cpu.h revision 6a9ef1773bf874dea493ff3861782a1e577b67dd
1/*
2 * ARM virtual CPU header
3 *
4 *  Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
22#define TARGET_LONG_BITS 32
23
24#define ELF_MACHINE	EM_ARM
25
26#define CPUState struct CPUARMState
27
28#include "cpu-defs.h"
29
30#include "softfloat.h"
31
32#define TARGET_HAS_ICE 1
33
34#define EXCP_UDEF            1   /* undefined instruction */
35#define EXCP_SWI             2   /* software interrupt */
36#define EXCP_PREFETCH_ABORT  3
37#define EXCP_DATA_ABORT      4
38#define EXCP_IRQ             5
39#define EXCP_FIQ             6
40#define EXCP_BKPT            7
41#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
42#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
43#define EXCP_STREX          10
44
45#define ARMV7M_EXCP_RESET   1
46#define ARMV7M_EXCP_NMI     2
47#define ARMV7M_EXCP_HARD    3
48#define ARMV7M_EXCP_MEM     4
49#define ARMV7M_EXCP_BUS     5
50#define ARMV7M_EXCP_USAGE   6
51#define ARMV7M_EXCP_SVC     11
52#define ARMV7M_EXCP_DEBUG   12
53#define ARMV7M_EXCP_PENDSV  14
54#define ARMV7M_EXCP_SYSTICK 15
55
56typedef void ARMWriteCPFunc(void *opaque, int cp_info,
57                            int srcreg, int operand, uint32_t value);
58typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
59                               int dstreg, int operand);
60
61struct arm_boot_info;
62
63#define NB_MMU_MODES 2
64
65/* We currently assume float and double are IEEE single and double
66   precision respectively.
67   Doing runtime conversions is tricky because VFP registers may contain
68   integer values (eg. as the result of a FTOSI instruction).
69   s<2n> maps to the least significant half of d<n>
70   s<2n+1> maps to the most significant half of d<n>
71 */
72
73typedef struct CPUARMState {
74    /* Regs for current mode.  */
75    uint32_t regs[16];
76    /* Frequently accessed CPSR bits are stored separately for efficiently.
77       This contains all the other bits.  Use cpsr_{read,write} to access
78       the whole CPSR.  */
79    uint32_t uncached_cpsr;
80    uint32_t spsr;
81
82    /* Banked registers.  */
83    uint32_t banked_spsr[6];
84    uint32_t banked_r13[6];
85    uint32_t banked_r14[6];
86
87    /* These hold r8-r12.  */
88    uint32_t usr_regs[5];
89    uint32_t fiq_regs[5];
90
91    /* cpsr flag cache for faster execution */
92    uint32_t CF; /* 0 or 1 */
93    uint32_t VF; /* V is the bit 31. All other bits are undefined */
94    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
95    uint32_t ZF; /* Z set if zero.  */
96    uint32_t QF; /* 0 or 1 */
97    uint32_t GE; /* cpsr[19:16] */
98    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
99    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
100
101    /* System control coprocessor (cp15) */
102    struct {
103        uint32_t c0_cpuid;
104        uint32_t c0_cachetype;
105        uint32_t c0_ccsid[16]; /* Cache size.  */
106        uint32_t c0_clid; /* Cache level.  */
107        uint32_t c0_cssel; /* Cache size selection.  */
108        uint32_t c0_c1[8]; /* Feature registers.  */
109        uint32_t c0_c2[8]; /* Instruction set registers.  */
110        uint32_t c1_sys; /* System control register.  */
111        uint32_t c1_coproc; /* Coprocessor access register.  */
112        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
113        uint32_t c2_base0; /* MMU translation table base 0.  */
114        uint32_t c2_base1; /* MMU translation table base 1.  */
115        uint32_t c2_control; /* MMU translation table base control.  */
116        uint32_t c2_mask; /* MMU translation table base selection mask.  */
117        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
118        uint32_t c2_data; /* MPU data cachable bits.  */
119        uint32_t c2_insn; /* MPU instruction cachable bits.  */
120        uint32_t c3; /* MMU domain access control register
121                        MPU write buffer control.  */
122        uint32_t c5_insn; /* Fault status registers.  */
123        uint32_t c5_data;
124        uint32_t c6_region[8]; /* MPU base/size registers.  */
125        uint32_t c6_insn; /* Fault address registers.  */
126        uint32_t c6_data;
127        uint32_t c9_insn; /* Cache lockdown registers.  */
128        uint32_t c9_data;
129        uint32_t c13_fcse; /* FCSE PID.  */
130        uint32_t c13_context; /* Context ID.  */
131        uint32_t c13_tls1; /* User RW Thread register.  */
132        uint32_t c13_tls2; /* User RO Thread register.  */
133        uint32_t c13_tls3; /* Privileged Thread register.  */
134        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
135        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
136        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
137        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
138        uint32_t c15_threadid; /* TI debugger thread-ID.  */
139    } cp15;
140
141    struct {
142        uint32_t other_sp;
143        uint32_t vecbase;
144        uint32_t basepri;
145        uint32_t control;
146        int current_sp;
147        int exception;
148        int pending_exception;
149        void *nvic;
150    } v7m;
151
152    /* Coprocessor IO used by peripherals */
153    struct {
154        ARMReadCPFunc *cp_read;
155        ARMWriteCPFunc *cp_write;
156        void *opaque;
157    } cp[15];
158
159    /* Thumb-2 EE state.  */
160    uint32_t teecr;
161    uint32_t teehbr;
162
163    /* Internal CPU feature flags.  */
164    uint32_t features;
165
166    /* Callback for vectored interrupt controller.  */
167    int (*get_irq_vector)(struct CPUARMState *);
168    void *irq_opaque;
169
170    /* VFP coprocessor state.  */
171    struct {
172        float64 regs[32];
173
174        uint32_t xregs[16];
175        /* We store these fpcsr fields separately for convenience.  */
176        int vec_len;
177        int vec_stride;
178
179        /* scratch space when Tn are not sufficient.  */
180        uint32_t scratch[8];
181
182        float_status fp_status;
183    } vfp;
184#if defined(CONFIG_USER_ONLY)
185    struct mmon_state *mmon_entry;
186#else
187    uint32_t mmon_addr;
188#endif
189
190    /* iwMMXt coprocessor state.  */
191    struct {
192        uint64_t regs[16];
193        uint64_t val;
194
195        uint32_t cregs[16];
196    } iwmmxt;
197
198#if defined(CONFIG_USER_ONLY)
199    /* For usermode syscall translation.  */
200    int eabi;
201#endif
202
203    CPU_COMMON
204
205    /* These fields after the common ones so they are preserved on reset.  */
206    struct arm_boot_info *boot_info;
207} CPUARMState;
208
209CPUARMState *cpu_arm_init(const char *cpu_model);
210void arm_translate_init(void);
211int cpu_arm_exec(CPUARMState *s);
212void cpu_arm_close(CPUARMState *s);
213void do_interrupt(CPUARMState *);
214void switch_mode(CPUARMState *, int);
215uint32_t do_arm_semihosting(CPUARMState *env);
216
217/* you can call this signal handler from your SIGBUS and SIGSEGV
218   signal handlers to inform the virtual CPU of exceptions. non zero
219   is returned if the signal was handled by the virtual CPU.  */
220int cpu_arm_signal_handler(int host_signum, void *pinfo,
221                           void *puc);
222int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
223                              int mmu_idx, int is_softmuu);
224
225void cpu_lock(void);
226void cpu_unlock(void);
227static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
228{
229  env->cp15.c13_tls2 = newtls;
230}
231
232#define CPSR_M (0x1f)
233#define CPSR_T (1 << 5)
234#define CPSR_F (1 << 6)
235#define CPSR_I (1 << 7)
236#define CPSR_A (1 << 8)
237#define CPSR_E (1 << 9)
238#define CPSR_IT_2_7 (0xfc00)
239#define CPSR_GE (0xf << 16)
240#define CPSR_RESERVED (0xf << 20)
241#define CPSR_J (1 << 24)
242#define CPSR_IT_0_1 (3 << 25)
243#define CPSR_Q (1 << 27)
244#define CPSR_V (1 << 28)
245#define CPSR_C (1 << 29)
246#define CPSR_Z (1 << 30)
247#define CPSR_N (1 << 31)
248#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
249
250#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
251#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
252/* Bits writable in user mode.  */
253#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
254/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
255#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
256
257/* Return the current CPSR value.  */
258uint32_t cpsr_read(CPUARMState *env);
259/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
260void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
261
262/* Return the current xPSR value.  */
263static inline uint32_t xpsr_read(CPUARMState *env)
264{
265    int ZF;
266    ZF = (env->ZF == 0);
267    return (env->NF & 0x80000000) | (ZF << 30)
268        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
269        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
270        | ((env->condexec_bits & 0xfc) << 8)
271        | env->v7m.exception;
272}
273
274/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
275static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
276{
277    if (mask & CPSR_NZCV) {
278        env->ZF = (~val) & CPSR_Z;
279        env->NF = val;
280        env->CF = (val >> 29) & 1;
281        env->VF = (val << 3) & 0x80000000;
282    }
283    if (mask & CPSR_Q)
284        env->QF = ((val & CPSR_Q) != 0);
285    if (mask & (1 << 24))
286        env->thumb = ((val & (1 << 24)) != 0);
287    if (mask & CPSR_IT_0_1) {
288        env->condexec_bits &= ~3;
289        env->condexec_bits |= (val >> 25) & 3;
290    }
291    if (mask & CPSR_IT_2_7) {
292        env->condexec_bits &= 3;
293        env->condexec_bits |= (val >> 8) & 0xfc;
294    }
295    if (mask & 0x1ff) {
296        env->v7m.exception = val & 0x1ff;
297    }
298}
299
300enum arm_cpu_mode {
301  ARM_CPU_MODE_USR = 0x10,
302  ARM_CPU_MODE_FIQ = 0x11,
303  ARM_CPU_MODE_IRQ = 0x12,
304  ARM_CPU_MODE_SVC = 0x13,
305  ARM_CPU_MODE_ABT = 0x17,
306  ARM_CPU_MODE_UND = 0x1b,
307  ARM_CPU_MODE_SYS = 0x1f
308};
309
310/* VFP system registers.  */
311#define ARM_VFP_FPSID   0
312#define ARM_VFP_FPSCR   1
313#define ARM_VFP_MVFR1   6
314#define ARM_VFP_MVFR0   7
315#define ARM_VFP_FPEXC   8
316#define ARM_VFP_FPINST  9
317#define ARM_VFP_FPINST2 10
318
319/* iwMMXt coprocessor control registers.  */
320#define ARM_IWMMXT_wCID		0
321#define ARM_IWMMXT_wCon		1
322#define ARM_IWMMXT_wCSSF	2
323#define ARM_IWMMXT_wCASF	3
324#define ARM_IWMMXT_wCGR0	8
325#define ARM_IWMMXT_wCGR1	9
326#define ARM_IWMMXT_wCGR2	10
327#define ARM_IWMMXT_wCGR3	11
328
329enum arm_features {
330    ARM_FEATURE_VFP,
331    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
332    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
333    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
334    ARM_FEATURE_V6,
335    ARM_FEATURE_V6K,
336    ARM_FEATURE_V7,
337    ARM_FEATURE_THUMB2,
338    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
339    ARM_FEATURE_VFP3,
340    ARM_FEATURE_NEON,
341    ARM_FEATURE_DIV,
342    ARM_FEATURE_M, /* Microcontroller profile.  */
343    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
344    ARM_FEATURE_THUMB2EE
345};
346
347static inline int arm_feature(CPUARMState *env, int feature)
348{
349    return (env->features & (1u << feature)) != 0;
350}
351
352void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
353
354/* Interface between CPU and Interrupt controller.  */
355void armv7m_nvic_set_pending(void *opaque, int irq);
356int armv7m_nvic_acknowledge_irq(void *opaque);
357void armv7m_nvic_complete_irq(void *opaque, int irq);
358
359void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
360                       ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
361                       void *opaque);
362
363/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
364   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
365   conventional cores (ie. Application or Realtime profile).  */
366
367#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
368#define ARM_CPUID(env) (env->cp15.c0_cpuid)
369
370#define ARM_CPUID_ARM1026     0x4106a262
371#define ARM_CPUID_ARM926      0x41069265
372#define ARM_CPUID_ARM946      0x41059461
373#define ARM_CPUID_TI915T      0x54029152
374#define ARM_CPUID_TI925T      0x54029252
375#define ARM_CPUID_PXA250      0x69052100
376#define ARM_CPUID_PXA255      0x69052d00
377#define ARM_CPUID_PXA260      0x69052903
378#define ARM_CPUID_PXA261      0x69052d05
379#define ARM_CPUID_PXA262      0x69052d06
380#define ARM_CPUID_PXA270      0x69054110
381#define ARM_CPUID_PXA270_A0   0x69054110
382#define ARM_CPUID_PXA270_A1   0x69054111
383#define ARM_CPUID_PXA270_B0   0x69054112
384#define ARM_CPUID_PXA270_B1   0x69054113
385#define ARM_CPUID_PXA270_C0   0x69054114
386#define ARM_CPUID_PXA270_C5   0x69054117
387#define ARM_CPUID_ARM1136     0x4117b363
388#define ARM_CPUID_ARM1136_R2  0x4107b362
389#define ARM_CPUID_ARM11MPCORE 0x410fb022
390#define ARM_CPUID_CORTEXA8    0x410fc080
391#define ARM_CPUID_CORTEXA9    0x410fc090
392#define ARM_CPUID_CORTEXM3    0x410fc231
393#define ARM_CPUID_ANY         0xffffffff
394
395#if defined(CONFIG_USER_ONLY)
396#define TARGET_PAGE_BITS 12
397#else
398/* The ARM MMU allows 1k pages.  */
399/* ??? Linux doesn't actually use these, and they're deprecated in recent
400   architecture revisions.  Maybe a configure option to disable them.  */
401#define TARGET_PAGE_BITS 10
402#endif
403
404#define cpu_init cpu_arm_init
405#define cpu_exec cpu_arm_exec
406#define cpu_gen_code cpu_arm_gen_code
407#define cpu_signal_handler cpu_arm_signal_handler
408#define cpu_list arm_cpu_list
409
410#define CPU_SAVE_VERSION 1
411
412/* MMU modes definitions */
413#define MMU_MODE0_SUFFIX _kernel
414#define MMU_MODE1_SUFFIX _user
415#define MMU_USER_IDX 1
416static inline int cpu_mmu_index (CPUState *env)
417{
418    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
419}
420
421static inline int is_cpu_user (CPUState *env)
422{
423#ifdef CONFIG_USER_ONLY
424    return 1;
425#else
426    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR;
427#endif  // CONFIG_USER_ONLY
428}
429
430#if defined(CONFIG_USER_ONLY)
431static inline void cpu_clone_regs(CPUState *env, target_ulong newsp)
432{
433    if (newsp)
434        env->regs[13] = newsp;
435    env->regs[0] = 0;
436}
437#endif
438
439#include "cpu-all.h"
440#include "exec-all.h"
441
442static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
443{
444    env->regs[15] = tb->pc;
445}
446
447static inline void cpu_get_tb_cpu_state(CPUState *env, target_ulong *pc,
448                                        target_ulong *cs_base, int *flags)
449{
450    *pc = env->regs[15];
451    *cs_base = 0;
452    *flags = env->thumb | (env->vfp.vec_len << 1)
453            | (env->vfp.vec_stride << 4) | (env->condexec_bits << 8);
454    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
455        *flags |= (1 << 6);
456    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
457        *flags |= (1 << 7);
458}
459
460#endif
461