENT_EXIT
484				 || event->type == EVENT_EXIT_SIGNAL);
485}
486
487static int
488event_exit_or_none_p(Event *event)
489{
490	return event == NULL || event_exit_p(event)
491		|| event->type == EVENT_NONE;
492}
493
494static int
495await_sigstop_delivery(struct pid_set *pids, struct pid_task *task_info,
496		       Event *event)
497{
498	/* If we still didn't get our SIGSTOP, continue the process
499	 * and carry on.  */
500	if (event != NULL && !event_exit_or_none_p(event)
501	    && task_info != NULL && task_info->sigstopped) {
502		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
503		      task_info->pid);
504		/* We should get the signal the first thing
505		 * after this, so it should be OK to continue
506		 * even if we are over a breakpoint.  */
507		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
508
509	} else {
510		/* If all SIGSTOPs were delivered, uninstall the
511		 * handler and continue everyone.  */
512		/* XXX I suspect that we should check tasks that are
513		 * still around.  Is things are now, there should be a
514		 * race between waiting for everyone to stop and one
515		 * of the tasks exiting.  */
516		int all_clear = 1;
517		size_t i;
518		for (i = 0; i < pids->count; ++i)
519			if (pids->tasks[i].pid != 0
520			    && pids->tasks[i].sigstopped
521			    && !pids->tasks[i].delivered) {
522				all_clear = 0;
523				break;
524			}
525		return all_clear;
526	}
527
528	return 0;
529}
530
531static int
532all_stops_accountable(struct pid_set *pids)
533{
534	size_t i;
535	for (i = 0; i < pids->count; ++i)
536		if (pids->tasks[i].pid != 0
537		    && !pids->tasks[i].got_event
538		    && !have_events_for(pids->tasks[i].pid))
539			return 0;
540	return 1;
541}
542
543#ifndef ARCH_HAVE_SW_SINGLESTEP
544enum sw_singlestep_status
545arch_sw_singlestep(struct process *proc, struct breakpoint *bp,
546		   int (*add_cb)(arch_addr_t, struct sw_singlestep_data *),
547		   struct sw_singlestep_data *data)
548{
549	return SWS_HW;
550}
551#endif
552
553static Event *process_stopping_on_event(struct event_handler *super,
554					Event *event);
555
556static void
557remove_sw_breakpoints(struct process *proc)
558{
559	struct process_stopping_handler *self
560		= (void *)proc->leader->event_handler;
561	assert(self != NULL);
562	assert(self->super.on_event == process_stopping_on_event);
563
564	int ct = sizeof(self->sws_bp_addrs) / sizeof(*self->sws_bp_addrs);
565	int i;
566	for (i = 0; i < ct; ++i)
567		if (self->sws_bp_addrs[i] != 0) {
568			delete_breakpoint(proc, self->sws_bp_addrs[i]);
569			self->sws_bp_addrs[i] = 0;
570		}
571}
572
573static void
574sw_singlestep_bp_on_hit(struct breakpoint *bp, struct process *proc)
575{
576	remove_sw_breakpoints(proc);
577}
578
579struct sw_singlestep_data {
580	struct process_stopping_handler *self;
581};
582
583static int
584sw_singlestep_add_bp(arch_addr_t addr, struct sw_singlestep_data *data)
585{
586	struct process_stopping_handler *self = data->self;
587	struct process *proc = self->task_enabling_breakpoint;
588
589	int ct = sizeof(self->sws_bp_addrs)
590		/ sizeof(*self->sws_bp_addrs);
591	int i;
592	for (i = 0; i < ct; ++i)
593		if (self->sws_bp_addrs[i] == 0) {
594			self->sws_bp_addrs[i] = addr;
595			static struct bp_callbacks cbs = {
596				.on_hit = sw_singlestep_bp_on_hit,
597			};
598			struct breakpoint *bp
599				= insert_breakpoint(proc, addr, NULL);
600			breakpoint_set_callbacks(bp, &cbs);
601			return 0;
602		}
603
604	assert(!"Too many sw singlestep breakpoints!");
605	abort();
606}
607
608static int
609singlestep(struct process_stopping_handler *self)
610{
611	struct process *proc = self->task_enabling_breakpoint;
612
613	struct sw_singlestep_data data = { self };
614	switch (arch_sw_singlestep(self->task_enabling_breakpoint,
615				   self->breakpoint_being_enabled,
616				   &sw_singlestep_add_bp, &data)) {
617	case SWS_HW:
618		/* Otherwise do the default action: singlestep.  */
619		debug(1, "PTRACE_SINGLESTEP");
620		if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
621			perror("PTRACE_SINGLESTEP");
622			return -1;
623		}
624		return 0;
625
626	case SWS_OK:
627		return 0;
628
629	case SWS_FAIL:
630		return -1;
631	}
632	abort();
633}
634
635static void
636post_singlestep(struct process_stopping_handler *self,
637		struct Event **eventp)
638{
639	continue_for_sigstop_delivery(&self->pids);
640
641	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
642		*eventp = NULL; // handled
643
644	struct process *proc = self->task_enabling_breakpoint;
645
646	remove_sw_breakpoints(proc);
647	self->breakpoint_being_enabled = NULL;
648}
649
650static void
651singlestep_error(struct process_stopping_handler *self)
652{
653	struct process *teb = self->task_enabling_breakpoint;
654	struct breakpoint *sbp = self->breakpoint_being_enabled;
655	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
656		teb->pid, breakpoint_name(sbp),	sbp->addr,
657		get_instruction_pointer(teb));
658	delete_breakpoint(teb->leader, sbp->addr);
659}
660
661static void
662pt_continue(struct process_stopping_handler *self)
663{
664	struct process *teb = self->task_enabling_breakpoint;
665	debug(1, "PTRACE_CONT");
666	ptrace(PTRACE_CONT, teb->pid, 0, 0);
667}
668
669static void
670pt_singlestep(struct process_stopping_handler *self)
671{
672	if (singlestep(self) < 0)
673		singlestep_error(self);
674}
675
676static void
677disable_and(struct process_stopping_handler *self,
678	    void (*do_this)(struct process_stopping_handler *self))
679{
680	struct process *teb = self->task_enabling_breakpoint;
681	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
682	if (self->breakpoint_being_enabled->enabled)
683		disable_breakpoint(teb, self->breakpoint_being_enabled);
684	(do_this)(self);
685	self->state = PSH_SINGLESTEP;
686}
687
688void
689linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
690{
691	disable_and(self, &pt_singlestep);
692}
693
694void
695linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
696{
697	disable_and(self, &pt_continue);
698}
699
700/* This event handler is installed when we are in the process of
701 * stopping the whole thread group to do the pointer re-enablement for
702 * one of the threads.  We pump all events to the queue for later
703 * processing while we wait for all the threads to stop.  When this
704 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
705 * re-enable, and continue everyone.  */
706static Event *
707process_stopping_on_event(struct event_handler *super, Event *event)
708{
709	struct process_stopping_handler *self = (void *)super;
710	struct process *task = event->proc;
711	struct process *leader = task->leader;
712	struct process *teb = self->task_enabling_breakpoint;
713
714	debug(DEBUG_PROCESS,
715	      "process_stopping_on_event: pid %d; event type %d; state %d",
716	      task->pid, event->type, self->state);
717
718	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
719	if (task_info == NULL)
720		fprintf(stderr, "new task??? %d\n", task->pid);
721	handle_stopping_event(task_info, &event);
722
723	int state = self->state;
724	int event_to_queue = !event_exit_or_none_p(event);
725
726	/* Deactivate the entry if the task exits.  */
727	if (event_exit_p(event) && task_info != NULL)
728		task_info->pid = 0;
729
730	/* Always handle sysrets.  Whether sysret occurred and what
731	 * sys it rets from may need to be determined based on process
732	 * stack, so we need to keep that in sync with reality.  Note
733	 * that we don't continue the process after the sysret is
734	 * handled.  See continue_after_syscall.  */
735	if (event != NULL && event->type == EVENT_SYSRET) {
736		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
737		event_to_queue = 0;
738		task_info->sysret = 1;
739	}
740
741	switch (state) {
742	case PSH_STOPPING:
743		/* If everyone is stopped, singlestep.  */
744		if (each_task(leader, NULL, &task_blocked,
745			      &self->pids) == NULL) {
746			(self->on_all_stopped)(self);
747			state = self->state;
748		}
749		break;
750
751	case PSH_SINGLESTEP:
752		/* In singlestep state, breakpoint signifies that we
753		 * have now stepped, and can re-enable the breakpoint.  */
754		if (event != NULL && task == teb) {
755
756			/* If this was caused by a real breakpoint, as
757			 * opposed to a singlestep, assume that it's
758			 * an artificial breakpoint installed for some
759			 * reason for the re-enablement.  In that case
760			 * handle it.  */
761			if (event->type == EVENT_BREAKPOINT) {
762				arch_addr_t ip
763					= get_instruction_pointer(task);
764				struct breakpoint *other
765					= address2bpstruct(leader, ip);
766				if (other != NULL)
767					breakpoint_on_hit(other, task);
768			}
769
770			/* If we got SIGNAL instead of BREAKPOINT,
771			 * then this is not singlestep at all.  */
772			if (event->type == EVENT_SIGNAL) {
773			do_singlestep:
774				if (singlestep(self) < 0) {
775					singlestep_error(self);
776					post_singlestep(self, &event);
777					goto psh_sinking;
778				}
779				break;
780			} else {
781				switch ((self->keep_stepping_p)(self)) {
782				case CBS_FAIL:
783					/* XXX handle me */
784				case CBS_STOP:
785					break;
786				case CBS_CONT:
787					/* Sink singlestep event.  */
788					if (event->type == EVENT_BREAKPOINT)
789						event = NULL;
790					goto do_singlestep;
791				}
792			}
793
794			/* Re-enable the breakpoint that we are
795			 * stepping over.  */
796			struct breakpoint *sbp = self->breakpoint_being_enabled;
797			if (sbp->enabled)
798				enable_breakpoint(teb, sbp);
799
800			post_singlestep(self, &event);
801			goto psh_sinking;
802		}
803		break;
804
805	psh_sinking:
806		state = self->state = PSH_SINKING;
807		/* Fall through.  */
808	case PSH_SINKING:
809		if (await_sigstop_delivery(&self->pids, task_info, event))
810			process_stopping_done(self, leader);
811		break;
812
813	case PSH_UGLY_WORKAROUND:
814		if (event == NULL)
815			break;
816		if (event->type == EVENT_BREAKPOINT) {
817			undo_breakpoint(event, leader);
818			if (task == teb)
819				self->task_enabling_breakpoint = NULL;
820		}
821		if (self->task_enabling_breakpoint == NULL
822		    && all_stops_accountable(&self->pids)) {
823			undo_breakpoint(event, leader);
824			detach_process(leader);
825			event = NULL; // handled
826		}
827	}
828
829	if (event != NULL && event_to_queue) {
830		enque_event(event);
831		event = NULL; // sink the event
832	}
833
834	return event;
835}
836
837static void
838process_stopping_destroy(struct event_handler *super)
839{
840	struct process_stopping_handler *self = (void *)super;
841	free(self->pids.tasks);
842}
843
844static enum callback_status
845no(struct process_stopping_handler *self)
846{
847	return CBS_STOP;
848}
849
850int
851process_install_stopping_handler(struct process *proc, struct breakpoint *sbp,
852				 void (*as)(struct process_stopping_handler *),
853				 enum callback_status (*ks)
854					 (struct process_stopping_handler *),
855				 enum callback_status (*uw)
856					(struct process_stopping_handler *))
857{
858	debug(DEBUG_FUNCTION,
859	      "process_install_stopping_handler: pid=%d", proc->pid);
860
861	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
862	if (handler == NULL)
863		return -1;
864
865	if (as == NULL)
866		as = &linux_ptrace_disable_and_singlestep;
867	if (ks == NULL)
868		ks = &no;
869	if (uw == NULL)
870		uw = &no;
871
872	handler->super.on_event = process_stopping_on_event;
873	handler->super.destroy = process_stopping_destroy;
874	handler->task_enabling_breakpoint = proc;
875	handler->breakpoint_being_enabled = sbp;
876	handler->on_all_stopped = as;
877	handler->keep_stepping_p = ks;
878	handler->ugly_workaround_p = uw;
879
880	install_event_handler(proc->leader, &handler->super);
881
882	if (each_task(proc->leader, NULL, &send_sigstop,
883		      &handler->pids) != NULL) {
884		destroy_event_handler(proc);
885		return -1;
886	}
887
888	/* And deliver the first fake event, in case all the
889	 * conditions are already fulfilled.  */
890	Event ev = {
891		.type = EVENT_NONE,
892		.proc = proc,
893	};
894	process_stopping_on_event(&handler->super, &ev);
895
896	return 0;
897}
898
899void
900continue_after_breakpoint(struct process *proc, struct breakpoint *sbp)
901{
902	debug(DEBUG_PROCESS,
903	      "continue_after_breakpoint: pid=%d, addr=%p",
904	      proc->pid, sbp->addr);
905
906	set_instruction_pointer(proc, sbp->addr);
907
908	if (sbp->enabled == 0) {
909		continue_process(proc->pid);
910	} else if (process_install_stopping_handler
911			(proc, sbp, NULL, NULL, NULL) < 0) {
912		perror("process_stopping_handler_create");
913		/* Carry on not bothering to re-enable.  */
914		continue_process(proc->pid);
915	}
916}
917
918/**
919 * Ltrace exit.  When we are about to exit, we have to go through all
920 * the processes, stop them all, remove all the breakpoints, and then
921 * detach the processes that we attached to using -p.  If we left the
922 * other tasks running, they might hit stray return breakpoints and
923 * produce artifacts, so we better stop everyone, even if it's a bit
924 * of extra work.
925 */
926struct ltrace_exiting_handler
927{
928	struct event_handler super;
929	struct pid_set pids;
930};
931
932static Event *
933ltrace_exiting_on_event(struct event_handler *super, Event *event)
934{
935	struct ltrace_exiting_handler *self = (void *)super;
936	struct process *task = event->proc;
937	struct process *leader = task->leader;
938
939	debug(DEBUG_PROCESS,
940	      "ltrace_exiting_on_event: pid %d; event type %d",
941	      task->pid, event->type);
942
943	struct pid_task *task_info = get_task_info(&self->pids, task->pid);
944	handle_stopping_event(task_info, &event);
945
946	if (event != NULL && event->type == EVENT_BREAKPOINT)
947		undo_breakpoint(event, leader);
948
949	if (await_sigstop_delivery(&self->pids, task_info, event)
950	    && all_stops_accountable(&self->pids))
951		detach_process(leader);
952
953	/* Sink all non-exit events.  We are about to exit, so we
954	 * don't bother with queuing them. */
955	if (event_exit_or_none_p(event))
956		return event;
957
958	return NULL;
959}
960
961static void
962ltrace_exiting_destroy(struct event_handler *super)
963{
964	struct ltrace_exiting_handler *self = (void *)super;
965	free(self->pids.tasks);
966}
967
968static int
969ltrace_exiting_install_handler(struct process *proc)
970{
971	/* Only install to leader.  */
972	if (proc->leader != proc)
973		return 0;
974
975	/* Perhaps we are already installed, if the user passed
976	 * several -p options that are tasks of one process.  */
977	if (proc->event_handler != NULL
978	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
979		return 0;
980
981	/* If stopping handler is already present, let it do the
982	 * work.  */
983	if (proc->event_handler != NULL) {
984		assert(proc->event_handler->on_event
985		       == &process_stopping_on_event);
986		struct process_stopping_handler *other
987			= (void *)proc->event_handler;
988		other->exiting = 1;
989		return 0;
990	}
991
992	struct ltrace_exiting_handler *handler
993		= calloc(sizeof(*handler), 1);
994	if (handler == NULL) {
995		perror("malloc exiting handler");
996	fatal:
997		/* XXXXXXXXXXXXXXXXXXX fixme */
998		return -1;
999	}
1000
1001	handler->super.on_event = ltrace_exiting_on_event;
1002	handler->super.destroy = ltrace_exiting_destroy;
1003	install_event_handler(proc->leader, &handler->super);
1004
1005	if (each_task(proc->leader, NULL, &send_sigstop,
1006		      &handler->pids) != NULL)
1007		goto fatal;
1008
1009	return 0;
1010}
1011
1012/*
1013 * When the traced process vforks, it's suspended until the child
1014 * process calls _exit or exec*.  In the meantime, the two share the
1015 * address space.
1016 *
1017 * The child process should only ever call _exit or exec*, but we
1018 * can't count on that (it's not the role of ltrace to policy, but to
1019 * observe).  In any case, we will _at least_ have to deal with
1020 * removal of vfork return breakpoint (which we have to smuggle back
1021 * in, so that the parent can see it, too), and introduction of exec*
1022 * return breakpoint.  Since we already have both breakpoint actions
1023 * to deal with, we might as well support it all.
1024 *
1025 * The gist is that we pretend that the child is in a thread group
1026 * with its parent, and handle it as a multi-threaded case, with the
1027 * exception that we know that the parent is blocked, and don't
1028 * attempt to stop it.  When the child execs, we undo the setup.
1029 */
1030
1031struct process_vfork_handler
1032{
1033	struct event_handler super;
1034	void *bp_addr;
1035};
1036
1037static Event *
1038process_vfork_on_event(struct event_handler *super, Event *event)
1039{
1040	debug(DEBUG_PROCESS,
1041	      "process_vfork_on_event: pid %d; event type %d",
1042	      event->proc->pid, event->type);
1043
1044	struct process_vfork_handler *self = (void *)super;
1045	struct breakpoint *sbp;
1046	assert(self != NULL);
1047
1048	switch (event->type) {
1049	case EVENT_BREAKPOINT:
1050		/* Remember the vfork return breakpoint.  */
1051		if (self->bp_addr == 0)
1052			self->bp_addr = event->e_un.brk_addr;
1053		break;
1054
1055	case EVENT_EXIT:
1056	case EVENT_EXIT_SIGNAL:
1057	case EVENT_EXEC:
1058		/* Smuggle back in the vfork return breakpoint, so
1059		 * that our parent can trip over it once again.  */
1060		if (self->bp_addr != 0) {
1061			sbp = dict_find_entry(event->proc->leader->breakpoints,
1062					      self->bp_addr);
1063			if (sbp != NULL)
1064				assert(sbp->libsym == NULL);
1065			/* We don't mind failing that, it's not a big
1066			 * deal to not display one extra vfork return.  */
1067			insert_breakpoint(event->proc->parent,
1068					  self->bp_addr, NULL);
1069		}
1070
1071		continue_process(event->proc->parent->pid);
1072
1073		/* Remove the leader that we artificially set up
1074		 * earlier.  */
1075		change_process_leader(event->proc, event->proc);
1076		destroy_event_handler(event->proc);
1077
1078	default:
1079		;
1080	}
1081
1082	return event;
1083}
1084
1085void
1086continue_after_vfork(struct process *proc)
1087{
1088	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1089	struct process_vfork_handler *handler = calloc(sizeof(*handler), 1);
1090	if (handler == NULL) {
1091		perror("malloc vfork handler");
1092		/* Carry on not bothering to treat the process as
1093		 * necessary.  */
1094		continue_process(proc->parent->pid);
1095		return;
1096	}
1097
1098	/* We must set up custom event handler, so that we see
1099	 * exec/exit events for the task itself.  */
1100	handler->super.on_event = process_vfork_on_event;
1101	install_event_handler(proc, &handler->super);
1102
1103	/* Make sure that the child is sole thread.  */
1104	assert(proc->leader == proc);
1105	assert(proc->next == NULL || proc->next->leader != proc);
1106
1107	/* Make sure that the child's parent is properly set up.  */
1108	assert(proc->parent != NULL);
1109	assert(proc->parent->leader != NULL);
1110
1111	change_process_leader(proc, proc->parent->leader);
1112}
1113
1114static int
1115is_mid_stopping(struct process *proc)
1116{
1117	return proc != NULL
1118		&& proc->event_handler != NULL
1119		&& proc->event_handler->on_event == &process_stopping_on_event;
1120}
1121
1122void
1123continue_after_syscall(struct process *proc, int sysnum, int ret_p)
1124{
1125	/* Don't continue if we are mid-stopping.  */
1126	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1127		debug(DEBUG_PROCESS,
1128		      "continue_after_syscall: don't continue %d",
1129		      proc->pid);
1130		return;
1131	}
1132	continue_process(proc->pid);
1133}
1134
1135void
1136continue_after_exec(struct process *proc)
1137{
1138	continue_process(proc->pid);
1139
1140	/* After the exec, we expect to hit the first executable
1141	 * instruction.
1142	 *
1143	 * XXX TODO It would be nice to have this removed, but then we
1144	 * need to do that also for initial call to wait_for_proc in
1145	 * execute_program.  In that case we could generate a
1146	 * EVENT_FIRST event or something, or maybe this could somehow
1147	 * be rolled into EVENT_NEW.  */
1148	wait_for_proc(proc->pid);
1149	continue_process(proc->pid);
1150}
1151
1152/* If ltrace gets SIGINT, the processes directly or indirectly run by
1153 * ltrace get it too.  We just have to wait long enough for the signal
1154 * to be delivered and the process terminated, which we notice and
1155 * exit ltrace, too.  So there's not much we need to do there.  We
1156 * want to keep tracing those processes as usual, in case they just
1157 * SIG_IGN the SIGINT to do their shutdown etc.
1158 *
1159 * For processes ran on the background, we want to install an exit
1160 * handler that stops all the threads, removes all breakpoints, and
1161 * detaches.
1162 */
1163void
1164os_ltrace_exiting(void)
1165{
1166	struct opt_p_t *it;
1167	for (it = opt_p; it != NULL; it = it->next) {
1168		struct process *proc = pid2proc(it->pid);
1169		if (proc == NULL || proc->leader == NULL)
1170			continue;
1171		if (ltrace_exiting_install_handler(proc->leader) < 0)
1172			fprintf(stderr,
1173				"Couldn't install exiting handler for %d.\n",
1174				proc->pid);
1175	}
1176}
1177
1178int
1179os_ltrace_exiting_sighandler(void)
1180{
1181	extern int linux_in_waitpid;
1182	if (linux_in_waitpid) {
1183		os_ltrace_exiting();
1184		return 1;
1185	}
1186	return 0;
1187}
1188
1189size_t
1190umovebytes(struct process *proc, void *addr, void *laddr, size_t len)
1191{
1192
1193	union {
1194		long a;
1195		char c[sizeof(long)];
1196	} a;
1197	int started = 0;
1198	size_t offset = 0, bytes_read = 0;
1199
1200	while (offset < len) {
1201		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1202		if (a.a == -1 && errno) {
1203			if (started && errno == EIO)
1204				return bytes_read;
1205			else
1206				return -1;
1207		}
1208		started = 1;
1209
1210		if (len - offset >= sizeof(long)) {
1211			memcpy(laddr + offset, &a.c[0], sizeof(long));
1212			bytes_read += sizeof(long);
1213		}
1214		else {
1215			memcpy(laddr + offset, &a.c[0], len - offset);
1216			bytes_read += (len - offset);
1217		}
1218		offset += sizeof(long);
1219	}
1220
1221	return bytes_read;
1222}
1223