SkRect.h revision ae8f9528fd0052e06653272abb44a1f49a3b726b
1 2/* 3 * Copyright 2006 The Android Open Source Project 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10#ifndef SkRect_DEFINED 11#define SkRect_DEFINED 12 13#include "SkPoint.h" 14#include "SkSize.h" 15 16/** \struct SkIRect 17 18 SkIRect holds four 32 bit integer coordinates for a rectangle 19*/ 20struct SK_API SkIRect { 21 int32_t fLeft, fTop, fRight, fBottom; 22 23 static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() { 24 SkIRect r; 25 r.setEmpty(); 26 return r; 27 } 28 29 static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() { 30 SkIRect r; 31 r.setLargest(); 32 return r; 33 } 34 35 static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) { 36 SkIRect r; 37 r.set(0, 0, w, h); 38 return r; 39 } 40 41 static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) { 42 SkIRect r; 43 r.set(0, 0, size.width(), size.height()); 44 return r; 45 } 46 47 static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) { 48 SkIRect rect; 49 rect.set(l, t, r, b); 50 return rect; 51 } 52 53 static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) { 54 SkIRect r; 55 r.set(x, y, x + w, y + h); 56 return r; 57 } 58 59 int left() const { return fLeft; } 60 int top() const { return fTop; } 61 int right() const { return fRight; } 62 int bottom() const { return fBottom; } 63 64 /** return the left edge of the rect */ 65 int x() const { return fLeft; } 66 /** return the top edge of the rect */ 67 int y() const { return fTop; } 68 /** 69 * Returns the rectangle's width. This does not check for a valid rect 70 * (i.e. left <= right) so the result may be negative. 71 */ 72 int width() const { return fRight - fLeft; } 73 74 /** 75 * Returns the rectangle's height. This does not check for a valid rect 76 * (i.e. top <= bottom) so the result may be negative. 77 */ 78 int height() const { return fBottom - fTop; } 79 80 /** 81 * Since the center of an integer rect may fall on a factional value, this 82 * method is defined to return (right + left) >> 1. 83 * 84 * This is a specific "truncation" of the average, which is different than 85 * (right + left) / 2 when the sum is negative. 86 */ 87 int centerX() const { return (fRight + fLeft) >> 1; } 88 89 /** 90 * Since the center of an integer rect may fall on a factional value, this 91 * method is defined to return (bottom + top) >> 1 92 * 93 * This is a specific "truncation" of the average, which is different than 94 * (bottom + top) / 2 when the sum is negative. 95 */ 96 int centerY() const { return (fBottom + fTop) >> 1; } 97 98 /** 99 * Return true if the rectangle's width or height are <= 0 100 */ 101 bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } 102 103 bool isLargest() const { return SK_MinS32 == fLeft && 104 SK_MinS32 == fTop && 105 SK_MaxS32 == fRight && 106 SK_MaxS32 == fBottom; } 107 108 friend bool operator==(const SkIRect& a, const SkIRect& b) { 109 return !memcmp(&a, &b, sizeof(a)); 110 } 111 112 friend bool operator!=(const SkIRect& a, const SkIRect& b) { 113 return !(a == b); 114 } 115 116 bool is16Bit() const { 117 return SkIsS16(fLeft) && SkIsS16(fTop) && 118 SkIsS16(fRight) && SkIsS16(fBottom); 119 } 120 121 /** Set the rectangle to (0,0,0,0) 122 */ 123 void setEmpty() { memset(this, 0, sizeof(*this)); } 124 125 void set(int32_t left, int32_t top, int32_t right, int32_t bottom) { 126 fLeft = left; 127 fTop = top; 128 fRight = right; 129 fBottom = bottom; 130 } 131 // alias for set(l, t, r, b) 132 void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) { 133 this->set(left, top, right, bottom); 134 } 135 136 void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) { 137 fLeft = x; 138 fTop = y; 139 fRight = x + width; 140 fBottom = y + height; 141 } 142 143 /** 144 * Make the largest representable rectangle 145 */ 146 void setLargest() { 147 fLeft = fTop = SK_MinS32; 148 fRight = fBottom = SK_MaxS32; 149 } 150 151 /** 152 * Make the largest representable rectangle, but inverted (e.g. fLeft will 153 * be max 32bit and right will be min 32bit). 154 */ 155 void setLargestInverted() { 156 fLeft = fTop = SK_MaxS32; 157 fRight = fBottom = SK_MinS32; 158 } 159 160 /** Offset set the rectangle by adding dx to its left and right, 161 and adding dy to its top and bottom. 162 */ 163 void offset(int32_t dx, int32_t dy) { 164 fLeft += dx; 165 fTop += dy; 166 fRight += dx; 167 fBottom += dy; 168 } 169 170 void offset(const SkIPoint& delta) { 171 this->offset(delta.fX, delta.fY); 172 } 173 174 /** 175 * Offset this rect such its new x() and y() will equal newX and newY. 176 */ 177 void offsetTo(int32_t newX, int32_t newY) { 178 fRight += newX - fLeft; 179 fBottom += newY - fTop; 180 fLeft = newX; 181 fTop = newY; 182 } 183 184 /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards, 185 making the rectangle narrower. If dx is negative, then the sides are moved outwards, 186 making the rectangle wider. The same holds true for dy and the top and bottom. 187 */ 188 void inset(int32_t dx, int32_t dy) { 189 fLeft += dx; 190 fTop += dy; 191 fRight -= dx; 192 fBottom -= dy; 193 } 194 195 /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are 196 moved outwards, making the rectangle wider. If dx is negative, then the 197 sides are moved inwards, making the rectangle narrower. The same holds 198 true for dy and the top and bottom. 199 */ 200 void outset(int32_t dx, int32_t dy) { this->inset(-dx, -dy); } 201 202 bool quickReject(int l, int t, int r, int b) const { 203 return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b; 204 } 205 206 /** Returns true if (x,y) is inside the rectangle and the rectangle is not 207 empty. The left and top are considered to be inside, while the right 208 and bottom are not. Thus for the rectangle (0, 0, 5, 10), the 209 points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not. 210 */ 211 bool contains(int32_t x, int32_t y) const { 212 return (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) && 213 (unsigned)(y - fTop) < (unsigned)(fBottom - fTop); 214 } 215 216 /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle. 217 If either rectangle is empty, contains() returns false. 218 */ 219 bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const { 220 return left < right && top < bottom && !this->isEmpty() && // check for empties 221 fLeft <= left && fTop <= top && 222 fRight >= right && fBottom >= bottom; 223 } 224 225 /** Returns true if the specified rectangle r is inside or equal to this rectangle. 226 */ 227 bool contains(const SkIRect& r) const { 228 return !r.isEmpty() && !this->isEmpty() && // check for empties 229 fLeft <= r.fLeft && fTop <= r.fTop && 230 fRight >= r.fRight && fBottom >= r.fBottom; 231 } 232 233 /** Return true if this rectangle contains the specified rectangle. 234 For speed, this method does not check if either this or the specified 235 rectangles are empty, and if either is, its return value is undefined. 236 In the debugging build however, we assert that both this and the 237 specified rectangles are non-empty. 238 */ 239 bool containsNoEmptyCheck(int32_t left, int32_t top, 240 int32_t right, int32_t bottom) const { 241 SkASSERT(fLeft < fRight && fTop < fBottom); 242 SkASSERT(left < right && top < bottom); 243 244 return fLeft <= left && fTop <= top && 245 fRight >= right && fBottom >= bottom; 246 } 247 248 bool containsNoEmptyCheck(const SkIRect& r) const { 249 return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom); 250 } 251 252 /** If r intersects this rectangle, return true and set this rectangle to that 253 intersection, otherwise return false and do not change this rectangle. 254 If either rectangle is empty, do nothing and return false. 255 */ 256 bool intersect(const SkIRect& r) { 257 SkASSERT(&r); 258 return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom); 259 } 260 261 /** If rectangles a and b intersect, return true and set this rectangle to 262 that intersection, otherwise return false and do not change this 263 rectangle. If either rectangle is empty, do nothing and return false. 264 */ 265 bool intersect(const SkIRect& a, const SkIRect& b) { 266 SkASSERT(&a && &b); 267 268 if (!a.isEmpty() && !b.isEmpty() && 269 a.fLeft < b.fRight && b.fLeft < a.fRight && 270 a.fTop < b.fBottom && b.fTop < a.fBottom) { 271 fLeft = SkMax32(a.fLeft, b.fLeft); 272 fTop = SkMax32(a.fTop, b.fTop); 273 fRight = SkMin32(a.fRight, b.fRight); 274 fBottom = SkMin32(a.fBottom, b.fBottom); 275 return true; 276 } 277 return false; 278 } 279 280 /** If rectangles a and b intersect, return true and set this rectangle to 281 that intersection, otherwise return false and do not change this 282 rectangle. For speed, no check to see if a or b are empty is performed. 283 If either is, then the return result is undefined. In the debug build, 284 we assert that both rectangles are non-empty. 285 */ 286 bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) { 287 SkASSERT(&a && &b); 288 SkASSERT(!a.isEmpty() && !b.isEmpty()); 289 290 if (a.fLeft < b.fRight && b.fLeft < a.fRight && 291 a.fTop < b.fBottom && b.fTop < a.fBottom) { 292 fLeft = SkMax32(a.fLeft, b.fLeft); 293 fTop = SkMax32(a.fTop, b.fTop); 294 fRight = SkMin32(a.fRight, b.fRight); 295 fBottom = SkMin32(a.fBottom, b.fBottom); 296 return true; 297 } 298 return false; 299 } 300 301 /** If the rectangle specified by left,top,right,bottom intersects this rectangle, 302 return true and set this rectangle to that intersection, 303 otherwise return false and do not change this rectangle. 304 If either rectangle is empty, do nothing and return false. 305 */ 306 bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) { 307 if (left < right && top < bottom && !this->isEmpty() && 308 fLeft < right && left < fRight && fTop < bottom && top < fBottom) { 309 if (fLeft < left) fLeft = left; 310 if (fTop < top) fTop = top; 311 if (fRight > right) fRight = right; 312 if (fBottom > bottom) fBottom = bottom; 313 return true; 314 } 315 return false; 316 } 317 318 /** Returns true if a and b are not empty, and they intersect 319 */ 320 static bool Intersects(const SkIRect& a, const SkIRect& b) { 321 return !a.isEmpty() && !b.isEmpty() && // check for empties 322 a.fLeft < b.fRight && b.fLeft < a.fRight && 323 a.fTop < b.fBottom && b.fTop < a.fBottom; 324 } 325 326 /** 327 * Returns true if a and b intersect. debug-asserts that neither are empty. 328 */ 329 static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) { 330 SkASSERT(!a.isEmpty()); 331 SkASSERT(!b.isEmpty()); 332 return a.fLeft < b.fRight && b.fLeft < a.fRight && 333 a.fTop < b.fBottom && b.fTop < a.fBottom; 334 } 335 336 /** Update this rectangle to enclose itself and the specified rectangle. 337 If this rectangle is empty, just set it to the specified rectangle. If the specified 338 rectangle is empty, do nothing. 339 */ 340 void join(int32_t left, int32_t top, int32_t right, int32_t bottom); 341 342 /** Update this rectangle to enclose itself and the specified rectangle. 343 If this rectangle is empty, just set it to the specified rectangle. If the specified 344 rectangle is empty, do nothing. 345 */ 346 void join(const SkIRect& r) { 347 this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); 348 } 349 350 /** Swap top/bottom or left/right if there are flipped. 351 This can be called if the edges are computed separately, 352 and may have crossed over each other. 353 When this returns, left <= right && top <= bottom 354 */ 355 void sort(); 356 357 static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() { 358 static const SkIRect gEmpty = { 0, 0, 0, 0 }; 359 return gEmpty; 360 } 361}; 362 363/** \struct SkRect 364*/ 365struct SK_API SkRect { 366 SkScalar fLeft, fTop, fRight, fBottom; 367 368 static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() { 369 SkRect r; 370 r.setEmpty(); 371 return r; 372 } 373 374 static SkRect SK_WARN_UNUSED_RESULT MakeLargest() { 375 SkRect r; 376 r.setLargest(); 377 return r; 378 } 379 380 static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) { 381 SkRect r; 382 r.set(0, 0, w, h); 383 return r; 384 } 385 386 static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) { 387 SkRect r; 388 r.set(0, 0, size.width(), size.height()); 389 return r; 390 } 391 392 static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { 393 SkRect rect; 394 rect.set(l, t, r, b); 395 return rect; 396 } 397 398 static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) { 399 SkRect r; 400 r.set(x, y, x + w, y + h); 401 return r; 402 } 403 404 SK_ATTR_DEPRECATED("use Make()") 405 static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) { 406 SkRect r; 407 r.set(SkIntToScalar(irect.fLeft), 408 SkIntToScalar(irect.fTop), 409 SkIntToScalar(irect.fRight), 410 SkIntToScalar(irect.fBottom)); 411 return r; 412 } 413 414 static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) { 415 SkRect r; 416 r.set(SkIntToScalar(irect.fLeft), 417 SkIntToScalar(irect.fTop), 418 SkIntToScalar(irect.fRight), 419 SkIntToScalar(irect.fBottom)); 420 return r; 421 } 422 423 /** 424 * Return true if the rectangle's width or height are <= 0 425 */ 426 bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; } 427 428 bool isLargest() const { return SK_ScalarMin == fLeft && 429 SK_ScalarMin == fTop && 430 SK_ScalarMax == fRight && 431 SK_ScalarMax == fBottom; } 432 433 /** 434 * Returns true iff all values in the rect are finite. If any are 435 * infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this 436 * returns false. 437 */ 438 bool isFinite() const { 439 float accum = 0; 440 accum *= fLeft; 441 accum *= fTop; 442 accum *= fRight; 443 accum *= fBottom; 444 445 // accum is either NaN or it is finite (zero). 446 SkASSERT(0 == accum || !(accum == accum)); 447 448 // value==value will be true iff value is not NaN 449 // TODO: is it faster to say !accum or accum==accum? 450 return accum == accum; 451 } 452 453 SkScalar x() const { return fLeft; } 454 SkScalar y() const { return fTop; } 455 SkScalar left() const { return fLeft; } 456 SkScalar top() const { return fTop; } 457 SkScalar right() const { return fRight; } 458 SkScalar bottom() const { return fBottom; } 459 SkScalar width() const { return fRight - fLeft; } 460 SkScalar height() const { return fBottom - fTop; } 461 SkScalar centerX() const { return SkScalarHalf(fLeft + fRight); } 462 SkScalar centerY() const { return SkScalarHalf(fTop + fBottom); } 463 464 friend bool operator==(const SkRect& a, const SkRect& b) { 465 return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); 466 } 467 468 friend bool operator!=(const SkRect& a, const SkRect& b) { 469 return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4); 470 } 471 472 /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right, 473 bottom-left). TODO: Consider adding param to control whether quad is CW or CCW. 474 */ 475 void toQuad(SkPoint quad[4]) const; 476 477 /** Set this rectangle to the empty rectangle (0,0,0,0) 478 */ 479 void setEmpty() { memset(this, 0, sizeof(*this)); } 480 481 void set(const SkIRect& src) { 482 fLeft = SkIntToScalar(src.fLeft); 483 fTop = SkIntToScalar(src.fTop); 484 fRight = SkIntToScalar(src.fRight); 485 fBottom = SkIntToScalar(src.fBottom); 486 } 487 488 void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 489 fLeft = left; 490 fTop = top; 491 fRight = right; 492 fBottom = bottom; 493 } 494 // alias for set(l, t, r, b) 495 void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { 496 this->set(left, top, right, bottom); 497 } 498 499 /** Initialize the rect with the 4 specified integers. The routine handles 500 converting them to scalars (by calling SkIntToScalar) 501 */ 502 void iset(int left, int top, int right, int bottom) { 503 fLeft = SkIntToScalar(left); 504 fTop = SkIntToScalar(top); 505 fRight = SkIntToScalar(right); 506 fBottom = SkIntToScalar(bottom); 507 } 508 509 /** 510 * Set this rectangle to be left/top at 0,0, and have the specified width 511 * and height (automatically converted to SkScalar). 512 */ 513 void isetWH(int width, int height) { 514 fLeft = fTop = 0; 515 fRight = SkIntToScalar(width); 516 fBottom = SkIntToScalar(height); 517 } 518 519 /** Set this rectangle to be the bounds of the array of points. 520 If the array is empty (count == 0), then set this rectangle 521 to the empty rectangle (0,0,0,0) 522 */ 523 void set(const SkPoint pts[], int count) { 524 // set() had been checking for non-finite values, so keep that behavior 525 // for now. Now that we have setBoundsCheck(), we may decide to make 526 // set() be simpler/faster, and not check for those. 527 (void)this->setBoundsCheck(pts, count); 528 } 529 530 // alias for set(pts, count) 531 void setBounds(const SkPoint pts[], int count) { 532 (void)this->setBoundsCheck(pts, count); 533 } 534 535 /** 536 * Compute the bounds of the array of points, and set this rect to that 537 * bounds and return true... unless a non-finite value is encountered, 538 * in which case this rect is set to empty and false is returned. 539 */ 540 bool setBoundsCheck(const SkPoint pts[], int count); 541 542 void set(const SkPoint& p0, const SkPoint& p1) { 543 fLeft = SkMinScalar(p0.fX, p1.fX); 544 fRight = SkMaxScalar(p0.fX, p1.fX); 545 fTop = SkMinScalar(p0.fY, p1.fY); 546 fBottom = SkMaxScalar(p0.fY, p1.fY); 547 } 548 549 void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) { 550 fLeft = x; 551 fTop = y; 552 fRight = x + width; 553 fBottom = y + height; 554 } 555 556 void setWH(SkScalar width, SkScalar height) { 557 fLeft = 0; 558 fTop = 0; 559 fRight = width; 560 fBottom = height; 561 } 562 563 /** 564 * Make the largest representable rectangle 565 */ 566 void setLargest() { 567 fLeft = fTop = SK_ScalarMin; 568 fRight = fBottom = SK_ScalarMax; 569 } 570 571 /** 572 * Make the largest representable rectangle, but inverted (e.g. fLeft will 573 * be max and right will be min). 574 */ 575 void setLargestInverted() { 576 fLeft = fTop = SK_ScalarMax; 577 fRight = fBottom = SK_ScalarMin; 578 } 579 580 /** Offset set the rectangle by adding dx to its left and right, 581 and adding dy to its top and bottom. 582 */ 583 void offset(SkScalar dx, SkScalar dy) { 584 fLeft += dx; 585 fTop += dy; 586 fRight += dx; 587 fBottom += dy; 588 } 589 590 void offset(const SkPoint& delta) { 591 this->offset(delta.fX, delta.fY); 592 } 593 594 /** 595 * Offset this rect such its new x() and y() will equal newX and newY. 596 */ 597 void offsetTo(SkScalar newX, SkScalar newY) { 598 fRight += newX - fLeft; 599 fBottom += newY - fTop; 600 fLeft = newX; 601 fTop = newY; 602 } 603 604 /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are 605 moved inwards, making the rectangle narrower. If dx is negative, then 606 the sides are moved outwards, making the rectangle wider. The same holds 607 true for dy and the top and bottom. 608 */ 609 void inset(SkScalar dx, SkScalar dy) { 610 fLeft += dx; 611 fTop += dy; 612 fRight -= dx; 613 fBottom -= dy; 614 } 615 616 /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are 617 moved outwards, making the rectangle wider. If dx is negative, then the 618 sides are moved inwards, making the rectangle narrower. The same holds 619 true for dy and the top and bottom. 620 */ 621 void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy); } 622 623 /** If this rectangle intersects r, return true and set this rectangle to that 624 intersection, otherwise return false and do not change this rectangle. 625 If either rectangle is empty, do nothing and return false. 626 */ 627 bool intersect(const SkRect& r); 628 bool intersect2(const SkRect& r); 629 630 /** If this rectangle intersects the rectangle specified by left, top, right, bottom, 631 return true and set this rectangle to that intersection, otherwise return false 632 and do not change this rectangle. 633 If either rectangle is empty, do nothing and return false. 634 */ 635 bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); 636 637 /** 638 * Return true if this rectangle is not empty, and the specified sides of 639 * a rectangle are not empty, and they intersect. 640 */ 641 bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const { 642 return // first check that both are not empty 643 left < right && top < bottom && 644 fLeft < fRight && fTop < fBottom && 645 // now check for intersection 646 fLeft < right && left < fRight && 647 fTop < bottom && top < fBottom; 648 } 649 650 /** If rectangles a and b intersect, return true and set this rectangle to 651 * that intersection, otherwise return false and do not change this 652 * rectangle. If either rectangle is empty, do nothing and return false. 653 */ 654 bool intersect(const SkRect& a, const SkRect& b); 655 656 /** 657 * Return true if rectangles a and b are not empty and intersect. 658 */ 659 static bool Intersects(const SkRect& a, const SkRect& b) { 660 return !a.isEmpty() && !b.isEmpty() && 661 a.fLeft < b.fRight && b.fLeft < a.fRight && 662 a.fTop < b.fBottom && b.fTop < a.fBottom; 663 } 664 665 /** 666 * Update this rectangle to enclose itself and the specified rectangle. 667 * If this rectangle is empty, just set it to the specified rectangle. 668 * If the specified rectangle is empty, do nothing. 669 */ 670 void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom); 671 672 /** Update this rectangle to enclose itself and the specified rectangle. 673 If this rectangle is empty, just set it to the specified rectangle. If the specified 674 rectangle is empty, do nothing. 675 */ 676 void join(const SkRect& r) { 677 this->join(r.fLeft, r.fTop, r.fRight, r.fBottom); 678 } 679 // alias for join() 680 void growToInclude(const SkRect& r) { this->join(r); } 681 682 /** 683 * Grow the rect to include the specified (x,y). After this call, the 684 * following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom. 685 * 686 * This is close, but not quite the same contract as contains(), since 687 * contains() treats the left and top different from the right and bottom. 688 * contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note 689 * that contains(x,y) always returns false if the rect is empty. 690 */ 691 void growToInclude(SkScalar x, SkScalar y) { 692 fLeft = SkMinScalar(x, fLeft); 693 fRight = SkMaxScalar(x, fRight); 694 fTop = SkMinScalar(y, fTop); 695 fBottom = SkMaxScalar(y, fBottom); 696 } 697 698 /** Bulk version of growToInclude */ 699 void growToInclude(const SkPoint pts[], int count) { 700 this->growToInclude(pts, sizeof(SkPoint), count); 701 } 702 703 /** Bulk version of growToInclude with stride. */ 704 void growToInclude(const SkPoint pts[], size_t stride, int count) { 705 SkASSERT(count >= 0); 706 SkASSERT(stride >= sizeof(SkPoint)); 707 const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride); 708 for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) { 709 this->growToInclude(pts->fX, pts->fY); 710 } 711 } 712 713 /** 714 * Return true if this rectangle contains r, and if both rectangles are 715 * not empty. 716 */ 717 bool contains(const SkRect& r) const { 718 // todo: can we eliminate the this->isEmpty check? 719 return !r.isEmpty() && !this->isEmpty() && 720 fLeft <= r.fLeft && fTop <= r.fTop && 721 fRight >= r.fRight && fBottom >= r.fBottom; 722 } 723 724 /** 725 * Set the dst rectangle by rounding this rectangle's coordinates to their 726 * nearest integer values using SkScalarRoundToInt. 727 */ 728 void round(SkIRect* dst) const { 729 SkASSERT(dst); 730 dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop), 731 SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom)); 732 } 733 734 /** 735 * Set the dst rectangle by rounding "out" this rectangle, choosing the 736 * SkScalarFloor of top and left, and the SkScalarCeil of right and bottom. 737 */ 738 void roundOut(SkIRect* dst) const { 739 SkASSERT(dst); 740 dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop), 741 SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom)); 742 } 743 744 /** 745 * Expand this rectangle by rounding its coordinates "out", choosing the 746 * floor of top and left, and the ceil of right and bottom. If this rect 747 * is already on integer coordinates, then it will be unchanged. 748 */ 749 void roundOut() { 750 this->set(SkScalarFloorToScalar(fLeft), 751 SkScalarFloorToScalar(fTop), 752 SkScalarCeilToScalar(fRight), 753 SkScalarCeilToScalar(fBottom)); 754 } 755 756 /** 757 * Set the dst rectangle by rounding "in" this rectangle, choosing the 758 * ceil of top and left, and the floor of right and bottom. This does *not* 759 * call sort(), so it is possible that the resulting rect is inverted... 760 * e.g. left >= right or top >= bottom. Call isEmpty() to detect that. 761 */ 762 void roundIn(SkIRect* dst) const { 763 SkASSERT(dst); 764 dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop), 765 SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom)); 766 } 767 768 /** 769 * Return a new SkIRect which is contains the rounded coordinates of this 770 * rect using SkScalarRoundToInt. 771 */ 772 SkIRect round() const { 773 SkIRect ir; 774 this->round(&ir); 775 return ir; 776 } 777 778 /** 779 * Swap top/bottom or left/right if there are flipped (i.e. if width() 780 * or height() would have returned a negative value.) This should be called 781 * if the edges are computed separately, and may have crossed over each 782 * other. When this returns, left <= right && top <= bottom 783 */ 784 void sort(); 785 786 /** 787 * cast-safe way to treat the rect as an array of (4) SkScalars. 788 */ 789 const SkScalar* asScalars() const { return &fLeft; } 790}; 791 792#endif 793