SkRect.h revision 194d775edcf5fa6e82098a97ad53018d70db1155
1 2/* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10#ifndef SkRect_DEFINED 11#define SkRect_DEFINED 12 13#include "SkPoint.h" 14#include "SkSize.h" 15 16/** \struct SkIRect 17 18 SkIRect holds four 32 bit integer coordinates for a rectangle 19*/ 20struct SK_API SkIRect { 21 int32_t fLeft, fTop, fRight, fBottom; 22 23 static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { 24 SkIRect r; 25 r.setEmpty(); 26 return r; 27 } 28 29 static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() { 30 SkIRect r; 31 r.setLargest(); 32 return r; 33 } 34 35 static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { 36 SkIRect r; 37 r.set(0, 0, w, h); 38 return r; 39 } 40 41 static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { 42 SkIRect r; 43 r.set(0, 0, size.width(), size.height()); 44 return r; 45 } 46 47 static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { 48 SkIRect rect; 49 rect.set(l, t, r, b); 50 return rect; 51 } 52 53 static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { 54 SkIRect r; 55 r.set(x, y, x + w, y + h); 56 return r; 57 } 58 59 int left() const { return fLeft; } 60 int top() const { return fTop; } 61 int right() const { return fRight; } 62 int bottom() const { return fBottom; } 63 64 /** return the left edge of the rect */ 65 int x() const { return fLeft; } 66 /** return the top edge of the rect */ 67 int y() const { return fTop; } 68 /** 69 * Returns the rectangle's width. This does not check for a valid rect 70 * (i.e. left <= right) so the result may be negative. 71 */ 72 int width() const { return fRight - fLeft; } 73 74 /** 75 * Returns the rectangle's height. This does not check for a valid rect 76 * (i.e. top <= bottom) so the result may be negative. 77 */ 78 int height() const { return fBottom - fTop; } 79 80 /** 81 * Since the center of an integer rect may fall on a factional value, this 82 * method is defined to return (right + left) >> 1. 83 * 84 * This is a specific "truncation" of the average, which is different than 85 * (right + left) / 2 when the sum is negative. 86 */ 87 int centerX() const { return (fRight + fLeft) >> 1; } 88 89 /** 90 * Since the center of an integer rect may fall on a factional value, this 91 * method is defined to return (bottom + top) >> 1 92 * 93 * This is a specific "truncation" of the average, which is different than 94 * (bottom + top) / 2 when the sum is negative. 95 */ 96 int centerY() const { return (fBottom + fTop) >> 1; } 97 98 /** 99 * Return true if the rectangle's width or height are <= 0 100 */ 101 bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } 102 103 bool isLargest() const { return SK_MinS32 == fLeft && 104 SK_MinS32 == fTop && 105 SK_MaxS32 == fRight && 106 SK_MaxS32 == fBottom; } 107 108 friend bool operator==(const SkIRect& a, const SkIRect& b) { 109 return !memcmp(&a, &b, sizeof(a)); 110 } 111 112 friend bool operator!=(const SkIRect& a, const SkIRect& b) { 113 return !(a == b); 114 } 115 116 bool is16Bit() const { 117 return SkIsS16(fLeft) && SkIsS16(fTop) && 118 SkIsS16(fRight) && SkIsS16(fBottom); 119 } 120 121 /** Set the rectangle to (0,0,0,0) 122 */ 123 void setEmpty() { memset(this, 0, sizeof(*this)); } 124 125 void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { 126 fLeft = left; 127 fTop = top; 128 fRight = right; 129 fBottom = bottom; 130 } 131 // alias for set(l, t, r, b) 132 void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { 133 this->set(left, top, right, bottom); 134 } 135 136 void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { 137 fLeft = x; 138 fTop = y; 139 fRight = x + width; 140 fBottom = y + height; 141 } 142 143 /** 144 * Make the largest representable rectangle 145 */ 146 void setLargest() { 147 fLeft = fTop = SK_MinS32; 148 fRight = fBottom = SK_MaxS32; 149 } 150 151 /** 152 * Make the largest representable rectangle, but inverted (e.g. fLeft will 153 * be max 32bit and right will be min 32bit). 154 */ 155 void setLargestInverted() { 156 fLeft = fTop = SK_MaxS32; 157 fRight = fBottom = SK_MinS32; 158 } 159 160 /** Offset set the rectangle by adding dx to its left and right, 161 and adding dy to its top and bottom. 162 */ 163 void offset(int32_t dx, int32_t dy) { 164 fLeft += dx; 165 fTop += dy; 166 fRight += dx; 167 fBottom += dy; 168 } 169 170 void offset(const SkIPoint& delta) { 171 this->offset(delta.fX, delta.fY); 172 } 173 174 /** 175 * Offset this rect such its new x() and y() will equal newX and newY. 176 */ 177 void offsetTo(int32_t newX, int32_t newY) { 178 fRight += newX - fLeft; 179 fBottom += newY - fTop; 180 fLeft = newX; 181 fTop = newY; 182 } 183 184 /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, 185 making the rectangle narrower. If dx is negative, then the sides are moved outwards, 186 making the rectangle wider. The same holds true for dy and the top and bottom. 187 */ 188 void inset(int32_t dx, int32_t dy) { 189 fLeft += dx; 190 fTop += dy; 191 fRight -= dx; 192 fBottom -= dy; 193 } 194 195 /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are 196 moved outwards, making the rectangle wider. If dx is negative, then the 197 sides are moved inwards, making the rectangle narrower. The same holds 198 true for dy and the top and bottom. 199 */ 200 void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); } 201 202 bool quickReject(int l, int t, int r, int b) const { 203 return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; 204 } 205 206 /** Returns true if (x,y) is inside the rectangle and the rectangle is not 207 empty. The left and top are considered to be inside, while the right 208 and bottom are not. Thus for the rectangle (0, 0, 5, 10), the 209 points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. 210 */ 211 bool contains(int32_t x, int32_t y) const { 212 return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && 213 (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); 214 } 215 216 /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. 217 If either rectangle is empty, contains() returns false. 218 */ 219 bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { 220 return left < right && top < bottom && !this->isEmpty() && // check for empties 221 fLeft <= left && fTop <= top && 222 fRight >= right && fBottom >= bottom; 223 } 224 225 /** Returns true if the specified rectangle r is inside or equal to this rectangle. 226 */ 227 bool contains(const SkIRect& r) const { 228 return !r.isEmpty() && !this->isEmpty() && // check for empties 229 fLeft <= r.fLeft && fTop <= r.fTop && 230 fRight >= r.fRight && fBottom >= r.fBottom; 231 } 232 233 /** Return true if this rectangle contains the specified rectangle. 234 For speed, this method does not check if either this or the specified 235 rectangles are empty, and if either is, its return value is undefined. 236 In the debugging build however, we assert that both this and the 237 specified rectangles are non-empty. 238 */ 239 bool containsNoEmptyCheck(int32_t left, int32_t top, 240 int32_t right, int32_t bottom) const { 241 SkASSERT(fLeft < fRight && fTop < fBottom); 242 SkASSERT(left < right && top < bottom); 243 244 return fLeft <= left && fTop <= top && 245 fRight >= right && fBottom >= bottom; 246 } 247 248 bool containsNoEmptyCheck(const SkIRect& r) const { 249 return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); 250 } 251 252 /** If r intersects this rectangle, return true and set this rectangle to that 253 intersection, otherwise return false and do not change this rectangle. 254 If either rectangle is empty, do nothing and return false. 255 */ 256 bool intersect(const SkIRect& r) { 257 SkASSERT(&r); 258 return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); 259 } 260 261 /** If rectangles a and b intersect, return true and set this rectangle to 262 that intersection, otherwise return false and do not change this 263 rectangle. If either rectangle is empty, do nothing and return false. 264 */ 265 bool intersect(const SkIRect& a, const SkIRect& b) { 266 SkASSERT(&a && &b); 267 268 if (!a.isEmpty() && !b.isEmpty() && 269 a.fLeft < b.fRight && b.fLeft < a.fRight && 270 a.fTop < b.fBottom && b.fTop < a.fBottom) { 271 fLeft = SkMax32(a.fLeft, b.fLeft); 272 fTop = SkMax32(a.fTop, b.fTop); 273 fRight = SkMin32(a.fRight, b.fRight); 274 fBottom = SkMin32(a.fBottom, b.fBottom); 275 return true; 276 } 277 return false; 278 } 279 280 /** If rectangles a and b intersect, return true and set this rectangle to 281 that intersection, otherwise return false and do not change this 282 rectangle. For speed, no check to see if a or b are empty is performed. 283 If either is, then the return result is undefined. In the debug build, 284 we assert that both rectangles are non-empty. 285 */ 286 bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { 287 SkASSERT(&a && &b); 288 SkASSERT(!a.isEmpty() && !b.isEmpty()); 289 290 if (a.fLeft < b.fRight && b.fLeft < a.fRight && 291 a.fTop < b.fBottom && b.fTop < a.fBottom) { 292 fLeft = SkMax32(a.fLeft, b.fLeft); 293 fTop = SkMax32(a.fTop, b.fTop); 294 fRight = SkMin32(a.fRight, b.fRight); 295 fBottom = SkMin32(a.fBottom, b.fBottom); 296 return true; 297 } 298 return false; 299 } 300 301 /** If the rectangle specified by left,top,right,bottom intersects this rectangle, 302 return true and set this rectangle to that intersection, 303 otherwise return false and do not change this rectangle. 304 If either rectangle is empty, do nothing and return false. 305 */ 306 bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { 307 if (left < right && top < bottom && !this->isEmpty() && 308 fLeft < right && left < fRight && fTop < bottom && top < fBottom) { 309 if (fLeft < left) fLeft = left; 310 if (fTop < top) fTop = top; 311 if (fRight > right) fRight = right; 312 if (fBottom > bottom) fBottom = bottom; 313 return true; 314 } 315 return false; 316 } 317 318 /** Returns true if a and b are not empty, and they intersect 319 */ 320 static bool Intersects(const SkIRect& a, const SkIRect& b) { 321 return !a.isEmpty() && !b.isEmpty() && // check for empties 322 a.fLeft < b.fRight && b.fLeft < a.fRight && 323 a.fTop < b.fBottom && b.fTop < a.fBottom; 324 } 325 326 /** 327 * Returns true if a and b intersect. debug-asserts that neither are empty. 328 */ 329 static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { 330 SkASSERT(!a.isEmpty()); 331 SkASSERT(!b.isEmpty()); 332 return a.fLeft < b.fRight && b.fLeft < a.fRight && 333 a.fTop < b.fBottom && b.fTop < a.fBottom; 334 } 335 336 /** Update this rectangle to enclose itself and the specified rectangle. 337 If this rectangle is empty, just set it to the specified rectangle. If the specified 338 rectangle is empty, do nothing. 339 */ 340 void join(int32_t left, int32_t top, int32_t right, int32_t bottom); 341 342 /** Update this rectangle to enclose itself and the specified rectangle. 343 If this rectangle is empty, just set it to the specified rectangle. If the specified 344 rectangle is empty, do nothing. 345 */ 346 void join(const SkIRect& r) { 347 this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); 348 } 349 350 /** Swap top/bottom or left/right if there are flipped. 351 This can be called if the edges are computed separately, 352 and may have crossed over each other. 353 When this returns, left <= right && top <= bottom 354 */ 355 void sort(); 356 357 static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { 358 static const SkIRect gEmpty = { 0, 0, 0, 0 }; 359 return gEmpty; 360 } 361}; 362 363/** \struct SkRect 364*/ 365struct SK_API SkRect { 366 SkScalar fLeft, fTop, fRight, fBottom; 367 368 static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { 369 SkRect r; 370 r.setEmpty(); 371 return r; 372 } 373 374 static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { 375 SkRect r; 376 r.set(0, 0, w, h); 377 return r; 378 } 379 380 static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { 381 SkRect r; 382 r.set(0, 0, size.width(), size.height()); 383 return r; 384 } 385 386 static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { 387 SkRect rect; 388 rect.set(l, t, r, b); 389 return rect; 390 } 391 392 static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { 393 SkRect r; 394 r.set(x, y, x + w, y + h); 395 return r; 396 } 397 398 // DEPRECATED: call Make(r) 399 static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { 400 SkRect r; 401 r.set(SkIntToScalar(irect.fLeft), 402 SkIntToScalar(irect.fTop), 403 SkIntToScalar(irect.fRight), 404 SkIntToScalar(irect.fBottom)); 405 return r; 406 } 407 408 static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { 409 SkRect r; 410 r.set(SkIntToScalar(irect.fLeft), 411 SkIntToScalar(irect.fTop), 412 SkIntToScalar(irect.fRight), 413 SkIntToScalar(irect.fBottom)); 414 return r; 415 } 416 417 /** 418 * Return true if the rectangle's width or height are <= 0 419 */ 420 bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } 421 422 /** 423 * Returns true iff all values in the rect are finite. If any are 424 * infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this 425 * returns false. 426 */ 427 bool isFinite() const { 428#ifdef SK_SCALAR_IS_FLOAT 429 float accum = 0; 430 accum *= fLeft; 431 accum *= fTop; 432 accum *= fRight; 433 accum *= fBottom; 434 435 // accum is either NaN or it is finite (zero). 436 SkASSERT(0 == accum || !(accum == accum)); 437 438 // value==value will be true iff value is not NaN 439 // TODO: is it faster to say !accum or accum==accum? 440 return accum == accum; 441#else 442 // use bit-or for speed, since we don't care about short-circuting the 443 // tests, and we expect the common case will be that we need to check all. 444 int isNaN = (SK_FixedNaN == fLeft) | (SK_FixedNaN == fTop) | 445 (SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom); 446 return !isNaN; 447#endif 448 } 449 450 SkScalar x() const { return fLeft; } 451 SkScalar y() const { return fTop; } 452 SkScalar left() const { return fLeft; } 453 SkScalar top() const { return fTop; } 454 SkScalar right() const { return fRight; } 455 SkScalar bottom() const { return fBottom; } 456 SkScalar width() const { return fRight - fLeft; } 457 SkScalar height() const { return fBottom - fTop; } 458 SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); } 459 SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); } 460 461 friend bool operator==(const SkRect& a, const SkRect& b) { 462 return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); 463 } 464 465 friend bool operator!=(const SkRect& a, const SkRect& b) { 466 return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); 467 } 468 469 /** return the 4 points that enclose the rectangle 470 */ 471 void toQuad(SkPoint quad[4]) const; 472 473 /** Set this rectangle to the empty rectangle (0,0,0,0) 474 */ 475 void setEmpty() { memset(this, 0, sizeof(*this)); } 476 477 void set(const SkIRect& src) { 478 fLeft = SkIntToScalar(src.fLeft); 479 fTop = SkIntToScalar(src.fTop); 480 fRight = SkIntToScalar(src.fRight); 481 fBottom = SkIntToScalar(src.fBottom); 482 } 483 484 void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 485 fLeft = left; 486 fTop = top; 487 fRight = right; 488 fBottom = bottom; 489 } 490 // alias for set(l, t, r, b) 491 void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 492 this->set(left, top, right, bottom); 493 } 494 495 /** Initialize the rect with the 4 specified integers. The routine handles 496 converting them to scalars (by calling SkIntToScalar) 497 */ 498 void iset(int left, int top, int right, int bottom) { 499 fLeft = SkIntToScalar(left); 500 fTop = SkIntToScalar(top); 501 fRight = SkIntToScalar(right); 502 fBottom = SkIntToScalar(bottom); 503 } 504 505 /** 506 * Set this rectangle to be left/top at 0,0, and have the specified width 507 * and height (automatically converted to SkScalar). 508 */ 509 void isetWH(int width, int height) { 510 fLeft = fTop = 0; 511 fRight = SkIntToScalar(width); 512 fBottom = SkIntToScalar(height); 513 } 514 515 /** Set this rectangle to be the bounds of the array of points. 516 If the array is empty (count == 0), then set this rectangle 517 to the empty rectangle (0,0,0,0) 518 */ 519 void set(const SkPoint pts[], int count) { 520 // set() had been checking for non-finite values, so keep that behavior 521 // for now. Now that we have setBoundsCheck(), we may decide to make 522 // set() be simpler/faster, and not check for those. 523 (void)this->setBoundsCheck(pts, count); 524 } 525 526 // alias for set(pts, count) 527 void setBounds(const SkPoint pts[], int count) { 528 (void)this->setBoundsCheck(pts, count); 529 } 530 531 /** 532 * Compute the bounds of the array of points, and set this rect to that 533 * bounds and return true... unless a non-finite value is encountered, 534 * in which case this rect is set to empty and false is returned. 535 */ 536 bool setBoundsCheck(const SkPoint pts[], int count); 537 538 void set(const SkPoint& p0, const SkPoint& p1) { 539 fLeft = SkMinScalar(p0.fX, p1.fX); 540 fRight = SkMaxScalar(p0.fX, p1.fX); 541 fTop = SkMinScalar(p0.fY, p1.fY); 542 fBottom = SkMaxScalar(p0.fY, p1.fY); 543 } 544 545 void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { 546 fLeft = x; 547 fTop = y; 548 fRight = x + width; 549 fBottom = y + height; 550 } 551 552 void setWH(SkScalar width, SkScalar height) { 553 fLeft = 0; 554 fTop = 0; 555 fRight = width; 556 fBottom = height; 557 } 558 559 /** 560 * Make the largest representable rectangle 561 */ 562 void setLargest() { 563 fLeft = fTop = SK_ScalarMin; 564 fRight = fBottom = SK_ScalarMax; 565 } 566 567 /** 568 * Make the largest representable rectangle, but inverted (e.g. fLeft will 569 * be max and right will be min). 570 */ 571 void setLargestInverted() { 572 fLeft = fTop = SK_ScalarMax; 573 fRight = fBottom = SK_ScalarMin; 574 } 575 576 /** Offset set the rectangle by adding dx to its left and right, 577 and adding dy to its top and bottom. 578 */ 579 void offset(SkScalar dx, SkScalar dy) { 580 fLeft += dx; 581 fTop += dy; 582 fRight += dx; 583 fBottom += dy; 584 } 585 586 void offset(const SkPoint& delta) { 587 this->offset(delta.fX, delta.fY); 588 } 589 590 /** 591 * Offset this rect such its new x() and y() will equal newX and newY. 592 */ 593 void offsetTo(SkScalar newX, SkScalar newY) { 594 fRight += newX - fLeft; 595 fBottom += newY - fTop; 596 fLeft = newX; 597 fTop = newY; 598 } 599 600 /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are 601 moved inwards, making the rectangle narrower. If dx is negative, then 602 the sides are moved outwards, making the rectangle wider. The same holds 603 true for dy and the top and bottom. 604 */ 605 void inset(SkScalar dx, SkScalar dy) { 606 fLeft += dx; 607 fTop += dy; 608 fRight -= dx; 609 fBottom -= dy; 610 } 611 612 /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are 613 moved outwards, making the rectangle wider. If dx is negative, then the 614 sides are moved inwards, making the rectangle narrower. The same holds 615 true for dy and the top and bottom. 616 */ 617 void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); } 618 619 /** If this rectangle intersects r, return true and set this rectangle to that 620 intersection, otherwise return false and do not change this rectangle. 621 If either rectangle is empty, do nothing and return false. 622 */ 623 bool intersect(const SkRect& r); 624 625 /** If this rectangle intersects the rectangle specified by left, top, right, bottom, 626 return true and set this rectangle to that intersection, otherwise return false 627 and do not change this rectangle. 628 If either rectangle is empty, do nothing and return false. 629 */ 630 bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); 631 632 /** 633 * Return true if this rectangle is not empty, and the specified sides of 634 * a rectangle are not empty, and they intersect. 635 */ 636 bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { 637 return // first check that both are not empty 638 left < right && top < bottom && 639 fLeft < fRight && fTop < fBottom && 640 // now check for intersection 641 fLeft < right && left < fRight && 642 fTop < bottom && top < fBottom; 643 } 644 645 /** If rectangles a and b intersect, return true and set this rectangle to 646 * that intersection, otherwise return false and do not change this 647 * rectangle. If either rectangle is empty, do nothing and return false. 648 */ 649 bool intersect(const SkRect& a, const SkRect& b); 650 651 /** 652 * Return true if rectangles a and b are not empty and intersect. 653 */ 654 static bool Intersects(const SkRect& a, const SkRect& b) { 655 return !a.isEmpty() && !b.isEmpty() && 656 a.fLeft < b.fRight && b.fLeft < a.fRight && 657 a.fTop < b.fBottom && b.fTop < a.fBottom; 658 } 659 660 /** 661 * Update this rectangle to enclose itself and the specified rectangle. 662 * If this rectangle is empty, just set it to the specified rectangle. 663 * If the specified rectangle is empty, do nothing. 664 */ 665 void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); 666 667 /** Update this rectangle to enclose itself and the specified rectangle. 668 If this rectangle is empty, just set it to the specified rectangle. If the specified 669 rectangle is empty, do nothing. 670 */ 671 void join(const SkRect& r) { 672 this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); 673 } 674 // alias for join() 675 void growToInclude(const SkRect& r) { this->join(r); } 676 677 /** 678 * Grow the rect to include the specified (x,y). After this call, the 679 * following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. 680 * 681 * This is close, but not quite the same contract as contains(), since 682 * contains() treats the left and top different from the right and bottom. 683 * contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note 684 * that contains(x,y) always returns false if the rect is empty. 685 */ 686 void growToInclude(SkScalar x, SkScalar y) { 687 fLeft = SkMinScalar(x, fLeft); 688 fRight = SkMaxScalar(x, fRight); 689 fTop = SkMinScalar(y, fTop); 690 fBottom = SkMaxScalar(y, fBottom); 691 } 692 693 /** 694 * Returns true if (p.fX,p.fY) is inside the rectangle, and the rectangle 695 * is not empty. 696 * 697 * Contains treats the left and top differently from the right and bottom. 698 * The left and top coordinates of the rectangle are themselves considered 699 * to be inside, while the right and bottom are not. Thus for the rectangle 700 * {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not. 701 */ 702 bool contains(const SkPoint& p) const { 703 return !this->isEmpty() && 704 fLeft <= p.fX && p.fX < fRight && fTop <= p.fY && p.fY < fBottom; 705 } 706 707 /** 708 * Returns true if (x,y) is inside the rectangle, and the rectangle 709 * is not empty. 710 * 711 * Contains treats the left and top differently from the right and bottom. 712 * The left and top coordinates of the rectangle are themselves considered 713 * to be inside, while the right and bottom are not. Thus for the rectangle 714 * {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not. 715 */ 716 bool contains(SkScalar x, SkScalar y) const { 717 return !this->isEmpty() && 718 fLeft <= x && x < fRight && fTop <= y && y < fBottom; 719 } 720 721 /** 722 * Return true if this rectangle contains r, and if both rectangles are 723 * not empty. 724 */ 725 bool contains(const SkRect& r) const { 726 return !r.isEmpty() && !this->isEmpty() && 727 fLeft <= r.fLeft && fTop <= r.fTop && 728 fRight >= r.fRight && fBottom >= r.fBottom; 729 } 730 731 /** 732 * Set the dst rectangle by rounding this rectangle's coordinates to their 733 * nearest integer values using SkScalarRound. 734 */ 735 void round(SkIRect* dst) const { 736 SkASSERT(dst); 737 dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), 738 SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); 739 } 740 741 /** 742 * Set the dst rectangle by rounding "out" this rectangle, choosing the 743 * SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. 744 */ 745 void roundOut(SkIRect* dst) const { 746 SkASSERT(dst); 747 dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), 748 SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); 749 } 750 751 /** 752 * Expand this rectangle by rounding its coordinates "out", choosing the 753 * floor of top and left, and the ceil of right and bottom. If this rect 754 * is already on integer coordinates, then it will be unchanged. 755 */ 756 void roundOut() { 757 this->set(SkScalarFloorToScalar(fLeft), 758 SkScalarFloorToScalar(fTop), 759 SkScalarCeilToScalar(fRight), 760 SkScalarCeilToScalar(fBottom)); 761 } 762 763 /** 764 * Set the dst rectangle by rounding "in" this rectangle, choosing the 765 * ceil of top and left, and the floor of right and bottom. This does *not* 766 * call sort(), so it is possible that the resulting rect is inverted... 767 * e.g. left >= right or top >= bottom. Call isEmpty() to detect that. 768 */ 769 void roundIn(SkIRect* dst) const { 770 SkASSERT(dst); 771 dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), 772 SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); 773 } 774 775 776 /** 777 * Swap top/bottom or left/right if there are flipped (i.e. if width() 778 * or height() would have returned a negative value.) This should be called 779 * if the edges are computed separately, and may have crossed over each 780 * other. When this returns, left <= right && top <= bottom 781 */ 782 void sort(); 783 784 /** 785 * cast-safe way to treat the rect as an array of (4) SkScalars. 786 */ 787 const SkScalar* asScalars() const { return &fLeft; } 788}; 789 790#endif 791