querymatrix.c revision d2fa95a4c08ba32237cff1d5b5d28b35f7d3d753
1/**************************************************************************
2 *
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 **************************************************************************/
7
8
9/**
10 * Code to implement GL_OES_query_matrix.  See the spec at:
11 * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12 */
13
14
15#include <stdlib.h>
16#include <math.h>
17#include "GLES/gl.h"
18#include "GLES/glext.h"
19
20
21/**
22 * This is from the GL_OES_query_matrix extension specification:
23 *
24 *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
25 *                                GLint   exponent[16] )
26 *  mantissa[16] contains the contents of the current matrix in GLfixed
27 *  format.  exponent[16] contains the unbiased exponents applied to the
28 *  matrix components, so that the internal representation of component i
29 *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
30 *  word which is zero if all the components are valid. If
31 *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
32 *  The implementations are not required to keep track of overflows.  In
33 *  that case, the invalid bits are never set.
34 */
35
36#define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
37#define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
38
39#if defined(WIN32) || defined(_WIN32_WCE)
40/* Oddly, the fpclassify() function doesn't exist in such a form
41 * on Windows.  This is an implementation using slightly different
42 * lower-level Windows functions.
43 */
44#include <float.h>
45
46enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
47fpclassify(double x)
48{
49    switch(_fpclass(x)) {
50        case _FPCLASS_SNAN: /* signaling NaN */
51        case _FPCLASS_QNAN: /* quiet NaN */
52            return FP_NAN;
53        case _FPCLASS_NINF: /* negative infinity */
54        case _FPCLASS_PINF: /* positive infinity */
55            return FP_INFINITE;
56        case _FPCLASS_NN:   /* negative normal */
57        case _FPCLASS_PN:   /* positive normal */
58            return FP_NORMAL;
59        case _FPCLASS_ND:   /* negative denormalized */
60        case _FPCLASS_PD:   /* positive denormalized */
61            return FP_SUBNORMAL;
62        case _FPCLASS_NZ:   /* negative zero */
63        case _FPCLASS_PZ:   /* positive zero */
64            return FP_ZERO;
65        default:
66            /* Should never get here; but if we do, this will guarantee
67             * that the pattern is not treated like a number.
68             */
69            return FP_NAN;
70    }
71}
72
73#elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \
74     defined(__DragonFly__) || (defined(__sun) && defined(__C99FEATURES__))
75
76/* fpclassify is available. */
77
78#elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
79
80enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
81fpclassify(double x)
82{
83   /* XXX do something better someday */
84   return FP_NORMAL;
85}
86
87#endif
88
89extern GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]);
90
91/* The Mesa functions we'll need */
92extern void GL_APIENTRY _mesa_GetIntegerv(GLenum pname, GLint *params);
93extern void GL_APIENTRY _mesa_GetFloatv(GLenum pname, GLfloat *params);
94
95GLbitfield GL_APIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
96{
97    GLfloat matrix[16];
98    GLint tmp;
99    GLenum currentMode = GL_FALSE;
100    GLenum desiredMatrix = GL_FALSE;
101    /* The bitfield returns 1 for each component that is invalid (i.e.
102     * NaN or Inf).  In case of error, everything is invalid.
103     */
104    GLbitfield rv;
105    register unsigned int i;
106    unsigned int bit;
107
108    /* This data structure defines the mapping between the current matrix
109     * mode and the desired matrix identifier.
110     */
111    static struct {
112        GLenum currentMode;
113        GLenum desiredMatrix;
114    } modes[] = {
115        {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
116        {GL_PROJECTION, GL_PROJECTION_MATRIX},
117        {GL_TEXTURE, GL_TEXTURE_MATRIX},
118#if 0
119        /* this doesn't exist in GLES */
120        {GL_COLOR, GL_COLOR_MATRIX},
121#endif
122    };
123
124    /* Call Mesa to get the current matrix in floating-point form.  First,
125     * we have to figure out what the current matrix mode is.
126     */
127    _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
128    currentMode = (GLenum) tmp;
129
130    /* The mode is either GL_FALSE, if for some reason we failed to query
131     * the mode, or a given mode from the above table.  Search for the
132     * returned mode to get the desired matrix; if we don't find it,
133     * we can return immediately, as _mesa_GetInteger() will have
134     * logged the necessary error already.
135     */
136    for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
137        if (modes[i].currentMode == currentMode) {
138            desiredMatrix = modes[i].desiredMatrix;
139            break;
140        }
141    }
142    if (desiredMatrix == GL_FALSE) {
143        /* Early error means all values are invalid. */
144        return 0xffff;
145    }
146
147    /* Now pull the matrix itself. */
148    _mesa_GetFloatv(desiredMatrix, matrix);
149
150    rv = 0;
151    for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
152        float normalizedFraction;
153        int exp;
154
155        switch (fpclassify(matrix[i])) {
156            /* A "subnormal" or denormalized number is too small to be
157             * represented in normal format; but despite that it's a
158             * valid floating point number.  FP_ZERO and FP_NORMAL
159             * are both valid as well.  We should be fine treating
160             * these three cases as legitimate floating-point numbers.
161             */
162            case FP_SUBNORMAL:
163            case FP_NORMAL:
164            case FP_ZERO:
165                normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
166                mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
167                exponent[i] = (GLint) exp;
168                break;
169
170            /* If the entry is not-a-number or an infinity, then the
171             * matrix component is invalid.  The invalid flag for
172             * the component is already set; might as well set the
173             * other return values to known values.  We'll set
174             * distinct values so that a savvy end user could determine
175             * whether the matrix component was a NaN or an infinity,
176             * but this is more useful for debugging than anything else
177             * since the standard doesn't specify any such magic
178             * values to return.
179             */
180            case FP_NAN:
181                mantissa[i] = INT_TO_FIXED(0);
182                exponent[i] = (GLint) 0;
183                rv |= bit;
184                break;
185
186            case FP_INFINITE:
187                /* Return +/- 1 based on whether it's a positive or
188                 * negative infinity.
189                 */
190                if (matrix[i] > 0) {
191                    mantissa[i] = INT_TO_FIXED(1);
192                }
193                else {
194                    mantissa[i] = -INT_TO_FIXED(1);
195                }
196                exponent[i] = (GLint) 0;
197                rv |= bit;
198                break;
199
200            /* We should never get here; but here's a catching case
201             * in case fpclassify() is returnings something unexpected.
202             */
203            default:
204                mantissa[i] = INT_TO_FIXED(2);
205                exponent[i] = (GLint) 0;
206                rv |= bit;
207                break;
208        }
209
210    } /* for each component */
211
212    /* All done */
213    return rv;
214}
215