SkRect.h revision ae8f9528fd0052e06653272abb44a1f49a3b726b
1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#ifndef SkRect_DEFINED
11#define SkRect_DEFINED
12
13#include "SkPoint.h"
14#include "SkSize.h"
15
16/** \struct SkIRect
17
18    SkIRect holds four 32 bit integer coordinates for a rectangle
19*/
20struct SK_API SkIRect {
21    int32_t fLeft, fTop, fRight, fBottom;
22
23    static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() {
24        SkIRect r;
25        r.setEmpty();
26        return r;
27    }
28
29    static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() {
30        SkIRect r;
31        r.setLargest();
32        return r;
33    }
34
35    static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) {
36        SkIRect r;
37        r.set(0, 0, w, h);
38        return r;
39    }
40
41    static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) {
42        SkIRect r;
43        r.set(0, 0, size.width(), size.height());
44        return r;
45    }
46
47    static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) {
48        SkIRect rect;
49        rect.set(l, t, r, b);
50        return rect;
51    }
52
53    static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) {
54        SkIRect r;
55        r.set(x, y, x + w, y + h);
56        return r;
57    }
58
59    int left() const { return fLeft; }
60    int top() const { return fTop; }
61    int right() const { return fRight; }
62    int bottom() const { return fBottom; }
63
64    /** return the left edge of the rect */
65    int x() const { return fLeft; }
66    /** return the top edge of the rect */
67    int y() const { return fTop; }
68    /**
69     *  Returns the rectangle's width. This does not check for a valid rect
70     *  (i.e. left <= right) so the result may be negative.
71     */
72    int width() const { return fRight - fLeft; }
73
74    /**
75     *  Returns the rectangle's height. This does not check for a valid rect
76     *  (i.e. top <= bottom) so the result may be negative.
77     */
78    int height() const { return fBottom - fTop; }
79
80    /**
81     *  Since the center of an integer rect may fall on a factional value, this
82     *  method is defined to return (right + left) >> 1.
83     *
84     *  This is a specific "truncation" of the average, which is different than
85     *  (right + left) / 2 when the sum is negative.
86     */
87    int centerX() const { return (fRight + fLeft) >> 1; }
88
89    /**
90     *  Since the center of an integer rect may fall on a factional value, this
91     *  method is defined to return (bottom + top) >> 1
92     *
93     *  This is a specific "truncation" of the average, which is different than
94     *  (bottom + top) / 2 when the sum is negative.
95     */
96    int centerY() const { return (fBottom + fTop) >> 1; }
97
98    /**
99     *  Return true if the rectangle's width or height are <= 0
100     */
101    bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
102
103    bool isLargest() const { return SK_MinS32 == fLeft &&
104                                    SK_MinS32 == fTop &&
105                                    SK_MaxS32 == fRight &&
106                                    SK_MaxS32 == fBottom; }
107
108    friend bool operator==(const SkIRect& a, const SkIRect& b) {
109        return !memcmp(&a, &b, sizeof(a));
110    }
111
112    friend bool operator!=(const SkIRect& a, const SkIRect& b) {
113        return !(a == b);
114    }
115
116    bool is16Bit() const {
117        return  SkIsS16(fLeft) && SkIsS16(fTop) &&
118                SkIsS16(fRight) && SkIsS16(fBottom);
119    }
120
121    /** Set the rectangle to (0,0,0,0)
122    */
123    void setEmpty() { memset(this, 0, sizeof(*this)); }
124
125    void set(int32_t left, int32_t top, int32_t right, int32_t bottom) {
126        fLeft   = left;
127        fTop    = top;
128        fRight  = right;
129        fBottom = bottom;
130    }
131    // alias for set(l, t, r, b)
132    void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) {
133        this->set(left, top, right, bottom);
134    }
135
136    void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) {
137        fLeft = x;
138        fTop = y;
139        fRight = x + width;
140        fBottom = y + height;
141    }
142
143    /**
144     *  Make the largest representable rectangle
145     */
146    void setLargest() {
147        fLeft = fTop = SK_MinS32;
148        fRight = fBottom = SK_MaxS32;
149    }
150
151    /**
152     *  Make the largest representable rectangle, but inverted (e.g. fLeft will
153     *  be max 32bit and right will be min 32bit).
154     */
155    void setLargestInverted() {
156        fLeft = fTop = SK_MaxS32;
157        fRight = fBottom = SK_MinS32;
158    }
159
160    /** Offset set the rectangle by adding dx to its left and right,
161        and adding dy to its top and bottom.
162    */
163    void offset(int32_t dx, int32_t dy) {
164        fLeft   += dx;
165        fTop    += dy;
166        fRight  += dx;
167        fBottom += dy;
168    }
169
170    void offset(const SkIPoint& delta) {
171        this->offset(delta.fX, delta.fY);
172    }
173
174    /**
175     *  Offset this rect such its new x() and y() will equal newX and newY.
176     */
177    void offsetTo(int32_t newX, int32_t newY) {
178        fRight += newX - fLeft;
179        fBottom += newY - fTop;
180        fLeft = newX;
181        fTop = newY;
182    }
183
184    /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards,
185        making the rectangle narrower. If dx is negative, then the sides are moved outwards,
186        making the rectangle wider. The same holds true for dy and the top and bottom.
187    */
188    void inset(int32_t dx, int32_t dy) {
189        fLeft   += dx;
190        fTop    += dy;
191        fRight  -= dx;
192        fBottom -= dy;
193    }
194
195   /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
196       moved outwards, making the rectangle wider. If dx is negative, then the
197       sides are moved inwards, making the rectangle narrower. The same holds
198       true for dy and the top and bottom.
199    */
200    void outset(int32_t dx, int32_t dy)  { this->inset(-dx, -dy); }
201
202    bool quickReject(int l, int t, int r, int b) const {
203        return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b;
204    }
205
206    /** Returns true if (x,y) is inside the rectangle and the rectangle is not
207        empty. The left and top are considered to be inside, while the right
208        and bottom are not. Thus for the rectangle (0, 0, 5, 10), the
209        points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not.
210    */
211    bool contains(int32_t x, int32_t y) const {
212        return  (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) &&
213                (unsigned)(y - fTop) < (unsigned)(fBottom - fTop);
214    }
215
216    /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle.
217        If either rectangle is empty, contains() returns false.
218    */
219    bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const {
220        return  left < right && top < bottom && !this->isEmpty() && // check for empties
221                fLeft <= left && fTop <= top &&
222                fRight >= right && fBottom >= bottom;
223    }
224
225    /** Returns true if the specified rectangle r is inside or equal to this rectangle.
226    */
227    bool contains(const SkIRect& r) const {
228        return  !r.isEmpty() && !this->isEmpty() &&     // check for empties
229                fLeft <= r.fLeft && fTop <= r.fTop &&
230                fRight >= r.fRight && fBottom >= r.fBottom;
231    }
232
233    /** Return true if this rectangle contains the specified rectangle.
234        For speed, this method does not check if either this or the specified
235        rectangles are empty, and if either is, its return value is undefined.
236        In the debugging build however, we assert that both this and the
237        specified rectangles are non-empty.
238    */
239    bool containsNoEmptyCheck(int32_t left, int32_t top,
240                              int32_t right, int32_t bottom) const {
241        SkASSERT(fLeft < fRight && fTop < fBottom);
242        SkASSERT(left < right && top < bottom);
243
244        return fLeft <= left && fTop <= top &&
245               fRight >= right && fBottom >= bottom;
246    }
247
248    bool containsNoEmptyCheck(const SkIRect& r) const {
249        return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom);
250    }
251
252    /** If r intersects this rectangle, return true and set this rectangle to that
253        intersection, otherwise return false and do not change this rectangle.
254        If either rectangle is empty, do nothing and return false.
255    */
256    bool intersect(const SkIRect& r) {
257        SkASSERT(&r);
258        return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
259    }
260
261    /** If rectangles a and b intersect, return true and set this rectangle to
262        that intersection, otherwise return false and do not change this
263        rectangle. If either rectangle is empty, do nothing and return false.
264    */
265    bool intersect(const SkIRect& a, const SkIRect& b) {
266        SkASSERT(&a && &b);
267
268        if (!a.isEmpty() && !b.isEmpty() &&
269                a.fLeft < b.fRight && b.fLeft < a.fRight &&
270                a.fTop < b.fBottom && b.fTop < a.fBottom) {
271            fLeft   = SkMax32(a.fLeft,   b.fLeft);
272            fTop    = SkMax32(a.fTop,    b.fTop);
273            fRight  = SkMin32(a.fRight,  b.fRight);
274            fBottom = SkMin32(a.fBottom, b.fBottom);
275            return true;
276        }
277        return false;
278    }
279
280    /** If rectangles a and b intersect, return true and set this rectangle to
281        that intersection, otherwise return false and do not change this
282        rectangle. For speed, no check to see if a or b are empty is performed.
283        If either is, then the return result is undefined. In the debug build,
284        we assert that both rectangles are non-empty.
285    */
286    bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
287        SkASSERT(&a && &b);
288        SkASSERT(!a.isEmpty() && !b.isEmpty());
289
290        if (a.fLeft < b.fRight && b.fLeft < a.fRight &&
291                a.fTop < b.fBottom && b.fTop < a.fBottom) {
292            fLeft   = SkMax32(a.fLeft,   b.fLeft);
293            fTop    = SkMax32(a.fTop,    b.fTop);
294            fRight  = SkMin32(a.fRight,  b.fRight);
295            fBottom = SkMin32(a.fBottom, b.fBottom);
296            return true;
297        }
298        return false;
299    }
300
301    /** If the rectangle specified by left,top,right,bottom intersects this rectangle,
302        return true and set this rectangle to that intersection,
303        otherwise return false and do not change this rectangle.
304        If either rectangle is empty, do nothing and return false.
305    */
306    bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) {
307        if (left < right && top < bottom && !this->isEmpty() &&
308                fLeft < right && left < fRight && fTop < bottom && top < fBottom) {
309            if (fLeft < left) fLeft = left;
310            if (fTop < top) fTop = top;
311            if (fRight > right) fRight = right;
312            if (fBottom > bottom) fBottom = bottom;
313            return true;
314        }
315        return false;
316    }
317
318    /** Returns true if a and b are not empty, and they intersect
319     */
320    static bool Intersects(const SkIRect& a, const SkIRect& b) {
321        return  !a.isEmpty() && !b.isEmpty() &&              // check for empties
322        a.fLeft < b.fRight && b.fLeft < a.fRight &&
323        a.fTop < b.fBottom && b.fTop < a.fBottom;
324    }
325
326    /**
327     *  Returns true if a and b intersect. debug-asserts that neither are empty.
328     */
329    static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
330        SkASSERT(!a.isEmpty());
331        SkASSERT(!b.isEmpty());
332        return  a.fLeft < b.fRight && b.fLeft < a.fRight &&
333                a.fTop < b.fBottom && b.fTop < a.fBottom;
334    }
335
336    /** Update this rectangle to enclose itself and the specified rectangle.
337        If this rectangle is empty, just set it to the specified rectangle. If the specified
338        rectangle is empty, do nothing.
339    */
340    void join(int32_t left, int32_t top, int32_t right, int32_t bottom);
341
342    /** Update this rectangle to enclose itself and the specified rectangle.
343        If this rectangle is empty, just set it to the specified rectangle. If the specified
344        rectangle is empty, do nothing.
345    */
346    void join(const SkIRect& r) {
347        this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
348    }
349
350    /** Swap top/bottom or left/right if there are flipped.
351        This can be called if the edges are computed separately,
352        and may have crossed over each other.
353        When this returns, left <= right && top <= bottom
354    */
355    void sort();
356
357    static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() {
358        static const SkIRect gEmpty = { 0, 0, 0, 0 };
359        return gEmpty;
360    }
361};
362
363/** \struct SkRect
364*/
365struct SK_API SkRect {
366    SkScalar    fLeft, fTop, fRight, fBottom;
367
368    static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() {
369        SkRect r;
370        r.setEmpty();
371        return r;
372    }
373
374    static SkRect SK_WARN_UNUSED_RESULT MakeLargest() {
375        SkRect r;
376        r.setLargest();
377        return r;
378    }
379
380    static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) {
381        SkRect r;
382        r.set(0, 0, w, h);
383        return r;
384    }
385
386    static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) {
387        SkRect r;
388        r.set(0, 0, size.width(), size.height());
389        return r;
390    }
391
392    static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
393        SkRect rect;
394        rect.set(l, t, r, b);
395        return rect;
396    }
397
398    static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) {
399        SkRect r;
400        r.set(x, y, x + w, y + h);
401        return r;
402    }
403
404    SK_ATTR_DEPRECATED("use Make()")
405    static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) {
406        SkRect r;
407        r.set(SkIntToScalar(irect.fLeft),
408              SkIntToScalar(irect.fTop),
409              SkIntToScalar(irect.fRight),
410              SkIntToScalar(irect.fBottom));
411        return r;
412    }
413
414    static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) {
415        SkRect r;
416        r.set(SkIntToScalar(irect.fLeft),
417              SkIntToScalar(irect.fTop),
418              SkIntToScalar(irect.fRight),
419              SkIntToScalar(irect.fBottom));
420        return r;
421    }
422
423    /**
424     *  Return true if the rectangle's width or height are <= 0
425     */
426    bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
427
428    bool isLargest() const { return SK_ScalarMin == fLeft &&
429                                    SK_ScalarMin == fTop &&
430                                    SK_ScalarMax == fRight &&
431                                    SK_ScalarMax == fBottom; }
432
433    /**
434     *  Returns true iff all values in the rect are finite. If any are
435     *  infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this
436     *  returns false.
437     */
438    bool isFinite() const {
439        float accum = 0;
440        accum *= fLeft;
441        accum *= fTop;
442        accum *= fRight;
443        accum *= fBottom;
444
445        // accum is either NaN or it is finite (zero).
446        SkASSERT(0 == accum || !(accum == accum));
447
448        // value==value will be true iff value is not NaN
449        // TODO: is it faster to say !accum or accum==accum?
450        return accum == accum;
451    }
452
453    SkScalar    x() const { return fLeft; }
454    SkScalar    y() const { return fTop; }
455    SkScalar    left() const { return fLeft; }
456    SkScalar    top() const { return fTop; }
457    SkScalar    right() const { return fRight; }
458    SkScalar    bottom() const { return fBottom; }
459    SkScalar    width() const { return fRight - fLeft; }
460    SkScalar    height() const { return fBottom - fTop; }
461    SkScalar    centerX() const { return SkScalarHalf(fLeft + fRight); }
462    SkScalar    centerY() const { return SkScalarHalf(fTop + fBottom); }
463
464    friend bool operator==(const SkRect& a, const SkRect& b) {
465        return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
466    }
467
468    friend bool operator!=(const SkRect& a, const SkRect& b) {
469        return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
470    }
471
472    /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right,
473        bottom-left). TODO: Consider adding param to control whether quad is CW or CCW.
474     */
475    void toQuad(SkPoint quad[4]) const;
476
477    /** Set this rectangle to the empty rectangle (0,0,0,0)
478    */
479    void setEmpty() { memset(this, 0, sizeof(*this)); }
480
481    void set(const SkIRect& src) {
482        fLeft   = SkIntToScalar(src.fLeft);
483        fTop    = SkIntToScalar(src.fTop);
484        fRight  = SkIntToScalar(src.fRight);
485        fBottom = SkIntToScalar(src.fBottom);
486    }
487
488    void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
489        fLeft   = left;
490        fTop    = top;
491        fRight  = right;
492        fBottom = bottom;
493    }
494    // alias for set(l, t, r, b)
495    void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
496        this->set(left, top, right, bottom);
497    }
498
499    /** Initialize the rect with the 4 specified integers. The routine handles
500        converting them to scalars (by calling SkIntToScalar)
501     */
502    void iset(int left, int top, int right, int bottom) {
503        fLeft   = SkIntToScalar(left);
504        fTop    = SkIntToScalar(top);
505        fRight  = SkIntToScalar(right);
506        fBottom = SkIntToScalar(bottom);
507    }
508
509    /**
510     *  Set this rectangle to be left/top at 0,0, and have the specified width
511     *  and height (automatically converted to SkScalar).
512     */
513    void isetWH(int width, int height) {
514        fLeft = fTop = 0;
515        fRight = SkIntToScalar(width);
516        fBottom = SkIntToScalar(height);
517    }
518
519    /** Set this rectangle to be the bounds of the array of points.
520        If the array is empty (count == 0), then set this rectangle
521        to the empty rectangle (0,0,0,0)
522    */
523    void set(const SkPoint pts[], int count) {
524        // set() had been checking for non-finite values, so keep that behavior
525        // for now. Now that we have setBoundsCheck(), we may decide to make
526        // set() be simpler/faster, and not check for those.
527        (void)this->setBoundsCheck(pts, count);
528    }
529
530    // alias for set(pts, count)
531    void setBounds(const SkPoint pts[], int count) {
532        (void)this->setBoundsCheck(pts, count);
533    }
534
535    /**
536     *  Compute the bounds of the array of points, and set this rect to that
537     *  bounds and return true... unless a non-finite value is encountered,
538     *  in which case this rect is set to empty and false is returned.
539     */
540    bool setBoundsCheck(const SkPoint pts[], int count);
541
542    void set(const SkPoint& p0, const SkPoint& p1) {
543        fLeft =   SkMinScalar(p0.fX, p1.fX);
544        fRight =  SkMaxScalar(p0.fX, p1.fX);
545        fTop =    SkMinScalar(p0.fY, p1.fY);
546        fBottom = SkMaxScalar(p0.fY, p1.fY);
547    }
548
549    void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) {
550        fLeft = x;
551        fTop = y;
552        fRight = x + width;
553        fBottom = y + height;
554    }
555
556    void setWH(SkScalar width, SkScalar height) {
557        fLeft = 0;
558        fTop = 0;
559        fRight = width;
560        fBottom = height;
561    }
562
563    /**
564     *  Make the largest representable rectangle
565     */
566    void setLargest() {
567        fLeft = fTop = SK_ScalarMin;
568        fRight = fBottom = SK_ScalarMax;
569    }
570
571    /**
572     *  Make the largest representable rectangle, but inverted (e.g. fLeft will
573     *  be max and right will be min).
574     */
575    void setLargestInverted() {
576        fLeft = fTop = SK_ScalarMax;
577        fRight = fBottom = SK_ScalarMin;
578    }
579
580    /** Offset set the rectangle by adding dx to its left and right,
581        and adding dy to its top and bottom.
582    */
583    void offset(SkScalar dx, SkScalar dy) {
584        fLeft   += dx;
585        fTop    += dy;
586        fRight  += dx;
587        fBottom += dy;
588    }
589
590    void offset(const SkPoint& delta) {
591        this->offset(delta.fX, delta.fY);
592    }
593
594    /**
595     *  Offset this rect such its new x() and y() will equal newX and newY.
596     */
597    void offsetTo(SkScalar newX, SkScalar newY) {
598        fRight += newX - fLeft;
599        fBottom += newY - fTop;
600        fLeft = newX;
601        fTop = newY;
602    }
603
604    /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are
605        moved inwards, making the rectangle narrower. If dx is negative, then
606        the sides are moved outwards, making the rectangle wider. The same holds
607         true for dy and the top and bottom.
608    */
609    void inset(SkScalar dx, SkScalar dy)  {
610        fLeft   += dx;
611        fTop    += dy;
612        fRight  -= dx;
613        fBottom -= dy;
614    }
615
616   /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
617       moved outwards, making the rectangle wider. If dx is negative, then the
618       sides are moved inwards, making the rectangle narrower. The same holds
619       true for dy and the top and bottom.
620    */
621    void outset(SkScalar dx, SkScalar dy)  { this->inset(-dx, -dy); }
622
623    /** If this rectangle intersects r, return true and set this rectangle to that
624        intersection, otherwise return false and do not change this rectangle.
625        If either rectangle is empty, do nothing and return false.
626    */
627    bool intersect(const SkRect& r);
628    bool intersect2(const SkRect& r);
629
630    /** If this rectangle intersects the rectangle specified by left, top, right, bottom,
631        return true and set this rectangle to that intersection, otherwise return false
632        and do not change this rectangle.
633        If either rectangle is empty, do nothing and return false.
634    */
635    bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
636
637    /**
638     *  Return true if this rectangle is not empty, and the specified sides of
639     *  a rectangle are not empty, and they intersect.
640     */
641    bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const {
642        return // first check that both are not empty
643               left < right && top < bottom &&
644               fLeft < fRight && fTop < fBottom &&
645               // now check for intersection
646               fLeft < right && left < fRight &&
647               fTop < bottom && top < fBottom;
648    }
649
650    /** If rectangles a and b intersect, return true and set this rectangle to
651     *  that intersection, otherwise return false and do not change this
652     *  rectangle. If either rectangle is empty, do nothing and return false.
653     */
654    bool intersect(const SkRect& a, const SkRect& b);
655
656    /**
657     *  Return true if rectangles a and b are not empty and intersect.
658     */
659    static bool Intersects(const SkRect& a, const SkRect& b) {
660        return  !a.isEmpty() && !b.isEmpty() &&
661                a.fLeft < b.fRight && b.fLeft < a.fRight &&
662                a.fTop < b.fBottom && b.fTop < a.fBottom;
663    }
664
665    /**
666     *  Update this rectangle to enclose itself and the specified rectangle.
667     *  If this rectangle is empty, just set it to the specified rectangle.
668     *  If the specified rectangle is empty, do nothing.
669     */
670    void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
671
672    /** Update this rectangle to enclose itself and the specified rectangle.
673        If this rectangle is empty, just set it to the specified rectangle. If the specified
674        rectangle is empty, do nothing.
675    */
676    void join(const SkRect& r) {
677        this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
678    }
679    // alias for join()
680    void growToInclude(const SkRect& r) { this->join(r); }
681
682    /**
683     *  Grow the rect to include the specified (x,y). After this call, the
684     *  following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom.
685     *
686     *  This is close, but not quite the same contract as contains(), since
687     *  contains() treats the left and top different from the right and bottom.
688     *  contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note
689     *  that contains(x,y) always returns false if the rect is empty.
690     */
691    void growToInclude(SkScalar x, SkScalar y) {
692        fLeft  = SkMinScalar(x, fLeft);
693        fRight = SkMaxScalar(x, fRight);
694        fTop    = SkMinScalar(y, fTop);
695        fBottom = SkMaxScalar(y, fBottom);
696    }
697
698    /** Bulk version of growToInclude */
699    void growToInclude(const SkPoint pts[], int count) {
700        this->growToInclude(pts, sizeof(SkPoint), count);
701    }
702
703    /** Bulk version of growToInclude with stride. */
704    void growToInclude(const SkPoint pts[], size_t stride, int count) {
705        SkASSERT(count >= 0);
706        SkASSERT(stride >= sizeof(SkPoint));
707        const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride);
708        for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) {
709            this->growToInclude(pts->fX, pts->fY);
710        }
711    }
712
713    /**
714     *  Return true if this rectangle contains r, and if both rectangles are
715     *  not empty.
716     */
717    bool contains(const SkRect& r) const {
718        // todo: can we eliminate the this->isEmpty check?
719        return  !r.isEmpty() && !this->isEmpty() &&
720                fLeft <= r.fLeft && fTop <= r.fTop &&
721                fRight >= r.fRight && fBottom >= r.fBottom;
722    }
723
724    /**
725     *  Set the dst rectangle by rounding this rectangle's coordinates to their
726     *  nearest integer values using SkScalarRoundToInt.
727     */
728    void round(SkIRect* dst) const {
729        SkASSERT(dst);
730        dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
731                 SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom));
732    }
733
734    /**
735     *  Set the dst rectangle by rounding "out" this rectangle, choosing the
736     *  SkScalarFloor of top and left, and the SkScalarCeil of right and bottom.
737     */
738    void roundOut(SkIRect* dst) const {
739        SkASSERT(dst);
740        dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
741                 SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom));
742    }
743
744    /**
745     *  Expand this rectangle by rounding its coordinates "out", choosing the
746     *  floor of top and left, and the ceil of right and bottom. If this rect
747     *  is already on integer coordinates, then it will be unchanged.
748     */
749    void roundOut() {
750        this->set(SkScalarFloorToScalar(fLeft),
751                  SkScalarFloorToScalar(fTop),
752                  SkScalarCeilToScalar(fRight),
753                  SkScalarCeilToScalar(fBottom));
754    }
755
756    /**
757     *  Set the dst rectangle by rounding "in" this rectangle, choosing the
758     *  ceil of top and left, and the floor of right and bottom. This does *not*
759     *  call sort(), so it is possible that the resulting rect is inverted...
760     *  e.g. left >= right or top >= bottom. Call isEmpty() to detect that.
761     */
762    void roundIn(SkIRect* dst) const {
763        SkASSERT(dst);
764        dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop),
765                 SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom));
766    }
767
768    /**
769     *  Return a new SkIRect which is contains the rounded coordinates of this
770     *  rect using SkScalarRoundToInt.
771     */
772    SkIRect round() const {
773        SkIRect ir;
774        this->round(&ir);
775        return ir;
776    }
777
778    /**
779     *  Swap top/bottom or left/right if there are flipped (i.e. if width()
780     *  or height() would have returned a negative value.) This should be called
781     *  if the edges are computed separately, and may have crossed over each
782     *  other. When this returns, left <= right && top <= bottom
783     */
784    void sort();
785
786    /**
787     *  cast-safe way to treat the rect as an array of (4) SkScalars.
788     */
789    const SkScalar* asScalars() const { return &fLeft; }
790};
791
792#endif
793