trace.c revision ec85e84d2d3dc441dc2f1a6b403ed495cefd2c5b
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4#include <errno.h>
5#include <unistd.h>
6#include <sys/types.h>
7#include <sys/wait.h>
8#include "ptrace.h"
9#include <asm/unistd.h>
10#include <assert.h>
11
12#include "common.h"
13
14/* If the system headers did not provide the constants, hard-code the normal
15   values.  */
16#ifndef PTRACE_EVENT_FORK
17
18#define PTRACE_OLDSETOPTIONS    21
19#define PTRACE_SETOPTIONS       0x4200
20#define PTRACE_GETEVENTMSG      0x4201
21
22/* options set using PTRACE_SETOPTIONS */
23#define PTRACE_O_TRACESYSGOOD   0x00000001
24#define PTRACE_O_TRACEFORK      0x00000002
25#define PTRACE_O_TRACEVFORK     0x00000004
26#define PTRACE_O_TRACECLONE     0x00000008
27#define PTRACE_O_TRACEEXEC      0x00000010
28#define PTRACE_O_TRACEVFORKDONE 0x00000020
29#define PTRACE_O_TRACEEXIT      0x00000040
30
31/* Wait extended result codes for the above trace options.  */
32#define PTRACE_EVENT_FORK       1
33#define PTRACE_EVENT_VFORK      2
34#define PTRACE_EVENT_CLONE      3
35#define PTRACE_EVENT_EXEC       4
36#define PTRACE_EVENT_VFORK_DONE 5
37#define PTRACE_EVENT_EXIT       6
38
39#endif /* PTRACE_EVENT_FORK */
40
41#ifdef ARCH_HAVE_UMOVELONG
42extern int arch_umovelong (Process *, void *, long *, arg_type_info *);
43int
44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
45	return arch_umovelong (proc, addr, result, info);
46}
47#else
48/* Read a single long from the process's memory address 'addr' */
49int
50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) {
51	long pointed_to;
52
53	errno = 0;
54	pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0);
55	if (pointed_to == -1 && errno)
56		return -errno;
57
58	*result = pointed_to;
59	if (info) {
60		switch(info->type) {
61			case ARGTYPE_INT:
62				*result &= 0x00000000ffffffffUL;
63			default:
64				break;
65		};
66	}
67	return 0;
68}
69#endif
70
71void
72trace_me(void) {
73	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
74	if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) {
75		perror("PTRACE_TRACEME");
76		exit(1);
77	}
78}
79
80int
81trace_pid(pid_t pid) {
82	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
83	if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) {
84		return -1;
85	}
86
87	/* man ptrace: PTRACE_ATTACH attaches to the process specified
88	   in pid.  The child is sent a SIGSTOP, but will not
89	   necessarily have stopped by the completion of this call;
90	   use wait() to wait for the child to stop. */
91	if (waitpid (pid, NULL, __WALL) != pid) {
92		perror ("trace_pid: waitpid");
93		return -1;
94	}
95
96	return 0;
97}
98
99void
100trace_set_options(Process *proc, pid_t pid) {
101	if (proc->tracesysgood & 0x80)
102		return;
103
104	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
105
106	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
107		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
108		PTRACE_O_TRACEEXEC;
109	if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 &&
110	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) {
111		perror("PTRACE_SETOPTIONS");
112		return;
113	}
114	proc->tracesysgood |= 0x80;
115}
116
117void
118untrace_pid(pid_t pid) {
119	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
120	ptrace(PTRACE_DETACH, pid, 1, 0);
121}
122
123void
124continue_after_signal(pid_t pid, int signum) {
125	Process *proc;
126
127	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum);
128
129	proc = pid2proc(pid);
130	ptrace(PTRACE_SYSCALL, pid, 0, signum);
131}
132
133static enum ecb_status
134event_for_pid(Event * event, void * data)
135{
136	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
137		return ecb_yield;
138	return ecb_cont;
139}
140
141static int
142have_events_for(pid_t pid)
143{
144	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
145}
146
147void
148continue_process(pid_t pid)
149{
150	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
151
152	/* Only really continue the process if there are no events in
153	   the queue for this process.  Otherwise just for the other
154	   events to arrive.  */
155	if (!have_events_for(pid))
156		/* We always trace syscalls to control fork(),
157		 * clone(), execve()... */
158		ptrace(PTRACE_SYSCALL, pid, 0, 0);
159	else
160		debug(DEBUG_PROCESS,
161		      "putting off the continue, events in que.");
162}
163
164/**
165 * This is used for bookkeeping related to PIDs that the event
166 * handlers work with.
167 */
168struct pid_task {
169	pid_t pid;	/* This may be 0 for tasks that exited
170			 * mid-handling.  */
171	int sigstopped;
172	int got_event;
173	int delivered;
174} * pids;
175
176struct pid_set {
177	struct pid_task * tasks;
178	size_t count;
179	size_t alloc;
180};
181
182/**
183 * Breakpoint re-enablement.  When we hit a breakpoint, we must
184 * disable it, single-step, and re-enable it.  That single-step can be
185 * done only by one task in a task group, while others are stopped,
186 * otherwise the processes would race for who sees the breakpoint
187 * disabled and who doesn't.  The following is to keep track of it
188 * all.
189 */
190struct process_stopping_handler
191{
192	Event_Handler super;
193
194	/* The task that is doing the re-enablement.  */
195	Process * task_enabling_breakpoint;
196
197	/* The pointer being re-enabled.  */
198	Breakpoint * breakpoint_being_enabled;
199
200	enum {
201		/* We are waiting for everyone to land in t/T.  */
202		psh_stopping = 0,
203
204		/* We are doing the PTRACE_SINGLESTEP.  */
205		psh_singlestep,
206
207		/* We are waiting for all the SIGSTOPs to arrive so
208		 * that we can sink them.  */
209		psh_sinking,
210
211		/* This is for tracking the ugly workaround.  */
212		psh_ugly_workaround,
213	} state;
214
215	struct pid_set pids;
216};
217
218static enum pcb_status
219task_stopped(Process * task, void * data)
220{
221	/* If the task is already stopped, don't worry about it.
222	 * Likewise if it managed to become a zombie or terminate in
223	 * the meantime.  This can happen when the whole thread group
224	 * is terminating.  */
225	switch (process_status(task->pid)) {
226	case ps_invalid:
227	case ps_tracing_stop:
228	case ps_zombie:
229		return pcb_cont;
230	default:
231		return pcb_stop;
232	}
233}
234
235static struct pid_task *
236get_task_info(struct pid_set * pids, pid_t pid)
237{
238	assert(pid != 0);
239	size_t i;
240	for (i = 0; i < pids->count; ++i)
241		if (pids->tasks[i].pid == pid)
242			return &pids->tasks[i];
243
244	return NULL;
245}
246
247static struct pid_task *
248add_task_info(struct pid_set * pids, pid_t pid)
249{
250	if (pids->count == pids->alloc) {
251		size_t ns = (2 * pids->alloc) ?: 4;
252		struct pid_task * n = realloc(pids->tasks,
253					      sizeof(*pids->tasks) * ns);
254		if (n == NULL)
255			return NULL;
256		pids->tasks = n;
257		pids->alloc = ns;
258	}
259	struct pid_task * task_info = &pids->tasks[pids->count++];
260	memset(task_info, 0, sizeof(*task_info));
261	task_info->pid = pid;
262	return task_info;
263}
264
265static enum pcb_status
266send_sigstop(Process * task, void * data)
267{
268	Process * leader = task->leader;
269	struct pid_set * pids = data;
270
271	/* Look for pre-existing task record, or add new.  */
272	struct pid_task * task_info = get_task_info(pids, task->pid);
273	if (task_info == NULL)
274		task_info = add_task_info(pids, task->pid);
275	if (task_info == NULL) {
276		perror("send_sigstop: add_task_info");
277		destroy_event_handler(leader);
278		/* Signal failure upwards.  */
279		return pcb_stop;
280	}
281
282	/* This task still has not been attached to.  It should be
283	   stopped by the kernel.  */
284	if (task->state == STATE_BEING_CREATED)
285		return pcb_cont;
286
287	/* Don't bother sending SIGSTOP if we are already stopped, or
288	 * if we sent the SIGSTOP already, which happens when we
289	 * inherit the handler from breakpoint re-enablement.  */
290	if (task_stopped(task, NULL) == pcb_cont)
291		return pcb_cont;
292	if (task_info->sigstopped) {
293		if (!task_info->delivered)
294			return pcb_cont;
295		task_info->delivered = 0;
296	}
297
298	if (task_kill(task->pid, SIGSTOP) >= 0) {
299		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
300		task_info->sigstopped = 1;
301	} else
302		fprintf(stderr,
303			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
304
305	return pcb_cont;
306}
307
308static void
309process_stopping_done(struct process_stopping_handler * self, Process * leader)
310{
311	debug(DEBUG_PROCESS, "process stopping done %d",
312	      self->task_enabling_breakpoint->pid);
313	size_t i;
314	for (i = 0; i < self->pids.count; ++i)
315		if (self->pids.tasks[i].pid != 0
316		    && self->pids.tasks[i].delivered)
317			continue_process(self->pids.tasks[i].pid);
318	continue_process(self->task_enabling_breakpoint->pid);
319	destroy_event_handler(leader);
320}
321
322static void
323handle_stopping_event(struct pid_task * task_info, Event ** eventp)
324{
325	/* Mark all events, so that we know whom to SIGCONT later.  */
326	if (task_info != NULL)
327		task_info->got_event = 1;
328
329	Event * event = *eventp;
330
331	/* In every state, sink SIGSTOP events for tasks that it was
332	 * sent to.  */
333	if (task_info != NULL
334	    && event->type == EVENT_SIGNAL
335	    && event->e_un.signum == SIGSTOP) {
336		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
337		if (task_info->sigstopped
338		    && !task_info->delivered) {
339			task_info->delivered = 1;
340			*eventp = NULL; // sink the event
341		} else
342			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
343				"sigstopped=%d and delivered=%d\n",
344				task_info->pid, task_info->sigstopped,
345				task_info->delivered);
346	}
347}
348
349/* Some SIGSTOPs may have not been delivered to their respective tasks
350 * yet.  They are still in the queue.  If we have seen an event for
351 * that process, continue it, so that the SIGSTOP can be delivered and
352 * caught by ltrace.  */
353static void
354continue_for_sigstop_delivery(struct pid_set * pids)
355{
356	size_t i;
357	for (i = 0; i < pids->count; ++i) {
358		if (pids->tasks[i].pid != 0
359		    && pids->tasks[i].sigstopped
360		    && !pids->tasks[i].delivered
361		    && pids->tasks[i].got_event) {
362			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
363			      pids->tasks[i].pid);
364			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
365		}
366	}
367}
368
369static int
370event_exit_p(Event * event)
371{
372	return event != NULL && (event->type == EVENT_EXIT
373				 || event->type == EVENT_EXIT_SIGNAL);
374}
375
376static int
377event_exit_or_none_p(Event * event)
378{
379	return event == NULL || event_exit_p(event)
380		|| event->type == EVENT_NONE;
381}
382
383static int
384await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
385		       Event * event)
386{
387	/* If we still didn't get our SIGSTOP, continue the process
388	 * and carry on.  */
389	if (event != NULL && !event_exit_or_none_p(event)
390	    && task_info != NULL && task_info->sigstopped) {
391		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
392		      task_info->pid);
393		/* We should get the signal the first thing
394		 * after this, so it should be OK to continue
395		 * even if we are over a breakpoint.  */
396		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
397
398	} else {
399		/* If all SIGSTOPs were delivered, uninstall the
400		 * handler and continue everyone.  */
401		/* XXX I suspect that we should check tasks that are
402		 * still around.  Is things are now, there should be a
403		 * race between waiting for everyone to stop and one
404		 * of the tasks exiting.  */
405		int all_clear = 1;
406		size_t i;
407		for (i = 0; i < pids->count; ++i)
408			if (pids->tasks[i].pid != 0
409			    && pids->tasks[i].sigstopped
410			    && !pids->tasks[i].delivered) {
411				all_clear = 0;
412				break;
413			}
414		return all_clear;
415	}
416
417	return 0;
418}
419
420/* This event handler is installed when we are in the process of
421 * stopping the whole thread group to do the pointer re-enablement for
422 * one of the threads.  We pump all events to the queue for later
423 * processing while we wait for all the threads to stop.  When this
424 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
425 * re-enable, and continue everyone.  */
426static Event *
427process_stopping_on_event(Event_Handler * super, Event * event)
428{
429	struct process_stopping_handler * self = (void *)super;
430	Process * task = event->proc;
431	Process * leader = task->leader;
432	Breakpoint * sbp = self->breakpoint_being_enabled;
433	Process * teb = self->task_enabling_breakpoint;
434
435	debug(DEBUG_PROCESS,
436	      "pid %d; event type %d; state %d",
437	      task->pid, event->type, self->state);
438
439	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
440	if (task_info == NULL)
441		fprintf(stderr, "new task??? %d\n", task->pid);
442	handle_stopping_event(task_info, &event);
443
444	int state = self->state;
445	int event_to_queue = !event_exit_or_none_p(event);
446
447	/* Deactivate the entry if the task exits.  */
448	if (event_exit_p(event) && task_info != NULL)
449		task_info->pid = 0;
450
451	switch (state) {
452	case psh_stopping:
453		/* If everyone is stopped, singlestep.  */
454		if (each_task(leader, &task_stopped, NULL) == NULL) {
455			debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d",
456			      teb->pid);
457			if (sbp->enabled)
458				disable_breakpoint(teb, sbp);
459			if (ptrace(PTRACE_SINGLESTEP, teb->pid, 0, 0))
460				perror("PTRACE_SINGLESTEP");
461			self->state = state = psh_singlestep;
462		}
463		break;
464
465	case psh_singlestep: {
466		/* In singlestep state, breakpoint signifies that we
467		 * have now stepped, and can re-enable the breakpoint.  */
468		if (event != NULL && task == teb) {
469			/* Essentially we don't care what event caused
470			 * the thread to stop.  We can do the
471			 * re-enablement now.  */
472			enable_breakpoint(teb, sbp);
473
474			continue_for_sigstop_delivery(&self->pids);
475
476			self->breakpoint_being_enabled = NULL;
477			self->state = state = psh_sinking;
478
479			if (event->type == EVENT_BREAKPOINT)
480				event = NULL; // handled
481		} else
482			break;
483	}
484
485		/* fall-through */
486
487	case psh_sinking:
488		if (await_sigstop_delivery(&self->pids, task_info, event))
489			process_stopping_done(self, leader);
490	}
491
492	if (event != NULL && event_to_queue) {
493		enque_event(event);
494		event = NULL; // sink the event
495	}
496
497	return event;
498}
499
500static void
501process_stopping_destroy(Event_Handler * super)
502{
503	struct process_stopping_handler * self = (void *)super;
504	if (self->breakpoint_being_enabled != NULL)
505		enable_breakpoint(self->task_enabling_breakpoint,
506				  self->breakpoint_being_enabled);
507	free(self->pids.tasks);
508}
509
510void
511continue_after_breakpoint(Process *proc, Breakpoint *sbp)
512{
513	set_instruction_pointer(proc, sbp->addr);
514	if (sbp->enabled == 0) {
515		if (sbp->enabled)
516			disable_breakpoint(proc, sbp);
517		continue_process(proc->pid);
518	} else {
519		debug(DEBUG_PROCESS,
520		      "continue_after_breakpoint: pid=%d, addr=%p",
521		      proc->pid, sbp->addr);
522#if defined __sparc__  || defined __ia64___ || defined __mips__
523		/* we don't want to singlestep here */
524		continue_process(proc->pid);
525#else
526		struct process_stopping_handler * handler
527			= calloc(sizeof(*handler), 1);
528		if (handler == NULL) {
529			perror("malloc breakpoint disable handler");
530		fatal:
531			/* Carry on not bothering to re-enable.  */
532			continue_process(proc->pid);
533			return;
534		}
535
536		handler->super.on_event = process_stopping_on_event;
537		handler->super.destroy = process_stopping_destroy;
538		handler->task_enabling_breakpoint = proc;
539		handler->breakpoint_being_enabled = sbp;
540		install_event_handler(proc->leader, &handler->super);
541
542		if (each_task(proc->leader, &send_sigstop,
543			      &handler->pids) != NULL)
544			goto fatal;
545
546		/* And deliver the first fake event, in case all the
547		 * conditions are already fulfilled.  */
548		Event ev;
549		ev.type = EVENT_NONE;
550		ev.proc = proc;
551		process_stopping_on_event(&handler->super, &ev);
552#endif
553	}
554}
555
556/**
557 * Ltrace exit.  When we are about to exit, we have to go through all
558 * the processes, stop them all, remove all the breakpoints, and then
559 * detach the processes that we attached to using -p.  If we left the
560 * other tasks running, they might hit stray return breakpoints and
561 * produce artifacts, so we better stop everyone, even if it's a bit
562 * of extra work.
563 */
564struct ltrace_exiting_handler
565{
566	Event_Handler super;
567	struct pid_set pids;
568	int state;
569	Process * task_enabling_breakpoint;
570};
571
572static enum pcb_status
573remove_task(Process * task, void * data)
574{
575	/* Don't untrace leader just yet.  */
576	if (task != data)
577		remove_process(task);
578	return pcb_cont;
579}
580
581static enum pcb_status
582untrace_task(Process * task, void * data)
583{
584	untrace_pid(task->pid);
585	return pcb_cont;
586}
587
588/* Before we detach, we need to make sure that task's IP is on the
589 * edge of an instruction.  So for tasks that have a breakpoint event
590 * in the queue, we adjust the instruction pointer, just like
591 * continue_after_breakpoint does.  */
592static enum ecb_status
593undo_breakpoint(Event * event, void * data)
594{
595	if (event != NULL
596	    && event->proc->leader == data
597	    && event->type == EVENT_BREAKPOINT) {
598		fprintf(stderr, " + %p ", get_instruction_pointer(event->proc));
599		set_instruction_pointer(event->proc, event->e_un.brk_addr);
600		fprintf(stderr, "-> %p\n", get_instruction_pointer(event->proc));
601	}
602	return ecb_cont;
603}
604
605static void
606ugly_workaround(Process * proc, int cont)
607{
608	void * ip = get_instruction_pointer(proc);
609	fprintf(stderr, "activate workaround %d %p\n", proc->pid, ip);
610	Breakpoint * sbp = dict_find_entry(proc->leader->breakpoints, ip);
611	if (sbp != NULL)
612		enable_breakpoint(proc, sbp);
613	else
614		insert_breakpoint(proc, ip, NULL, 1);
615	if (cont)
616		ptrace(PTRACE_CONT, proc->pid, 0, 0);
617}
618
619static int
620all_stops_accountable(struct pid_set * pids)
621{
622	size_t i;
623	for (i = 0; i < pids->count; ++i)
624		if (pids->tasks[i].pid != 0
625		    && !pids->tasks[i].got_event
626		    && !have_events_for(pids->tasks[i].pid))
627			return 0;
628	return 1;
629}
630
631static Event *
632ltrace_exiting_on_event(Event_Handler * super, Event * event)
633{
634	struct ltrace_exiting_handler * self = (void *)super;
635	Process * task = event->proc;
636	Process * leader = task->leader;
637
638	debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type);
639
640	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
641	handle_stopping_event(task_info, &event);
642
643	if (event != NULL && event->type == EVENT_BREAKPOINT) {
644		if (self->state == psh_singlestep
645		    && self->task_enabling_breakpoint == event->proc) {
646			ugly_workaround(event->proc, 1);
647			self->state = psh_ugly_workaround;
648		} else {
649			undo_breakpoint(event, leader);
650			if (self->state == psh_ugly_workaround
651			    && self->task_enabling_breakpoint == event->proc) {
652				self->task_enabling_breakpoint = NULL;
653				self->state = psh_sinking;
654			}
655		}
656	}
657
658	if (await_sigstop_delivery(&self->pids, task_info, event)
659	    && (self->task_enabling_breakpoint == NULL
660		/* NB: psh_ugly_workaround > psh_singlestep  */
661		|| self->state < psh_singlestep)
662	    && all_stops_accountable(&self->pids)) {
663		debug(DEBUG_PROCESS, "all SIGSTOPs delivered %d", leader->pid);
664		each_qd_event(&undo_breakpoint, leader);
665		disable_all_breakpoints(leader);
666
667		/* Now untrace the process, if it was attached to by -p.  */
668		struct opt_p_t * it;
669		for (it = opt_p; it != NULL; it = it->next) {
670			Process * proc = pid2proc(it->pid);
671			if (proc == NULL)
672				continue;
673			if (proc->leader == leader) {
674				each_task(leader, &untrace_task, NULL);
675				break;
676			}
677		}
678
679		each_task(leader, &remove_task, leader);
680		destroy_event_handler(leader);
681		remove_task(leader, NULL);
682		return NULL;
683	}
684
685	/* Sink all non-exit events.  We are about to exit, so we
686	 * don't bother with queuing them. */
687	if (event_exit_or_none_p(event))
688		return event;
689
690	return NULL;
691}
692
693static void
694ltrace_exiting_destroy(Event_Handler * super)
695{
696	struct ltrace_exiting_handler * self = (void *)super;
697	free(self->pids.tasks);
698}
699
700static int
701ltrace_exiting_install_handler(Process * proc)
702{
703	/* Only install to leader.  */
704	if (proc->leader != proc)
705		return 0;
706
707	/* Perhaps we are already installed, if the user passed
708	 * several -p options that are tasks of one process.  */
709	if (proc->event_handler != NULL
710	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
711		return 0;
712
713	struct ltrace_exiting_handler * handler
714		= calloc(sizeof(*handler), 1);
715	if (handler == NULL) {
716		perror("malloc exiting handler");
717	fatal:
718		/* XXXXXXXXXXXXXXXXXXX fixme */
719		return -1;
720	}
721
722	/* If we are in the middle of breakpoint, extract the
723	 * pid-state information from that handler so that we can take
724	 * over the SIGSTOP handling.  */
725	if (proc->event_handler != NULL) {
726		debug(DEBUG_PROCESS, "taking over breakpoint handling");
727		assert(proc->event_handler->on_event
728		       == &process_stopping_on_event);
729		struct process_stopping_handler * other
730			= (void *)proc->event_handler;
731
732		handler->task_enabling_breakpoint
733			= other->task_enabling_breakpoint;
734		if (other->state == psh_sinking) {
735			ugly_workaround(handler->task_enabling_breakpoint, 1);
736			handler->state = psh_ugly_workaround;
737		} else {
738			handler->state = other->state;
739		}
740
741		size_t i;
742		for (i = 0; i < other->pids.count; ++i) {
743			struct pid_task * oti = &other->pids.tasks[i];
744			if (oti->pid == 0)
745				continue;
746
747			struct pid_task * task_info
748				= add_task_info(&handler->pids, oti->pid);
749			if (task_info == NULL) {
750				perror("ltrace_exiting_install_handler"
751				       ":add_task_info");
752				goto fatal;
753			}
754			/* Copy over the state.  */
755			*task_info = *oti;
756		}
757
758		/* The re-enablement handler sets this to NULL when
759		 * it calls continue_for_sigstop_delivery.  */
760		if (other->breakpoint_being_enabled != NULL)
761			continue_for_sigstop_delivery(&handler->pids);
762
763		/* And destroy the original handler.  */
764		destroy_event_handler(proc);
765	}
766
767	handler->super.on_event = ltrace_exiting_on_event;
768	handler->super.destroy = ltrace_exiting_destroy;
769	install_event_handler(proc->leader, &handler->super);
770
771	if (each_task(proc->leader, &send_sigstop,
772		      &handler->pids) != NULL)
773		goto fatal;
774
775	return 0;
776}
777
778/* If ltrace gets SIGINT, the processes directly or indirectly run by
779 * ltrace get it too.  We just have to wait long enough for the signal
780 * to be delivered and the process terminated, which we notice and
781 * exit ltrace, too.  So there's not much we need to do there.  We
782 * want to keep tracing those processes as usual, in case they just
783 * SIG_IGN the SIGINT to do their shutdown etc.
784 *
785 * For processes ran on the background, we want to install an exit
786 * handler that stops all the threads, removes all breakpoints, and
787 * detaches.
788 */
789void
790ltrace_exiting(void)
791{
792	struct opt_p_t * it;
793	for (it = opt_p; it != NULL; it = it->next) {
794		Process * proc = pid2proc(it->pid);
795		if (proc == NULL || proc->leader == NULL)
796			continue;
797		if (ltrace_exiting_install_handler(proc->leader) < 0)
798			fprintf(stderr,
799				"Couldn't install exiting handler for %d.\n",
800				proc->pid);
801	}
802}
803
804size_t
805umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
806
807	union {
808		long a;
809		char c[sizeof(long)];
810	} a;
811	int started = 0;
812	size_t offset = 0, bytes_read = 0;
813
814	while (offset < len) {
815		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
816		if (a.a == -1 && errno) {
817			if (started && errno == EIO)
818				return bytes_read;
819			else
820				return -1;
821		}
822		started = 1;
823
824		if (len - offset >= sizeof(long)) {
825			memcpy(laddr + offset, &a.c[0], sizeof(long));
826			bytes_read += sizeof(long);
827		}
828		else {
829			memcpy(laddr + offset, &a.c[0], len - offset);
830			bytes_read += (len - offset);
831		}
832		offset += sizeof(long);
833	}
834
835	return bytes_read;
836}
837
838/* Read a series of bytes starting at the process's memory address
839   'addr' and continuing until a NUL ('\0') is seen or 'len' bytes
840   have been read.
841*/
842int
843umovestr(Process *proc, void *addr, int len, void *laddr) {
844	union {
845		long a;
846		char c[sizeof(long)];
847	} a;
848	unsigned i;
849	int offset = 0;
850
851	while (offset < len) {
852		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
853		for (i = 0; i < sizeof(long); i++) {
854			if (a.c[i] && offset + (signed)i < len) {
855				*(char *)(laddr + offset + i) = a.c[i];
856			} else {
857				*(char *)(laddr + offset + i) = '\0';
858				return 0;
859			}
860		}
861		offset += sizeof(long);
862	}
863	*(char *)(laddr + offset) = '\0';
864	return 0;
865}
866