lp_bld_blend_soa.c revision f795735f4251d5f7842ee9e09994641c5c46d25d
1/**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29/**
30 * @file
31 * Blend LLVM IR generation -- SoA layout.
32 *
33 * Blending in SoA is much faster than AoS, especially when separate rgb/alpha
34 * factors/functions are used, since no channel masking/shuffling is necessary
35 * and we can achieve the full throughput of the SIMD operations. Furthermore
36 * the fragment shader output is also in SoA, so it fits nicely with the rest
37 * of the fragment pipeline.
38 *
39 * The drawback is that to be displayed the color buffer needs to be in AoS
40 * layout, so we need to tile/untile the color buffer before/after rendering.
41 * A color buffer like
42 *
43 *  R11 G11 B11 A11 R12 G12 B12 A12  R13 G13 B13 A13 R14 G14 B14 A14  ...
44 *  R21 G21 B21 A21 R22 G22 B22 A22  R23 G23 B23 A23 R24 G24 B24 A24  ...
45 *
46 *  R31 G31 B31 A31 R32 G32 B32 A32  R33 G33 B33 A33 R34 G34 B34 A34  ...
47 *  R41 G41 B41 A41 R42 G42 B42 A42  R43 G43 B43 A43 R44 G44 B44 A44  ...
48 *
49 *  ... ... ... ... ... ... ... ...  ... ... ... ... ... ... ... ...  ...
50 *
51 * will actually be stored in memory as
52 *
53 *  R11 R12 R21 R22 R13 R14 R23 R24 ... G11 G12 G21 G22 G13 G14 G23 G24 ... B11 B12 B21 B22 B13 B14 B23 B24 ... A11 A12 A21 A22 A13 A14 A23 A24 ...
54 *  R31 R32 R41 R42 R33 R34 R43 R44 ... G31 G32 G41 G42 G33 G34 G43 G44 ... B31 B32 B41 B42 B33 B34 B43 B44 ... A31 A32 A41 A42 A33 A34 A43 A44 ...
55 *  ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
56 *
57 * NOTE: Run lp_blend_test after any change to this file.
58 *
59 * You can also run lp_blend_test to obtain AoS vs SoA benchmarks. Invoking it
60 * as:
61 *
62 *  lp_blend_test -o blend.tsv
63 *
64 * will generate a tab-seperated-file with the test results and performance
65 * measurements.
66 *
67 * @author Jose Fonseca <jfonseca@vmware.com>
68 */
69
70
71#include "pipe/p_state.h"
72#include "util/u_debug.h"
73
74#include "gallivm/lp_bld_type.h"
75#include "gallivm/lp_bld_arit.h"
76#include "lp_bld_blend.h"
77
78
79/**
80 * We may use the same values several times, so we keep them here to avoid
81 * recomputing them. Also reusing the values allows us to do simplifications
82 * that LLVM optimization passes wouldn't normally be able to do.
83 */
84struct lp_build_blend_soa_context
85{
86   struct lp_build_context base;
87
88   LLVMValueRef src[4];
89   LLVMValueRef dst[4];
90   LLVMValueRef con[4];
91
92   LLVMValueRef inv_src[4];
93   LLVMValueRef inv_dst[4];
94   LLVMValueRef inv_con[4];
95
96   LLVMValueRef src_alpha_saturate;
97
98   /**
99    * We store all factors in a table in order to eliminate redundant
100    * multiplications later.
101    * Indexes are: factor[src,dst][color,term][r,g,b,a]
102    */
103   LLVMValueRef factor[2][2][4];
104
105   /**
106    * Table with all terms.
107    * Indexes are: term[src,dst][r,g,b,a]
108    */
109   LLVMValueRef term[2][4];
110};
111
112
113/**
114 * Build a single SOA blend factor for a color channel.
115 * \param i  the color channel in [0,3]
116 */
117static LLVMValueRef
118lp_build_blend_soa_factor(struct lp_build_blend_soa_context *bld,
119                          unsigned factor, unsigned i)
120{
121   /*
122    * Compute src/first term RGB
123    */
124   switch (factor) {
125   case PIPE_BLENDFACTOR_ONE:
126      return bld->base.one;
127   case PIPE_BLENDFACTOR_SRC_COLOR:
128      return bld->src[i];
129   case PIPE_BLENDFACTOR_SRC_ALPHA:
130      return bld->src[3];
131   case PIPE_BLENDFACTOR_DST_COLOR:
132      return bld->dst[i];
133   case PIPE_BLENDFACTOR_DST_ALPHA:
134      return bld->dst[3];
135   case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
136      if(i == 3)
137         return bld->base.one;
138      else {
139         if(!bld->inv_dst[3])
140            bld->inv_dst[3] = lp_build_comp(&bld->base, bld->dst[3]);
141         if(!bld->src_alpha_saturate)
142            bld->src_alpha_saturate = lp_build_min(&bld->base, bld->src[3], bld->inv_dst[3]);
143         return bld->src_alpha_saturate;
144      }
145   case PIPE_BLENDFACTOR_CONST_COLOR:
146      return bld->con[i];
147   case PIPE_BLENDFACTOR_CONST_ALPHA:
148      return bld->con[3];
149   case PIPE_BLENDFACTOR_SRC1_COLOR:
150      /* TODO */
151      assert(0);
152      return bld->base.zero;
153   case PIPE_BLENDFACTOR_SRC1_ALPHA:
154      /* TODO */
155      assert(0);
156      return bld->base.zero;
157   case PIPE_BLENDFACTOR_ZERO:
158      return bld->base.zero;
159   case PIPE_BLENDFACTOR_INV_SRC_COLOR:
160      if(!bld->inv_src[i])
161         bld->inv_src[i] = lp_build_comp(&bld->base, bld->src[i]);
162      return bld->inv_src[i];
163   case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
164      if(!bld->inv_src[3])
165         bld->inv_src[3] = lp_build_comp(&bld->base, bld->src[3]);
166      return bld->inv_src[3];
167   case PIPE_BLENDFACTOR_INV_DST_COLOR:
168      if(!bld->inv_dst[i])
169         bld->inv_dst[i] = lp_build_comp(&bld->base, bld->dst[i]);
170      return bld->inv_dst[i];
171   case PIPE_BLENDFACTOR_INV_DST_ALPHA:
172      if(!bld->inv_dst[3])
173         bld->inv_dst[3] = lp_build_comp(&bld->base, bld->dst[3]);
174      return bld->inv_dst[3];
175   case PIPE_BLENDFACTOR_INV_CONST_COLOR:
176      if(!bld->inv_con[i])
177         bld->inv_con[i] = lp_build_comp(&bld->base, bld->con[i]);
178      return bld->inv_con[i];
179   case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
180      if(!bld->inv_con[3])
181         bld->inv_con[3] = lp_build_comp(&bld->base, bld->con[3]);
182      return bld->inv_con[3];
183   case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
184      /* TODO */
185      assert(0);
186      return bld->base.zero;
187   case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
188      /* TODO */
189      assert(0);
190      return bld->base.zero;
191   default:
192      assert(0);
193      return bld->base.zero;
194   }
195}
196
197
198/**
199 * Generate blend code in SOA mode.
200 * \param rt  render target index (to index the blend / colormask state)
201 * \param src  src/fragment color
202 * \param dst  dst/framebuffer color
203 * \param con  constant blend color
204 * \param res  the result/output
205 */
206void
207lp_build_blend_soa(LLVMBuilderRef builder,
208                   const struct pipe_blend_state *blend,
209                   struct lp_type type,
210                   unsigned rt,
211                   LLVMValueRef src[4],
212                   LLVMValueRef dst[4],
213                   LLVMValueRef con[4],
214                   LLVMValueRef res[4])
215{
216   struct lp_build_blend_soa_context bld;
217   unsigned i, j, k;
218
219   assert(rt < PIPE_MAX_COLOR_BUFS);
220
221   /* Setup build context */
222   memset(&bld, 0, sizeof bld);
223   lp_build_context_init(&bld.base, builder, type);
224   for (i = 0; i < 4; ++i) {
225      bld.src[i] = src[i];
226      bld.dst[i] = dst[i];
227      bld.con[i] = con[i];
228   }
229
230   for (i = 0; i < 4; ++i) {
231      /* only compute blending for the color channels enabled for writing */
232      if (blend->rt[rt].colormask & (1 << i)) {
233         if (blend->logicop_enable) {
234            if(!type.floating) {
235               res[i] = lp_build_logicop(builder, blend->logicop_func, src[i], dst[i]);
236            }
237            else
238               res[i] = dst[i];
239         }
240         else if (blend->rt[rt].blend_enable) {
241            unsigned src_factor = i < 3 ? blend->rt[rt].rgb_src_factor : blend->rt[rt].alpha_src_factor;
242            unsigned dst_factor = i < 3 ? blend->rt[rt].rgb_dst_factor : blend->rt[rt].alpha_dst_factor;
243            unsigned func = i < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
244            boolean func_commutative = lp_build_blend_func_commutative(func);
245
246            /* It makes no sense to blend unless values are normalized */
247            assert(type.norm);
248
249            /*
250             * Compute src/dst factors.
251             */
252
253            bld.factor[0][0][i] = src[i];
254            bld.factor[0][1][i] = lp_build_blend_soa_factor(&bld, src_factor, i);
255            bld.factor[1][0][i] = dst[i];
256            bld.factor[1][1][i] = lp_build_blend_soa_factor(&bld, dst_factor, i);
257
258            /*
259             * Compute src/dst terms
260             */
261
262            for(k = 0; k < 2; ++k) {
263               /* See if this multiplication has been previously computed */
264               for(j = 0; j < i; ++j) {
265                  if((bld.factor[k][0][j] == bld.factor[k][0][i] &&
266                      bld.factor[k][1][j] == bld.factor[k][1][i]) ||
267                     (bld.factor[k][0][j] == bld.factor[k][1][i] &&
268                      bld.factor[k][1][j] == bld.factor[k][0][i]))
269                     break;
270               }
271
272               if(j < i)
273                  bld.term[k][i] = bld.term[k][j];
274               else
275                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i], bld.factor[k][1][i]);
276
277               if (src_factor == PIPE_BLENDFACTOR_ZERO &&
278                   (dst_factor == PIPE_BLENDFACTOR_DST_ALPHA ||
279                    dst_factor == PIPE_BLENDFACTOR_INV_DST_ALPHA)) {
280                  /* XXX special case these combos to work around an apparent
281                   * bug in LLVM.
282                   * This hack disables the check for multiplication by zero
283                   * in lp_bld_mul().  When we optimize away the
284                   * multiplication, something goes wrong during code
285                   * generation and we segfault at runtime.
286                   */
287                  LLVMValueRef zeroSave = bld.base.zero;
288                  bld.base.zero = NULL;
289                  bld.term[k][i] = lp_build_mul(&bld.base, bld.factor[k][0][i],
290                                                bld.factor[k][1][i]);
291                  bld.base.zero = zeroSave;
292               }
293            }
294
295            /*
296             * Combine terms
297             */
298
299            /* See if this function has been previously applied */
300            for(j = 0; j < i; ++j) {
301               unsigned prev_func = j < 3 ? blend->rt[rt].rgb_func : blend->rt[rt].alpha_func;
302               unsigned func_reverse = lp_build_blend_func_reverse(func, prev_func);
303
304               if((!func_reverse &&
305                   bld.term[0][j] == bld.term[0][i] &&
306                   bld.term[1][j] == bld.term[1][i]) ||
307                  ((func_commutative || func_reverse) &&
308                   bld.term[0][j] == bld.term[1][i] &&
309                   bld.term[1][j] == bld.term[0][i]))
310                  break;
311            }
312
313            if(j < i)
314               res[i] = res[j];
315            else
316               res[i] = lp_build_blend_func(&bld.base, func, bld.term[0][i], bld.term[1][i]);
317         }
318         else {
319            res[i] = src[i];
320         }
321      }
322      else {
323         res[i] = dst[i];
324      }
325   }
326}
327