ms_main.c revision 9bea4c13fca0e3bb4b719dcb3ed63d47d479294e
1//--------------------------------------------------------------------*/
2//--- Massif: a heap profiling tool.                     ms_main.c ---*/
3//--------------------------------------------------------------------*/
4
5/*
6   This file is part of Massif, a Valgrind tool for profiling memory
7   usage of programs.
8
9   Copyright (C) 2003-2010 Nicholas Nethercote
10      njn@valgrind.org
11
12   This program is free software; you can redistribute it and/or
13   modify it under the terms of the GNU General Public License as
14   published by the Free Software Foundation; either version 2 of the
15   License, or (at your option) any later version.
16
17   This program is distributed in the hope that it will be useful, but
18   WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20   General Public License for more details.
21
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25   02111-1307, USA.
26
27   The GNU General Public License is contained in the file COPYING.
28*/
29
30//---------------------------------------------------------------------------
31// XXX:
32//---------------------------------------------------------------------------
33// Todo -- nice, but less critical:
34// - do a graph-drawing test
35// - make file format more generic.  Obstacles:
36//   - unit prefixes are not generic
37//   - preset column widths for stats are not generic
38//   - preset column headers are not generic
39//   - "Massif arguments:" line is not generic
40// - do snapshots on client requests
41//   - (Michael Meeks): have an interactive way to request a dump
42//     (callgrind_control-style)
43//     - "profile now"
44//     - "show me the extra allocations since the last snapshot"
45//     - "start/stop logging" (eg. quickly skip boring bits)
46// - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
47//   Give each graph a title.  (try to do it generically!)
48// - allow truncation of long fnnames if the exact line number is
49//   identified?  [hmm, could make getting the name of alloc-fns more
50//   difficult] [could dump full names to file, truncate in ms_print]
51// - make --show-below-main=no work
52// - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
53//   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
54//   m_commandline.c:add_args_from_string() needs to respect single quotes.
55// - With --stack=yes, want to add a stack trace for detailed snapshots so
56//   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
57//   possibly useful even with --stack=no? (Andi Yin)
58//
59// Performance:
60// - To run the benchmarks:
61//
62//     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
63//     time valgrind --tool=massif --depth=100 konqueror
64//
65//   The other benchmarks don't do much allocation, and so give similar speeds
66//   to Nulgrind.
67//
68//   Timing results on 'nevermore' (njn's machine) as of r7013:
69//
70//     heap      0.53s  ma:12.4s (23.5x, -----)
71//     tinycc    0.46s  ma: 4.9s (10.7x, -----)
72//     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
73//     konqueror 29.6s real  0:21.0s user
74//
75//   [Introduction of --time-unit=i as the default slowed things down by
76//   roughly 0--20%.]
77//
78// - get_XCon accounts for about 9% of konqueror startup time.  Try
79//   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
80//   Requires factoring out binary search code from various places into a
81//   VG_(bsearch) function.
82//
83// Todo -- low priority:
84// - In each XPt, record both bytes and the number of allocations, and
85//   possibly the global number of allocations.
86// - (Andy Lin) Give a stack trace on detailed snapshots?
87// - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
88//   than a certain size!  Because: "linux's malloc allows to set a
89//   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
90//   be handled directly by the kernel, and are guaranteed to be returned to
91//   the system when freed. So we needed to profile only blocks below this
92//   limit."
93//
94// File format working notes:
95
96#if 0
97desc: --heap-admin=foo
98cmd: date
99time_unit: ms
100#-----------
101snapshot=0
102#-----------
103time=0
104mem_heap_B=0
105mem_heap_admin_B=0
106mem_stacks_B=0
107heap_tree=empty
108#-----------
109snapshot=1
110#-----------
111time=353
112mem_heap_B=5
113mem_heap_admin_B=0
114mem_stacks_B=0
115heap_tree=detailed
116n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
117 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
118  n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
119   n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
120    n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
121     n1: 5 0x8049821: (within /bin/date)
122      n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
123
124
125n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
126t_events: B
127n 0 0 0 0 0
128n 0 0 0 0 0
129t1: 5 <string...>
130 t1: 6 <string...>
131
132Ideas:
133- each snapshot specifies an x-axis value and one or more y-axis values.
134- can display the y-axis values separately if you like
135- can completely separate connection between snapshots and trees.
136
137Challenges:
138- how to specify and scale/abbreviate units on axes?
139- how to combine multiple values into the y-axis?
140
141--------------------------------------------------------------------------------Command:            date
142Massif arguments:   --heap-admin=foo
143ms_print arguments: massif.out
144--------------------------------------------------------------------------------
145    KB
1466.472^                                                       :#
147     |                                                       :#  ::  .    .
148     ...
149     |                                     ::@  :@    :@ :@:::#  ::  :    ::::
150   0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
151
152Number of snapshots: 50
153 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
154--------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
155--------------------------------------------------------------------------------  0              0                0                0             0            0
156  1            345                5                5             0            0
157  2            353                5                5             0            0
158100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
159->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
160#endif
161
162//---------------------------------------------------------------------------
163
164#include "pub_tool_basics.h"
165#include "pub_tool_vki.h"
166#include "pub_tool_aspacemgr.h"
167#include "pub_tool_debuginfo.h"
168#include "pub_tool_hashtable.h"
169#include "pub_tool_libcbase.h"
170#include "pub_tool_libcassert.h"
171#include "pub_tool_libcfile.h"
172#include "pub_tool_libcprint.h"
173#include "pub_tool_libcproc.h"
174#include "pub_tool_machine.h"
175#include "pub_tool_mallocfree.h"
176#include "pub_tool_options.h"
177#include "pub_tool_replacemalloc.h"
178#include "pub_tool_stacktrace.h"
179#include "pub_tool_threadstate.h"
180#include "pub_tool_tooliface.h"
181#include "pub_tool_xarray.h"
182#include "pub_tool_clientstate.h"
183
184#include "valgrind.h"           // For {MALLOC,FREE}LIKE_BLOCK
185
186//------------------------------------------------------------*/
187//--- Overview of operation                                ---*/
188//------------------------------------------------------------*/
189
190// The size of the stacks and heap is tracked.  The heap is tracked in a lot
191// of detail, enough to tell how many bytes each line of code is responsible
192// for, more or less.  The main data structure is a tree representing the
193// call tree beneath all the allocation functions like malloc().
194// (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
195// the page level, and each page is treated much like a heap block.  We use
196// "heap" throughout below to cover this case because the concepts are all the
197// same.)
198//
199// "Snapshots" are recordings of the memory usage.  There are two basic
200// kinds:
201// - Normal:  these record the current time, total memory size, total heap
202//   size, heap admin size and stack size.
203// - Detailed: these record those things in a normal snapshot, plus a very
204//   detailed XTree (see below) indicating how the heap is structured.
205//
206// Snapshots are taken every so often.  There are two storage classes of
207// snapshots:
208// - Temporary:  Massif does a temporary snapshot every so often.  The idea
209//   is to always have a certain number of temporary snapshots around.  So
210//   we take them frequently to begin with, but decreasingly often as the
211//   program continues to run.  Also, we remove some old ones after a while.
212//   Overall it's a kind of exponential decay thing.  Most of these are
213//   normal snapshots, a small fraction are detailed snapshots.
214// - Permanent:  Massif takes a permanent (detailed) snapshot in some
215//   circumstances.  They are:
216//   - Peak snapshot:  When the memory usage peak is reached, it takes a
217//     snapshot.  It keeps this, unless the peak is subsequently exceeded,
218//     in which case it will overwrite the peak snapshot.
219//   - User-requested snapshots:  These are done in response to client
220//     requests.  They are always kept.
221
222// Used for printing things when clo_verbosity > 1.
223#define VERB(verb, format, args...) \
224   if (VG_(clo_verbosity) > verb) { \
225      VG_(dmsg)("Massif: " format, ##args); \
226   }
227
228// Used for printing stats when clo_stats == True.
229#define STATS(format, args...) \
230   if (VG_(clo_stats)) { \
231      VG_(dmsg)("Massif: " format, ##args); \
232   }
233
234//------------------------------------------------------------//
235//--- Statistics                                           ---//
236//------------------------------------------------------------//
237
238// Konqueror startup, to give an idea of the numbers involved with a biggish
239// program, with default depth:
240//
241//  depth=3                   depth=40
242//  - 310,000 allocations
243//  - 300,000 frees
244//  -  15,000 XPts            800,000 XPts
245//  -   1,800 top-XPts
246
247static UInt n_heap_allocs           = 0;
248static UInt n_heap_reallocs         = 0;
249static UInt n_heap_frees            = 0;
250static UInt n_ignored_heap_allocs   = 0;
251static UInt n_ignored_heap_frees    = 0;
252static UInt n_ignored_heap_reallocs = 0;
253static UInt n_stack_allocs          = 0;
254static UInt n_stack_frees           = 0;
255static UInt n_xpts                  = 0;
256static UInt n_xpt_init_expansions   = 0;
257static UInt n_xpt_later_expansions  = 0;
258static UInt n_sxpt_allocs           = 0;
259static UInt n_sxpt_frees            = 0;
260static UInt n_skipped_snapshots     = 0;
261static UInt n_real_snapshots        = 0;
262static UInt n_detailed_snapshots    = 0;
263static UInt n_peak_snapshots        = 0;
264static UInt n_cullings              = 0;
265static UInt n_XCon_redos            = 0;
266
267//------------------------------------------------------------//
268//--- Globals                                              ---//
269//------------------------------------------------------------//
270
271// Number of guest instructions executed so far.  Only used with
272// --time-unit=i.
273static Long guest_instrs_executed = 0;
274
275static SizeT heap_szB       = 0; // Live heap size
276static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
277static SizeT stacks_szB     = 0; // Live stacks size
278
279// This is the total size from the current peak snapshot, or 0 if no peak
280// snapshot has been taken yet.
281static SizeT peak_snapshot_total_szB = 0;
282
283// Incremented every time memory is allocated/deallocated, by the
284// allocated/deallocated amount;  includes heap, heap-admin and stack
285// memory.  An alternative to milliseconds as a unit of program "time".
286static ULong total_allocs_deallocs_szB = 0;
287
288// When running with --heap=yes --pages-as-heap=no, we don't start taking
289// snapshots until the first basic block is executed, rather than doing it in
290// ms_post_clo_init (which is the obvious spot), for two reasons.
291// - It lets us ignore stack events prior to that, because they're not
292//   really proper ones and just would screw things up.
293// - Because there's still some core initialisation to do, and so there
294//   would be an artificial time gap between the first and second snapshots.
295//
296// When running with --heap=yes --pages-as-heap=yes, snapshots start much
297// earlier due to new_mem_startup so this isn't relevant.
298//
299static Bool have_started_executing_code = False;
300
301//------------------------------------------------------------//
302//--- Alloc fns                                            ---//
303//------------------------------------------------------------//
304
305static XArray* alloc_fns;
306static XArray* ignore_fns;
307
308static void init_alloc_fns(void)
309{
310   // Create the list, and add the default elements.
311   alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
312                                       VG_(free), sizeof(Char*));
313   #define DO(x)  { Char* s = x; VG_(addToXA)(alloc_fns, &s); }
314
315   // Ordered roughly according to (presumed) frequency.
316   // Nb: The C++ "operator new*" ones are overloadable.  We include them
317   // always anyway, because even if they're overloaded, it would be a
318   // prodigiously stupid overloading that caused them to not allocate
319   // memory.
320   //
321   // XXX: because we don't look at the first stack entry (unless it's a
322   // custom allocation) there's not much point to having all these alloc
323   // functions here -- they should never appear anywhere (I think?) other
324   // than the top stack entry.  The only exceptions are those that in
325   // vg_replace_malloc.c are partly or fully implemented in terms of another
326   // alloc function: realloc (which uses malloc);  valloc,
327   // malloc_zone_valloc, posix_memalign and memalign_common (which use
328   // memalign).
329   //
330   DO("malloc"                                              );
331   DO("__builtin_new"                                       );
332   DO("operator new(unsigned)"                              );
333   DO("operator new(unsigned long)"                         );
334   DO("__builtin_vec_new"                                   );
335   DO("operator new[](unsigned)"                            );
336   DO("operator new[](unsigned long)"                       );
337   DO("calloc"                                              );
338   DO("realloc"                                             );
339   DO("memalign"                                            );
340   DO("posix_memalign"                                      );
341   DO("valloc"                                              );
342   DO("operator new(unsigned, std::nothrow_t const&)"       );
343   DO("operator new[](unsigned, std::nothrow_t const&)"     );
344   DO("operator new(unsigned long, std::nothrow_t const&)"  );
345   DO("operator new[](unsigned long, std::nothrow_t const&)");
346#if defined(VGP_ppc32_aix5) || defined(VGP_ppc64_aix5)
347   DO("malloc_common"                                       );
348   DO("calloc_common"                                       );
349   DO("realloc_common"                                      );
350   DO("memalign_common"                                     );
351#elif defined(VGO_darwin)
352   DO("malloc_zone_malloc"                                  );
353   DO("malloc_zone_calloc"                                  );
354   DO("malloc_zone_realloc"                                 );
355   DO("malloc_zone_memalign"                                );
356   DO("malloc_zone_valloc"                                  );
357#endif
358}
359
360static void init_ignore_fns(void)
361{
362   // Create the (empty) list.
363   ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
364                                        VG_(free), sizeof(Char*));
365}
366
367// Determines if the named function is a member of the XArray.
368static Bool is_member_fn(XArray* fns, Char* fnname)
369{
370   Char** fn_ptr;
371   Int i;
372
373   // Nb: It's a linear search through the list, because we're comparing
374   // strings rather than pointers to strings.
375   // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
376   // iterate through so it wasn't a good choice.
377   for (i = 0; i < VG_(sizeXA)(fns); i++) {
378      fn_ptr = VG_(indexXA)(fns, i);
379      if (VG_STREQ(fnname, *fn_ptr))
380         return True;
381   }
382   return False;
383}
384
385
386//------------------------------------------------------------//
387//--- Command line args                                    ---//
388//------------------------------------------------------------//
389
390#define MAX_DEPTH       200
391
392typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
393
394static Char* TimeUnit_to_string(TimeUnit time_unit)
395{
396   switch (time_unit) {
397   case TimeI:  return "i";
398   case TimeMS: return "ms";
399   case TimeB:  return "B";
400   default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
401   }
402}
403
404static Bool   clo_heap            = True;
405   // clo_heap_admin is deliberately a word-sized type.  At one point it was
406   // a UInt, but this caused problems on 64-bit machines when it was
407   // multiplied by a small negative number and then promoted to a
408   // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
409static SSizeT clo_heap_admin      = 8;
410static Bool   clo_pages_as_heap   = False;
411static Bool   clo_stacks          = False;
412static Int    clo_depth           = 30;
413static double clo_threshold       = 1.0;  // percentage
414static double clo_peak_inaccuracy = 1.0;  // percentage
415static Int    clo_time_unit       = TimeI;
416static Int    clo_detailed_freq   = 10;
417static Int    clo_max_snapshots   = 100;
418static Char*  clo_massif_out_file = "massif.out.%p";
419
420static XArray* args_for_massif;
421
422static Bool ms_process_cmd_line_option(Char* arg)
423{
424   Char* tmp_str;
425
426   // Remember the arg for later use.
427   VG_(addToXA)(args_for_massif, &arg);
428
429        if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
430   else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
431
432   else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
433
434   else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
435
436   else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
437
438   else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
439      VG_(addToXA)(alloc_fns, &tmp_str);
440   }
441   else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
442      VG_(addToXA)(ignore_fns, &tmp_str);
443   }
444
445   else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
446      if (clo_threshold < 0 || clo_threshold > 100) {
447         VG_(fmsg_bad_option)(arg,
448            "--threshold must be between 0.0 and 100.0\n");
449      }
450   }
451
452   else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
453
454   else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
455   else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
456   else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
457
458   else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
459
460   else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
461
462   else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
463
464   else
465      return VG_(replacement_malloc_process_cmd_line_option)(arg);
466
467   return True;
468}
469
470static void ms_print_usage(void)
471{
472   VG_(printf)(
473"    --heap=no|yes             profile heap blocks [yes]\n"
474"    --heap-admin=<size>       average admin bytes per heap block;\n"
475"                               ignored if --heap=no [8]\n"
476"    --stacks=no|yes           profile stack(s) [no]\n"
477"    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
478"    --depth=<number>          depth of contexts [30]\n"
479"    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
480"    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
481"    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
482"    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
483"    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
484"                              or heap bytes alloc'd/dealloc'd [i]\n"
485"    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
486"    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
487"    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
488   );
489}
490
491static void ms_print_debug_usage(void)
492{
493   VG_(printf)(
494"    (none)\n"
495   );
496}
497
498
499//------------------------------------------------------------//
500//--- XPts, XTrees and XCons                               ---//
501//------------------------------------------------------------//
502
503// An XPt represents an "execution point", ie. a code address.  Each XPt is
504// part of a tree of XPts (an "execution tree", or "XTree").  The details of
505// the heap are represented by a single XTree.
506//
507// The root of the tree is 'alloc_xpt', which represents all allocation
508// functions, eg:
509// - malloc/calloc/realloc/memalign/new/new[];
510// - user-specified allocation functions (using --alloc-fn);
511// - custom allocation (MALLOCLIKE) points
512// It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
513// it makes the code simpler.
514//
515// Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
516// of an XTree (leaf nodes) are "bottom-XPTs".
517//
518// Each path from a top-XPt to a bottom-XPt through an XTree gives an
519// execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
520// stack sub-traces.)  The number of XCons in an XTree is equal to the
521// number of bottom-XPTs in that XTree.
522//
523//      alloc_xpt       XTrees are bi-directional.
524//        | ^
525//        v |
526//     > parent <       Example: if child1() calls parent() and child2()
527//    /    |     \      also calls parent(), and parent() calls malloc(),
528//   |    / \     |     the XTree will look like this.
529//   |   v   v    |
530//  child1   child2
531//
532// (Note that malformed stack traces can lead to difficulties.  See the
533// comment at the bottom of get_XCon.)
534//
535// XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
536// for "saved".  When the XTree is duplicated for a snapshot, we duplicate
537// it as an SXTree, which is similar but omits some things it does not need,
538// and aggregates up insignificant nodes.  This is important as an SXTree is
539// typically much smaller than an XTree.
540
541// XXX: make XPt and SXPt extensible arrays, to avoid having to do two
542// allocations per Pt.
543
544typedef struct _XPt XPt;
545struct _XPt {
546   Addr  ip;              // code address
547
548   // Bottom-XPts: space for the precise context.
549   // Other XPts:  space of all the descendent bottom-XPts.
550   // Nb: this value goes up and down as the program executes.
551   SizeT szB;
552
553   XPt*  parent;           // pointer to parent XPt
554
555   // Children.
556   // n_children and max_children are 32-bit integers.  16-bit integers
557   // are too small -- a very big program might have more than 65536
558   // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
559   UInt  n_children;       // number of children
560   UInt  max_children;     // capacity of children array
561   XPt** children;         // pointers to children XPts
562};
563
564typedef
565   enum {
566      SigSXPt,
567      InsigSXPt
568   }
569   SXPtTag;
570
571typedef struct _SXPt SXPt;
572struct _SXPt {
573   SXPtTag tag;
574   SizeT szB;              // memory size for the node, be it Sig or Insig
575   union {
576      // An SXPt representing a single significant code location.  Much like
577      // an XPt, minus the fields that aren't necessary.
578      struct {
579         Addr   ip;
580         UInt   n_children;
581         SXPt** children;
582      }
583      Sig;
584
585      // An SXPt representing one or more code locations, all below the
586      // significance threshold.
587      struct {
588         Int   n_xpts;     // number of aggregated XPts
589      }
590      Insig;
591   };
592};
593
594// Fake XPt representing all allocation functions like malloc().  Acts as
595// parent node to all top-XPts.
596static XPt* alloc_xpt;
597
598// Cheap allocation for blocks that never need to be freed.  Saves about 10%
599// for Konqueror startup with --depth=40.
600static void* perm_malloc(SizeT n_bytes)
601{
602   static Addr hp     = 0;    // current heap pointer
603   static Addr hp_lim = 0;    // maximum usable byte in current block
604
605   #define SUPERBLOCK_SIZE  (1 << 20)         // 1 MB
606
607   if (hp + n_bytes > hp_lim) {
608      hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
609      if (0 == hp)
610         VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
611                                      SUPERBLOCK_SIZE);
612      hp_lim = hp + SUPERBLOCK_SIZE - 1;
613   }
614
615   hp += n_bytes;
616
617   return (void*)(hp - n_bytes);
618}
619
620static XPt* new_XPt(Addr ip, XPt* parent)
621{
622   // XPts are never freed, so we can use perm_malloc to allocate them.
623   // Note that we cannot use perm_malloc for the 'children' array, because
624   // that needs to be resizable.
625   XPt* xpt    = perm_malloc(sizeof(XPt));
626   xpt->ip     = ip;
627   xpt->szB    = 0;
628   xpt->parent = parent;
629
630   // We don't initially allocate any space for children.  We let that
631   // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
632   // children anyway.
633   xpt->n_children   = 0;
634   xpt->max_children = 0;
635   xpt->children     = NULL;
636
637   // Update statistics
638   n_xpts++;
639
640   return xpt;
641}
642
643static void add_child_xpt(XPt* parent, XPt* child)
644{
645   // Expand 'children' if necessary.
646   tl_assert(parent->n_children <= parent->max_children);
647   if (parent->n_children == parent->max_children) {
648      if (0 == parent->max_children) {
649         parent->max_children = 4;
650         parent->children = VG_(malloc)( "ms.main.acx.1",
651                                         parent->max_children * sizeof(XPt*) );
652         n_xpt_init_expansions++;
653      } else {
654         parent->max_children *= 2;    // Double size
655         parent->children = VG_(realloc)( "ms.main.acx.2",
656                                          parent->children,
657                                          parent->max_children * sizeof(XPt*) );
658         n_xpt_later_expansions++;
659      }
660   }
661
662   // Insert new child XPt in parent's children list.
663   parent->children[ parent->n_children++ ] = child;
664}
665
666// Reverse comparison for a reverse sort -- biggest to smallest.
667static Int SXPt_revcmp_szB(void* n1, void* n2)
668{
669   SXPt* sxpt1 = *(SXPt**)n1;
670   SXPt* sxpt2 = *(SXPt**)n2;
671   return ( sxpt1->szB < sxpt2->szB ?  1
672          : sxpt1->szB > sxpt2->szB ? -1
673          :                            0);
674}
675
676//------------------------------------------------------------//
677//--- XTree Operations                                     ---//
678//------------------------------------------------------------//
679
680// Duplicates an XTree as an SXTree.
681static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
682{
683   Int  i, n_sig_children, n_insig_children, n_child_sxpts;
684   SizeT sig_child_threshold_szB;
685   SXPt* sxpt;
686
687   // Number of XPt children  Action for SXPT
688   // ------------------      ---------------
689   // 0 sig, 0 insig          alloc 0 children
690   // N sig, 0 insig          alloc N children, dup all
691   // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
692   // 0 sig, M insig          alloc 1, aggregate M
693
694   // Work out how big a child must be to be significant.  If the current
695   // total_szB is zero, then we set it to 1, which means everything will be
696   // judged insignificant -- this is sensible, as there's no point showing
697   // any detail for this case.  Unless they used --threshold=0, in which
698   // case we show them everything because that's what they asked for.
699   //
700   // Nb: We do this once now, rather than once per child, because if we do
701   // that the cost of all the divisions adds up to something significant.
702   if (0 == total_szB && 0 != clo_threshold) {
703      sig_child_threshold_szB = 1;
704   } else {
705      sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
706   }
707
708   // How many children are significant?  And do we need an aggregate SXPt?
709   n_sig_children = 0;
710   for (i = 0; i < xpt->n_children; i++) {
711      if (xpt->children[i]->szB >= sig_child_threshold_szB) {
712         n_sig_children++;
713      }
714   }
715   n_insig_children = xpt->n_children - n_sig_children;
716   n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
717
718   // Duplicate the XPt.
719   sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
720   n_sxpt_allocs++;
721   sxpt->tag            = SigSXPt;
722   sxpt->szB            = xpt->szB;
723   sxpt->Sig.ip         = xpt->ip;
724   sxpt->Sig.n_children = n_child_sxpts;
725
726   // Create the SXPt's children.
727   if (n_child_sxpts > 0) {
728      Int j;
729      SizeT sig_children_szB = 0, insig_children_szB = 0;
730      sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
731                                       n_child_sxpts * sizeof(SXPt*));
732
733      // Duplicate the significant children.  (Nb: sig_children_szB +
734      // insig_children_szB doesn't necessarily equal xpt->szB.)
735      j = 0;
736      for (i = 0; i < xpt->n_children; i++) {
737         if (xpt->children[i]->szB >= sig_child_threshold_szB) {
738            sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
739            sig_children_szB   += xpt->children[i]->szB;
740         } else {
741            insig_children_szB += xpt->children[i]->szB;
742         }
743      }
744
745      // Create the SXPt for the insignificant children, if any, and put it
746      // in the last child entry.
747      if (n_insig_children > 0) {
748         // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
749         // doesn't involve a call to dup_XTree().
750         SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
751         n_sxpt_allocs++;
752         insig_sxpt->tag = InsigSXPt;
753         insig_sxpt->szB = insig_children_szB;
754         insig_sxpt->Insig.n_xpts = n_insig_children;
755         sxpt->Sig.children[n_sig_children] = insig_sxpt;
756      }
757   } else {
758      sxpt->Sig.children = NULL;
759   }
760
761   return sxpt;
762}
763
764static void free_SXTree(SXPt* sxpt)
765{
766   Int  i;
767   tl_assert(sxpt != NULL);
768
769   switch (sxpt->tag) {
770    case SigSXPt:
771      // Free all children SXPts, then the children array.
772      for (i = 0; i < sxpt->Sig.n_children; i++) {
773         free_SXTree(sxpt->Sig.children[i]);
774         sxpt->Sig.children[i] = NULL;
775      }
776      VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
777      break;
778
779    case InsigSXPt:
780      break;
781
782    default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
783   }
784
785   // Free the SXPt itself.
786   VG_(free)(sxpt);     sxpt = NULL;
787   n_sxpt_frees++;
788}
789
790// Sanity checking:  we periodically check the heap XTree with
791// ms_expensive_sanity_check.
792static void sanity_check_XTree(XPt* xpt, XPt* parent)
793{
794   tl_assert(xpt != NULL);
795
796   // Check back-pointer.
797   tl_assert2(xpt->parent == parent,
798      "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
799
800   // Check children counts look sane.
801   tl_assert(xpt->n_children <= xpt->max_children);
802
803   // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
804   // children's sizes.  See comment at the bottom of get_XCon.
805}
806
807// Sanity checking:  we check SXTrees (which are in snapshots) after
808// snapshots are created, before they are deleted, and before they are
809// printed.
810static void sanity_check_SXTree(SXPt* sxpt)
811{
812   Int i;
813
814   tl_assert(sxpt != NULL);
815
816   // Check the sum of any children szBs equals the SXPt's szB.  Check the
817   // children at the same time.
818   switch (sxpt->tag) {
819    case SigSXPt: {
820      if (sxpt->Sig.n_children > 0) {
821         for (i = 0; i < sxpt->Sig.n_children; i++) {
822            sanity_check_SXTree(sxpt->Sig.children[i]);
823         }
824      }
825      break;
826    }
827    case InsigSXPt:
828      break;         // do nothing
829
830    default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
831   }
832}
833
834
835//------------------------------------------------------------//
836//--- XCon Operations                                      ---//
837//------------------------------------------------------------//
838
839// This is the limit on the number of removed alloc-fns that can be in a
840// single XCon.
841#define MAX_OVERESTIMATE   50
842#define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
843
844// This is used for various buffers which can hold function names/IP
845// description.  Some C++ names can get really long so 1024 isn't big
846// enough.
847#define BUF_LEN   2048
848
849// Determine if the given IP belongs to a function that should be ignored.
850static Bool fn_should_be_ignored(Addr ip)
851{
852   static Char buf[BUF_LEN];
853   return
854      ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf)
855      ? True : False );
856}
857
858// Get the stack trace for an XCon, filtering out uninteresting entries:
859// alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
860//   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
861//   becomes:  a / b / main
862// Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
863// as an alloc-fn.  This is ok.
864static
865Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
866{
867   static Char buf[BUF_LEN];
868   Int n_ips, i, n_alloc_fns_removed;
869   Int overestimate;
870   Bool redo;
871
872   // We ask for a few more IPs than clo_depth suggests we need.  Then we
873   // remove every entry that is an alloc-fn.  Depending on the
874   // circumstances, we may need to redo it all, asking for more IPs.
875   // Details:
876   // - If the original stack trace is smaller than asked-for, redo=False
877   // - Else if after filtering we have >= clo_depth IPs,      redo=False
878   // - Else redo=True
879   // In other words, to redo, we'd have to get a stack trace as big as we
880   // asked for and remove more than 'overestimate' alloc-fns.
881
882   // Main loop.
883   redo = True;      // Assume this to begin with.
884   for (overestimate = 3; redo; overestimate += 6) {
885      // This should never happen -- would require MAX_OVERESTIMATE
886      // alloc-fns to be removed from the stack trace.
887      if (overestimate > MAX_OVERESTIMATE)
888         VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
889
890      // Ask for more IPs than clo_depth suggests we need.
891      n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
892                                   NULL/*array to dump SP values in*/,
893                                   NULL/*array to dump FP values in*/,
894                                   0/*first_ip_delta*/ );
895      tl_assert(n_ips > 0);
896
897      // If the original stack trace is smaller than asked-for, redo=False.
898      if (n_ips < clo_depth + overestimate) { redo = False; }
899
900      // Filter out alloc fns.  If requested, we automatically remove the
901      // first entry (which presumably will be something like malloc or
902      // __builtin_new that we're sure to filter out) without looking at it,
903      // because VG_(get_fnname) is expensive.
904      n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
905      for (i = n_alloc_fns_removed; i < n_ips; i++) {
906         if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) {
907            if (is_member_fn(alloc_fns, buf)) {
908               n_alloc_fns_removed++;
909            } else {
910               break;
911            }
912         }
913      }
914      // Remove the alloc fns by shuffling the rest down over them.
915      n_ips -= n_alloc_fns_removed;
916      for (i = 0; i < n_ips; i++) {
917         ips[i] = ips[i + n_alloc_fns_removed];
918      }
919
920      // If after filtering we have >= clo_depth IPs, redo=False
921      if (n_ips >= clo_depth) {
922         redo = False;
923         n_ips = clo_depth;      // Ignore any IPs below --depth.
924      }
925
926      if (redo) {
927         n_XCon_redos++;
928      }
929   }
930   return n_ips;
931}
932
933// Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
934// Unless the allocation should be ignored, in which case we return NULL.
935static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
936{
937   static Addr ips[MAX_IPS];
938   Int i;
939   XPt* xpt = alloc_xpt;
940
941   // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
942   Int n_ips = get_IPs(tid, exclude_first_entry, ips);
943
944   // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
945   // 'main' is marked as an alloc-fn.)
946   if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
947      return NULL;
948   }
949
950   // Now do the search/insertion of the XCon.
951   for (i = 0; i < n_ips; i++) {
952      Addr ip = ips[i];
953      Int ch;
954      // Look for IP in xpt's children.
955      // Linear search, ugh -- about 10% of time for konqueror startup tried
956      // caching last result, only hit about 4% for konqueror.
957      // Nb:  this search hits about 98% of the time for konqueror
958      for (ch = 0; True; ch++) {
959         if (ch == xpt->n_children) {
960            // IP not found in the children.
961            // Create and add new child XPt, then stop.
962            XPt* new_child_xpt = new_XPt(ip, xpt);
963            add_child_xpt(xpt, new_child_xpt);
964            xpt = new_child_xpt;
965            break;
966
967         } else if (ip == xpt->children[ch]->ip) {
968            // Found the IP in the children, stop.
969            xpt = xpt->children[ch];
970            break;
971         }
972      }
973   }
974
975   // [Note: several comments refer to this comment.  Do not delete it
976   // without updating them.]
977   //
978   // A complication... If all stack traces were well-formed, then the
979   // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
980   // size would always be equal to the sum of its children's sizes, which
981   // is an excellent sanity check.
982   //
983   // Unfortunately, stack traces occasionally are malformed, ie. truncated.
984   // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
985   // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
986   // nor can we do sanity check an XPt's size against its children's sizes.
987   // This is annoying, but must be dealt with.  (Older versions of Massif
988   // had this assertion in, and it was reported to fail by real users a
989   // couple of times.)  Even more annoyingly, I can't come up with a simple
990   // test case that exhibit such a malformed stack trace, so I can't
991   // regression test it.  Sigh.
992   //
993   // However, we can print a warning, so that if it happens (unexpectedly)
994   // in existing regression tests we'll know.  Also, it warns users that
995   // the output snapshots may not add up the way they might expect.
996   //
997   //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
998   if (0 != xpt->n_children) {
999      static Int n_moans = 0;
1000      if (n_moans < 3) {
1001         VG_(umsg)(
1002            "Warning: Malformed stack trace detected.  In Massif's output,\n");
1003         VG_(umsg)(
1004            "         the size of an entry's child entries may not sum up\n");
1005         VG_(umsg)(
1006            "         to the entry's size as they normally do.\n");
1007         n_moans++;
1008         if (3 == n_moans)
1009            VG_(umsg)(
1010            "         (And Massif now won't warn about this again.)\n");
1011      }
1012   }
1013   return xpt;
1014}
1015
1016// Update 'szB' of every XPt in the XCon, by percolating upwards.
1017static void update_XCon(XPt* xpt, SSizeT space_delta)
1018{
1019   tl_assert(clo_heap);
1020   tl_assert(NULL != xpt);
1021
1022   if (0 == space_delta)
1023      return;
1024
1025   while (xpt != alloc_xpt) {
1026      if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
1027      xpt->szB += space_delta;
1028      xpt = xpt->parent;
1029   }
1030   if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
1031   alloc_xpt->szB += space_delta;
1032}
1033
1034
1035//------------------------------------------------------------//
1036//--- Snapshots                                            ---//
1037//------------------------------------------------------------//
1038
1039// Snapshots are done in a way so that we always have a reasonable number of
1040// them.  We start by taking them quickly.  Once we hit our limit, we cull
1041// some (eg. half), and start taking them more slowly.  Once we hit the
1042// limit again, we again cull and then take them even more slowly, and so
1043// on.
1044
1045// Time is measured either in i or ms or bytes, depending on the --time-unit
1046// option.  It's a Long because it can exceed 32-bits reasonably easily, and
1047// because we need to allow negative values to represent unset times.
1048typedef Long Time;
1049
1050#define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
1051
1052typedef
1053   enum {
1054      Normal = 77,
1055      Peak,
1056      Unused
1057   }
1058   SnapshotKind;
1059
1060typedef
1061   struct {
1062      SnapshotKind kind;
1063      Time  time;
1064      SizeT heap_szB;
1065      SizeT heap_extra_szB;// Heap slop + admin bytes.
1066      SizeT stacks_szB;
1067      SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
1068   }                       // otherwise NULL.
1069   Snapshot;
1070
1071static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
1072static Snapshot* snapshots;            // Array of snapshots.
1073
1074static Bool is_snapshot_in_use(Snapshot* snapshot)
1075{
1076   if (Unused == snapshot->kind) {
1077      // If snapshot is unused, check all the fields are unset.
1078      tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
1079      tl_assert(snapshot->heap_extra_szB == 0);
1080      tl_assert(snapshot->heap_szB       == 0);
1081      tl_assert(snapshot->stacks_szB     == 0);
1082      tl_assert(snapshot->alloc_sxpt     == NULL);
1083      return False;
1084   } else {
1085      tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
1086      return True;
1087   }
1088}
1089
1090static Bool is_detailed_snapshot(Snapshot* snapshot)
1091{
1092   return (snapshot->alloc_sxpt ? True : False);
1093}
1094
1095static Bool is_uncullable_snapshot(Snapshot* snapshot)
1096{
1097   return &snapshots[0] == snapshot                   // First snapshot
1098       || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
1099       || snapshot->kind == Peak;                     // Peak snapshot
1100}
1101
1102static void sanity_check_snapshot(Snapshot* snapshot)
1103{
1104   if (snapshot->alloc_sxpt) {
1105      sanity_check_SXTree(snapshot->alloc_sxpt);
1106   }
1107}
1108
1109// All the used entries should look used, all the unused ones should be clear.
1110static void sanity_check_snapshots_array(void)
1111{
1112   Int i;
1113   for (i = 0; i < next_snapshot_i; i++) {
1114      tl_assert( is_snapshot_in_use( & snapshots[i] ));
1115   }
1116   for (    ; i < clo_max_snapshots; i++) {
1117      tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1118   }
1119}
1120
1121// This zeroes all the fields in the snapshot, but does not free the heap
1122// XTree if present.  It also does a sanity check unless asked not to;  we
1123// can't sanity check at startup when clearing the initial snapshots because
1124// they're full of junk.
1125static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1126{
1127   if (do_sanity_check) sanity_check_snapshot(snapshot);
1128   snapshot->kind           = Unused;
1129   snapshot->time           = UNUSED_SNAPSHOT_TIME;
1130   snapshot->heap_extra_szB = 0;
1131   snapshot->heap_szB       = 0;
1132   snapshot->stacks_szB     = 0;
1133   snapshot->alloc_sxpt     = NULL;
1134}
1135
1136// This zeroes all the fields in the snapshot, and frees the heap XTree if
1137// present.
1138static void delete_snapshot(Snapshot* snapshot)
1139{
1140   // Nb: if there's an XTree, we free it after calling clear_snapshot,
1141   // because clear_snapshot does a sanity check which includes checking the
1142   // XTree.
1143   SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1144   clear_snapshot(snapshot, /*do_sanity_check*/True);
1145   if (tmp_sxpt) {
1146      free_SXTree(tmp_sxpt);
1147   }
1148}
1149
1150static void VERB_snapshot(Int verbosity, Char* prefix, Int i)
1151{
1152   Snapshot* snapshot = &snapshots[i];
1153   Char* suffix;
1154   switch (snapshot->kind) {
1155   case Peak:   suffix = "p";                                            break;
1156   case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1157   case Unused: suffix = "u";                                            break;
1158   default:
1159      tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1160   }
1161   VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n",
1162      prefix, suffix, i,
1163      snapshot->time,
1164      snapshot->heap_szB,
1165      snapshot->heap_extra_szB,
1166      snapshot->stacks_szB
1167   );
1168}
1169
1170// Cull half the snapshots;  we choose those that represent the smallest
1171// time-spans, because that gives us the most even distribution of snapshots
1172// over time.  (It's possible to lose interesting spikes, however.)
1173//
1174// Algorithm for N snapshots:  We find the snapshot representing the smallest
1175// timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
1176// We have to do this one snapshot at a time, rather than finding the (N/2)
1177// smallest snapshots in one hit, because when a snapshot is removed, its
1178// neighbours immediately cover greater timespans.  So it's O(N^2), but N is
1179// small, and it's not done very often.
1180//
1181// Once we're done, we return the new smallest interval between snapshots.
1182// That becomes our minimum time interval.
1183static UInt cull_snapshots(void)
1184{
1185   Int  i, jp, j, jn, min_timespan_i;
1186   Int  n_deleted = 0;
1187   Time min_timespan;
1188
1189   n_cullings++;
1190
1191   // Sets j to the index of the first not-yet-removed snapshot at or after i
1192   #define FIND_SNAPSHOT(i, j) \
1193      for (j = i; \
1194           j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1195           j++) { }
1196
1197   VERB(2, "Culling...\n");
1198
1199   // First we remove enough snapshots by clearing them in-place.  Once
1200   // that's done, we can slide the remaining ones down.
1201   for (i = 0; i < clo_max_snapshots/2; i++) {
1202      // Find the snapshot representing the smallest timespan.  The timespan
1203      // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1204      // snapshot A and B.  We don't consider the first and last snapshots for
1205      // removal.
1206      Snapshot* min_snapshot;
1207      Int min_j;
1208
1209      // Initial triple: (prev, curr, next) == (jp, j, jn)
1210      // Initial min_timespan is the first one.
1211      jp = 0;
1212      FIND_SNAPSHOT(1,   j);
1213      FIND_SNAPSHOT(j+1, jn);
1214      min_timespan = 0x7fffffffffffffffLL;
1215      min_j        = -1;
1216      while (jn < clo_max_snapshots) {
1217         Time timespan = snapshots[jn].time - snapshots[jp].time;
1218         tl_assert(timespan >= 0);
1219         // Nb: We never cull the peak snapshot.
1220         if (Peak != snapshots[j].kind && timespan < min_timespan) {
1221            min_timespan = timespan;
1222            min_j        = j;
1223         }
1224         // Move on to next triple
1225         jp = j;
1226         j  = jn;
1227         FIND_SNAPSHOT(jn+1, jn);
1228      }
1229      // We've found the least important snapshot, now delete it.  First
1230      // print it if necessary.
1231      tl_assert(-1 != min_j);    // Check we found a minimum.
1232      min_snapshot = & snapshots[ min_j ];
1233      if (VG_(clo_verbosity) > 1) {
1234         Char buf[64];
1235         VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1236         VERB_snapshot(2, buf, min_j);
1237      }
1238      delete_snapshot(min_snapshot);
1239      n_deleted++;
1240   }
1241
1242   // Slide down the remaining snapshots over the removed ones.  First set i
1243   // to point to the first empty slot, and j to the first full slot after
1244   // i.  Then slide everything down.
1245   for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
1246   for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1247   for (  ; j < clo_max_snapshots; j++) {
1248      if (is_snapshot_in_use( &snapshots[j] )) {
1249         snapshots[i++] = snapshots[j];
1250         clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1251      }
1252   }
1253   next_snapshot_i = i;
1254
1255   // Check snapshots array looks ok after changes.
1256   sanity_check_snapshots_array();
1257
1258   // Find the minimum timespan remaining;  that will be our new minimum
1259   // time interval.  Note that above we were finding timespans by measuring
1260   // two intervals around a snapshot that was under consideration for
1261   // deletion.  Here we only measure single intervals because all the
1262   // deletions have occurred.
1263   //
1264   // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1265   // peak snapshot) are uncullable.  If two uncullable snapshots end up
1266   // next to each other, they'll never be culled (assuming the peak doesn't
1267   // change), and the time gap between them will not change.  However, the
1268   // time between the remaining cullable snapshots will grow ever larger.
1269   // This means that the min_timespan found will always be that between the
1270   // two uncullable snapshots, and it will be much smaller than it should
1271   // be.  To avoid this problem, when computing the minimum timespan, we
1272   // ignore any timespans between two uncullable snapshots.
1273   tl_assert(next_snapshot_i > 1);
1274   min_timespan = 0x7fffffffffffffffLL;
1275   min_timespan_i = -1;
1276   for (i = 1; i < next_snapshot_i; i++) {
1277      if (is_uncullable_snapshot(&snapshots[i]) &&
1278          is_uncullable_snapshot(&snapshots[i-1]))
1279      {
1280         VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1281      } else {
1282         Time timespan = snapshots[i].time - snapshots[i-1].time;
1283         tl_assert(timespan >= 0);
1284         if (timespan < min_timespan) {
1285            min_timespan = timespan;
1286            min_timespan_i = i;
1287         }
1288      }
1289   }
1290   tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
1291
1292   // Print remaining snapshots, if necessary.
1293   if (VG_(clo_verbosity) > 1) {
1294      VERB(2, "Finished culling (%3d of %3d deleted)\n",
1295         n_deleted, clo_max_snapshots);
1296      for (i = 0; i < next_snapshot_i; i++) {
1297         VERB_snapshot(2, "  post-cull", i);
1298      }
1299      VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1300         min_timespan, min_timespan_i-1, min_timespan_i);
1301   }
1302
1303   return min_timespan;
1304}
1305
1306static Time get_time(void)
1307{
1308   // Get current time, in whatever time unit we're using.
1309   if (clo_time_unit == TimeI) {
1310      return guest_instrs_executed;
1311   } else if (clo_time_unit == TimeMS) {
1312      // Some stuff happens between the millisecond timer being initialised
1313      // to zero and us taking our first snapshot.  We determine that time
1314      // gap so we can subtract it from all subsequent times so that our
1315      // first snapshot is considered to be at t = 0ms.  Unfortunately, a
1316      // bunch of symbols get read after the first snapshot is taken but
1317      // before the second one (which is triggered by the first allocation),
1318      // so when the time-unit is 'ms' we always have a big gap between the
1319      // first two snapshots.  But at least users won't have to wonder why
1320      // the first snapshot isn't at t=0.
1321      static Bool is_first_get_time = True;
1322      static Time start_time_ms;
1323      if (is_first_get_time) {
1324         start_time_ms = VG_(read_millisecond_timer)();
1325         is_first_get_time = False;
1326         return 0;
1327      } else {
1328         return VG_(read_millisecond_timer)() - start_time_ms;
1329      }
1330   } else if (clo_time_unit == TimeB) {
1331      return total_allocs_deallocs_szB;
1332   } else {
1333      tl_assert2(0, "bad --time-unit value");
1334   }
1335}
1336
1337// Take a snapshot, and only that -- decisions on whether to take a
1338// snapshot, or what kind of snapshot, are made elsewhere.
1339// Nb: we call the arg "my_time" because "time" shadows a global declaration
1340// in /usr/include/time.h on Darwin.
1341static void
1342take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1343              Bool is_detailed)
1344{
1345   tl_assert(!is_snapshot_in_use(snapshot));
1346   if (!clo_pages_as_heap) {
1347      tl_assert(have_started_executing_code);
1348   }
1349
1350   // Heap and heap admin.
1351   if (clo_heap) {
1352      snapshot->heap_szB = heap_szB;
1353      if (is_detailed) {
1354         SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1355         snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1356         tl_assert(           alloc_xpt->szB == heap_szB);
1357         tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1358      }
1359      snapshot->heap_extra_szB = heap_extra_szB;
1360   }
1361
1362   // Stack(s).
1363   if (clo_stacks) {
1364      snapshot->stacks_szB = stacks_szB;
1365   }
1366
1367   // Rest of snapshot.
1368   snapshot->kind = kind;
1369   snapshot->time = my_time;
1370   sanity_check_snapshot(snapshot);
1371
1372   // Update stats.
1373   if (Peak == kind) n_peak_snapshots++;
1374   if (is_detailed)  n_detailed_snapshots++;
1375   n_real_snapshots++;
1376}
1377
1378
1379// Take a snapshot, if it's time, or if we've hit a peak.
1380static void
1381maybe_take_snapshot(SnapshotKind kind, Char* what)
1382{
1383   // 'min_time_interval' is the minimum time interval between snapshots.
1384   // If we try to take a snapshot and less than this much time has passed,
1385   // we don't take it.  It gets larger as the program runs longer.  It's
1386   // initialised to zero so that we begin by taking snapshots as quickly as
1387   // possible.
1388   static Time min_time_interval = 0;
1389   // Zero allows startup snapshot.
1390   static Time earliest_possible_time_of_next_snapshot = 0;
1391   static Int  n_snapshots_since_last_detailed         = 0;
1392   static Int  n_skipped_snapshots_since_last_snapshot = 0;
1393
1394   Snapshot* snapshot;
1395   Bool      is_detailed;
1396   // Nb: we call this variable "my_time" because "time" shadows a global
1397   // declaration in /usr/include/time.h on Darwin.
1398   Time      my_time = get_time();
1399
1400   switch (kind) {
1401    case Normal:
1402      // Only do a snapshot if it's time.
1403      if (my_time < earliest_possible_time_of_next_snapshot) {
1404         n_skipped_snapshots++;
1405         n_skipped_snapshots_since_last_snapshot++;
1406         return;
1407      }
1408      is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1409      break;
1410
1411    case Peak: {
1412      // Because we're about to do a deallocation, we're coming down from a
1413      // local peak.  If it is (a) actually a global peak, and (b) a certain
1414      // amount bigger than the previous peak, then we take a peak snapshot.
1415      // By not taking a snapshot for every peak, we save a lot of effort --
1416      // because many peaks remain peak only for a short time.
1417      SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1418      SizeT excess_szB_for_new_peak =
1419         (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1420      if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1421         return;
1422      }
1423      is_detailed = True;
1424      break;
1425    }
1426
1427    default:
1428      tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1429   }
1430
1431   // Take the snapshot.
1432   snapshot = & snapshots[next_snapshot_i];
1433   take_snapshot(snapshot, kind, my_time, is_detailed);
1434
1435   // Record if it was detailed.
1436   if (is_detailed) {
1437      n_snapshots_since_last_detailed = 0;
1438   } else {
1439      n_snapshots_since_last_detailed++;
1440   }
1441
1442   // Update peak data, if it's a Peak snapshot.
1443   if (Peak == kind) {
1444      Int i, number_of_peaks_snapshots_found = 0;
1445
1446      // Sanity check the size, then update our recorded peak.
1447      SizeT snapshot_total_szB =
1448         snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1449      tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1450         "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1451      peak_snapshot_total_szB = snapshot_total_szB;
1452
1453      // Find the old peak snapshot, if it exists, and mark it as normal.
1454      for (i = 0; i < next_snapshot_i; i++) {
1455         if (Peak == snapshots[i].kind) {
1456            snapshots[i].kind = Normal;
1457            number_of_peaks_snapshots_found++;
1458         }
1459      }
1460      tl_assert(number_of_peaks_snapshots_found <= 1);
1461   }
1462
1463   // Finish up verbosity and stats stuff.
1464   if (n_skipped_snapshots_since_last_snapshot > 0) {
1465      VERB(2, "  (skipped %d snapshot%s)\n",
1466         n_skipped_snapshots_since_last_snapshot,
1467         ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1468   }
1469   VERB_snapshot(2, what, next_snapshot_i);
1470   n_skipped_snapshots_since_last_snapshot = 0;
1471
1472   // Cull the entries, if our snapshot table is full.
1473   next_snapshot_i++;
1474   if (clo_max_snapshots == next_snapshot_i) {
1475      min_time_interval = cull_snapshots();
1476   }
1477
1478   // Work out the earliest time when the next snapshot can happen.
1479   earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1480}
1481
1482
1483//------------------------------------------------------------//
1484//--- Sanity checking                                      ---//
1485//------------------------------------------------------------//
1486
1487static Bool ms_cheap_sanity_check ( void )
1488{
1489   return True;   // Nothing useful we can cheaply check.
1490}
1491
1492static Bool ms_expensive_sanity_check ( void )
1493{
1494   sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1495   sanity_check_snapshots_array();
1496   return True;
1497}
1498
1499
1500//------------------------------------------------------------//
1501//--- Heap management                                      ---//
1502//------------------------------------------------------------//
1503
1504// Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
1505// which is a foothold into the XCon at which it was allocated.  From
1506// HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1507// decremented (at deallocation).
1508//
1509// Nb: first two fields must match core's VgHashNode.
1510typedef
1511   struct _HP_Chunk {
1512      struct _HP_Chunk* next;
1513      Addr              data;       // Ptr to actual block
1514      SizeT             req_szB;    // Size requested
1515      SizeT             slop_szB;   // Extra bytes given above those requested
1516      XPt*              where;      // Where allocated; bottom-XPt
1517   }
1518   HP_Chunk;
1519
1520static VgHashTable malloc_list  = NULL;   // HP_Chunks
1521
1522static void update_alloc_stats(SSizeT szB_delta)
1523{
1524   // Update total_allocs_deallocs_szB.
1525   if (szB_delta < 0) szB_delta = -szB_delta;
1526   total_allocs_deallocs_szB += szB_delta;
1527}
1528
1529static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1530{
1531   if (heap_szB_delta < 0)
1532      tl_assert(heap_szB >= -heap_szB_delta);
1533   if (heap_extra_szB_delta < 0)
1534      tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1535
1536   heap_extra_szB += heap_extra_szB_delta;
1537   heap_szB       += heap_szB_delta;
1538
1539   update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1540}
1541
1542static
1543void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1544                    Bool exclude_first_entry, Bool maybe_snapshot )
1545{
1546   // Make new HP_Chunk node, add to malloc_list
1547   HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1548   hc->req_szB  = req_szB;
1549   hc->slop_szB = slop_szB;
1550   hc->data     = (Addr)p;
1551   hc->where    = NULL;
1552   VG_(HT_add_node)(malloc_list, hc);
1553
1554   if (clo_heap) {
1555      VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1556
1557      hc->where = get_XCon( tid, exclude_first_entry );
1558
1559      if (hc->where) {
1560         // Update statistics.
1561         n_heap_allocs++;
1562
1563         // Update heap stats.
1564         update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1565
1566         // Update XTree.
1567         update_XCon(hc->where, req_szB);
1568
1569         // Maybe take a snapshot.
1570         if (maybe_snapshot) {
1571            maybe_take_snapshot(Normal, "  alloc");
1572         }
1573
1574      } else {
1575         // Ignored allocation.
1576         n_ignored_heap_allocs++;
1577
1578         VERB(3, "(ignored)\n");
1579      }
1580
1581      VERB(3, ">>>\n");
1582   }
1583
1584   return p;
1585}
1586
1587static __inline__
1588void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1589                               Bool is_zeroed )
1590{
1591   SizeT actual_szB, slop_szB;
1592   void* p;
1593
1594   if ((SSizeT)req_szB < 0) return NULL;
1595
1596   // Allocate and zero if necessary.
1597   p = VG_(cli_malloc)( req_alignB, req_szB );
1598   if (!p) {
1599      return NULL;
1600   }
1601   if (is_zeroed) VG_(memset)(p, 0, req_szB);
1602   actual_szB = VG_(malloc_usable_size)(p);
1603   tl_assert(actual_szB >= req_szB);
1604   slop_szB = actual_szB - req_szB;
1605
1606   // Record block.
1607   record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1608                /*maybe_snapshot*/True);
1609
1610   return p;
1611}
1612
1613static __inline__
1614void unrecord_block ( void* p, Bool maybe_snapshot )
1615{
1616   // Remove HP_Chunk from malloc_list
1617   HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1618   if (NULL == hc) {
1619      return;   // must have been a bogus free()
1620   }
1621
1622   if (clo_heap) {
1623      VERB(3, "<<< unrecord_block\n");
1624
1625      if (hc->where) {
1626         // Update statistics.
1627         n_heap_frees++;
1628
1629         // Maybe take a peak snapshot, since it's a deallocation.
1630         if (maybe_snapshot) {
1631            maybe_take_snapshot(Peak, "de-PEAK");
1632         }
1633
1634         // Update heap stats.
1635         update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1636
1637         // Update XTree.
1638         update_XCon(hc->where, -hc->req_szB);
1639
1640         // Maybe take a snapshot.
1641         if (maybe_snapshot) {
1642            maybe_take_snapshot(Normal, "dealloc");
1643         }
1644
1645      } else {
1646         n_ignored_heap_frees++;
1647
1648         VERB(3, "(ignored)\n");
1649      }
1650
1651      VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1652   }
1653
1654   // Actually free the chunk, and the heap block (if necessary)
1655   VG_(free)( hc );  hc = NULL;
1656}
1657
1658// Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
1659// ignored, but the realloc is not requested to be ignored, and we are
1660// shrinking the block, then we have to ignore the realloc -- otherwise we
1661// could end up with negative heap sizes.  This isn't a danger if we are
1662// growing such a block, but for consistency (it also simplifies things) we
1663// ignore such reallocs as well.
1664static __inline__
1665void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1666{
1667   HP_Chunk* hc;
1668   void*     p_new;
1669   SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1670   XPt      *old_where, *new_where;
1671   Bool      is_ignored = False;
1672
1673   // Remove the old block
1674   hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1675   if (hc == NULL) {
1676      return NULL;   // must have been a bogus realloc()
1677   }
1678
1679   old_req_szB  = hc->req_szB;
1680   old_slop_szB = hc->slop_szB;
1681
1682   tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
1683   if (clo_heap) {
1684      VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1685
1686      if (hc->where) {
1687         // Update statistics.
1688         n_heap_reallocs++;
1689
1690         // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1691         if (new_req_szB < old_req_szB) {
1692            maybe_take_snapshot(Peak, "re-PEAK");
1693         }
1694      } else {
1695         // The original malloc was ignored, so we have to ignore the
1696         // realloc as well.
1697         is_ignored = True;
1698      }
1699   }
1700
1701   // Actually do the allocation, if necessary.
1702   if (new_req_szB <= old_req_szB + old_slop_szB) {
1703      // New size is smaller or same;  block not moved.
1704      p_new = p_old;
1705      new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1706
1707   } else {
1708      // New size is bigger;  make new block, copy shared contents, free old.
1709      p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1710      if (!p_new) {
1711         // Nb: if realloc fails, NULL is returned but the old block is not
1712         // touched.  What an awful function.
1713         return NULL;
1714      }
1715      VG_(memcpy)(p_new, p_old, old_req_szB);
1716      VG_(cli_free)(p_old);
1717      new_actual_szB = VG_(malloc_usable_size)(p_new);
1718      tl_assert(new_actual_szB >= new_req_szB);
1719      new_slop_szB = new_actual_szB - new_req_szB;
1720   }
1721
1722   if (p_new) {
1723      // Update HP_Chunk.
1724      hc->data     = (Addr)p_new;
1725      hc->req_szB  = new_req_szB;
1726      hc->slop_szB = new_slop_szB;
1727      old_where    = hc->where;
1728      hc->where    = NULL;
1729
1730      // Update XTree.
1731      if (clo_heap) {
1732         new_where = get_XCon( tid, /*exclude_first_entry*/True);
1733         if (!is_ignored && new_where) {
1734            hc->where = new_where;
1735            update_XCon(old_where, -old_req_szB);
1736            update_XCon(new_where,  new_req_szB);
1737         } else {
1738            // The realloc itself is ignored.
1739            is_ignored = True;
1740
1741            // Update statistics.
1742            n_ignored_heap_reallocs++;
1743         }
1744      }
1745   }
1746
1747   // Now insert the new hc (with a possibly new 'data' field) into
1748   // malloc_list.  If this realloc() did not increase the memory size, we
1749   // will have removed and then re-added hc unnecessarily.  But that's ok
1750   // because shrinking a block with realloc() is (presumably) much rarer
1751   // than growing it, and this way simplifies the growing case.
1752   VG_(HT_add_node)(malloc_list, hc);
1753
1754   if (clo_heap) {
1755      if (!is_ignored) {
1756         // Update heap stats.
1757         update_heap_stats(new_req_szB - old_req_szB,
1758                          new_slop_szB - old_slop_szB);
1759
1760         // Maybe take a snapshot.
1761         maybe_take_snapshot(Normal, "realloc");
1762      } else {
1763
1764         VERB(3, "(ignored)\n");
1765      }
1766
1767      VERB(3, ">>> (%ld, %ld)\n",
1768         new_req_szB - old_req_szB, new_slop_szB - old_slop_szB);
1769   }
1770
1771   return p_new;
1772}
1773
1774
1775//------------------------------------------------------------//
1776//--- malloc() et al replacement wrappers                  ---//
1777//------------------------------------------------------------//
1778
1779static void* ms_malloc ( ThreadId tid, SizeT szB )
1780{
1781   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1782}
1783
1784static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1785{
1786   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1787}
1788
1789static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1790{
1791   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1792}
1793
1794static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1795{
1796   return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1797}
1798
1799static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1800{
1801   return alloc_and_record_block( tid, szB, alignB, False );
1802}
1803
1804static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1805{
1806   unrecord_block(p, /*maybe_snapshot*/True);
1807   VG_(cli_free)(p);
1808}
1809
1810static void ms___builtin_delete ( ThreadId tid, void* p )
1811{
1812   unrecord_block(p, /*maybe_snapshot*/True);
1813   VG_(cli_free)(p);
1814}
1815
1816static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1817{
1818   unrecord_block(p, /*maybe_snapshot*/True);
1819   VG_(cli_free)(p);
1820}
1821
1822static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1823{
1824   return realloc_block(tid, p_old, new_szB);
1825}
1826
1827static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1828{
1829   HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1830
1831   return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1832}
1833
1834//------------------------------------------------------------//
1835//--- Page handling                                        ---//
1836//------------------------------------------------------------//
1837
1838static
1839void ms_record_page_mem ( Addr a, SizeT len )
1840{
1841   ThreadId tid = VG_(get_running_tid)();
1842   Addr end;
1843   tl_assert(VG_IS_PAGE_ALIGNED(len));
1844   tl_assert(len >= VKI_PAGE_SIZE);
1845   // Record the first N-1 pages as blocks, but don't do any snapshots.
1846   for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1847      record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1848                    /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1849   }
1850   // Record the last page as a block, and maybe do a snapshot afterwards.
1851   record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1852                 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1853}
1854
1855static
1856void ms_unrecord_page_mem( Addr a, SizeT len )
1857{
1858   Addr end;
1859   tl_assert(VG_IS_PAGE_ALIGNED(len));
1860   tl_assert(len >= VKI_PAGE_SIZE);
1861   for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1862      unrecord_block((void*)a, /*maybe_snapshot*/False);
1863   }
1864   unrecord_block((void*)a, /*maybe_snapshot*/True);
1865}
1866
1867//------------------------------------------------------------//
1868
1869static
1870void ms_new_mem_mmap ( Addr a, SizeT len,
1871                       Bool rr, Bool ww, Bool xx, ULong di_handle )
1872{
1873   tl_assert(VG_IS_PAGE_ALIGNED(len));
1874   ms_record_page_mem(a, len);
1875}
1876
1877static
1878void ms_new_mem_startup( Addr a, SizeT len,
1879                         Bool rr, Bool ww, Bool xx, ULong di_handle )
1880{
1881   // startup maps are always be page-sized, except the trampoline page is
1882   // marked by the core as only being the size of the trampoline itself,
1883   // which is something like 57 bytes.  Round it up to page size.
1884   len = VG_PGROUNDUP(len);
1885   ms_record_page_mem(a, len);
1886}
1887
1888static
1889void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1890{
1891   tl_assert(VG_IS_PAGE_ALIGNED(len));
1892   ms_record_page_mem(a, len);
1893}
1894
1895static
1896void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1897{
1898   tl_assert(VG_IS_PAGE_ALIGNED(len));
1899   ms_unrecord_page_mem(from, len);
1900   ms_record_page_mem(to, len);
1901}
1902
1903static
1904void ms_die_mem_munmap( Addr a, SizeT len )
1905{
1906   tl_assert(VG_IS_PAGE_ALIGNED(len));
1907   ms_unrecord_page_mem(a, len);
1908}
1909
1910static
1911void ms_die_mem_brk( Addr a, SizeT len )
1912{
1913   tl_assert(VG_IS_PAGE_ALIGNED(len));
1914   ms_unrecord_page_mem(a, len);
1915}
1916
1917//------------------------------------------------------------//
1918//--- Stacks                                               ---//
1919//------------------------------------------------------------//
1920
1921// We really want the inlining to occur...
1922#define INLINE    inline __attribute__((always_inline))
1923
1924static void update_stack_stats(SSizeT stack_szB_delta)
1925{
1926   if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1927   stacks_szB += stack_szB_delta;
1928
1929   update_alloc_stats(stack_szB_delta);
1930}
1931
1932static INLINE void new_mem_stack_2(SizeT len, Char* what)
1933{
1934   if (have_started_executing_code) {
1935      VERB(3, "<<< new_mem_stack (%ld)\n", len);
1936      n_stack_allocs++;
1937      update_stack_stats(len);
1938      maybe_take_snapshot(Normal, what);
1939      VERB(3, ">>>\n");
1940   }
1941}
1942
1943static INLINE void die_mem_stack_2(SizeT len, Char* what)
1944{
1945   if (have_started_executing_code) {
1946      VERB(3, "<<< die_mem_stack (%ld)\n", -len);
1947      n_stack_frees++;
1948      maybe_take_snapshot(Peak,   "stkPEAK");
1949      update_stack_stats(-len);
1950      maybe_take_snapshot(Normal, what);
1951      VERB(3, ">>>\n");
1952   }
1953}
1954
1955static void new_mem_stack(Addr a, SizeT len)
1956{
1957   new_mem_stack_2(len, "stk-new");
1958}
1959
1960static void die_mem_stack(Addr a, SizeT len)
1961{
1962   die_mem_stack_2(len, "stk-die");
1963}
1964
1965static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1966{
1967   new_mem_stack_2(len, "sig-new");
1968}
1969
1970static void die_mem_stack_signal(Addr a, SizeT len)
1971{
1972   die_mem_stack_2(len, "sig-die");
1973}
1974
1975
1976//------------------------------------------------------------//
1977//--- Client Requests                                      ---//
1978//------------------------------------------------------------//
1979
1980static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1981{
1982   switch (argv[0]) {
1983   case VG_USERREQ__MALLOCLIKE_BLOCK: {
1984      void* p   = (void*)argv[1];
1985      SizeT szB =        argv[2];
1986      record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1987                    /*maybe_snapshot*/True );
1988      *ret = 0;
1989      return True;
1990   }
1991   case VG_USERREQ__FREELIKE_BLOCK: {
1992      void* p = (void*)argv[1];
1993      unrecord_block(p, /*maybe_snapshot*/True);
1994      *ret = 0;
1995      return True;
1996   }
1997   default:
1998      *ret = 0;
1999      return False;
2000   }
2001}
2002
2003//------------------------------------------------------------//
2004//--- Instrumentation                                      ---//
2005//------------------------------------------------------------//
2006
2007static void add_counter_update(IRSB* sbOut, Int n)
2008{
2009   #if defined(VG_BIGENDIAN)
2010   # define END Iend_BE
2011   #elif defined(VG_LITTLEENDIAN)
2012   # define END Iend_LE
2013   #else
2014   # error "Unknown endianness"
2015   #endif
2016   // Add code to increment 'guest_instrs_executed' by 'n', like this:
2017   //   WrTmp(t1, Load64(&guest_instrs_executed))
2018   //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2019   //   Store(&guest_instrs_executed, t2)
2020   IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2021   IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2022   IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2023
2024   IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2025   IRStmt* st2 =
2026      IRStmt_WrTmp(t2,
2027                   IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2028                                           IRExpr_Const(IRConst_U64(n))));
2029   IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2030
2031   addStmtToIRSB( sbOut, st1 );
2032   addStmtToIRSB( sbOut, st2 );
2033   addStmtToIRSB( sbOut, st3 );
2034}
2035
2036static IRSB* ms_instrument2( IRSB* sbIn )
2037{
2038   Int   i, n = 0;
2039   IRSB* sbOut;
2040
2041   // We increment the instruction count in two places:
2042   // - just before any Ist_Exit statements;
2043   // - just before the IRSB's end.
2044   // In the former case, we zero 'n' and then continue instrumenting.
2045
2046   sbOut = deepCopyIRSBExceptStmts(sbIn);
2047
2048   for (i = 0; i < sbIn->stmts_used; i++) {
2049      IRStmt* st = sbIn->stmts[i];
2050
2051      if (!st || st->tag == Ist_NoOp) continue;
2052
2053      if (st->tag == Ist_IMark) {
2054         n++;
2055      } else if (st->tag == Ist_Exit) {
2056         if (n > 0) {
2057            // Add an increment before the Exit statement, then reset 'n'.
2058            add_counter_update(sbOut, n);
2059            n = 0;
2060         }
2061      }
2062      addStmtToIRSB( sbOut, st );
2063   }
2064
2065   if (n > 0) {
2066      // Add an increment before the SB end.
2067      add_counter_update(sbOut, n);
2068   }
2069   return sbOut;
2070}
2071
2072static
2073IRSB* ms_instrument ( VgCallbackClosure* closure,
2074                      IRSB* sbIn,
2075                      VexGuestLayout* layout,
2076                      VexGuestExtents* vge,
2077                      IRType gWordTy, IRType hWordTy )
2078{
2079   if (! have_started_executing_code) {
2080      // Do an initial sample to guarantee that we have at least one.
2081      // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2082      // 'maybe_take_snapshot's internal static variables are initialised.
2083      have_started_executing_code = True;
2084      maybe_take_snapshot(Normal, "startup");
2085   }
2086
2087   if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
2088   else if (clo_time_unit == TimeMS) { return sbIn; }
2089   else if (clo_time_unit == TimeB)  { return sbIn; }
2090   else                              { tl_assert2(0, "bad --time-unit value"); }
2091}
2092
2093
2094//------------------------------------------------------------//
2095//--- Writing snapshots                                    ---//
2096//------------------------------------------------------------//
2097
2098Char FP_buf[BUF_LEN];
2099
2100// XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here.
2101// Then change Cachegrind to use it too.
2102#define FP(format, args...) ({ \
2103   VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \
2104   FP_buf[BUF_LEN-1] = '\0';  /* Make sure the string is terminated. */ \
2105   VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \
2106})
2107
2108// Nb: uses a static buffer, each call trashes the last string returned.
2109static Char* make_perc(double x)
2110{
2111   static Char mbuf[32];
2112
2113   VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf);
2114   // XXX: this is bogus if the denominator was zero -- resulting string is
2115   // something like "0 --%")
2116   if (' ' == mbuf[0]) mbuf[0] = '0';
2117   return mbuf;
2118}
2119
2120static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str,
2121                            Int depth_str_len,
2122                            SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2123{
2124   Int   i, j, n_insig_children_sxpts;
2125   SXPt* child = NULL;
2126
2127   // Used for printing function names.  Is made static to keep it out
2128   // of the stack frame -- this function is recursive.  Obviously this
2129   // now means its contents are trashed across the recursive call.
2130   static Char ip_desc_array[BUF_LEN];
2131   Char* ip_desc = ip_desc_array;
2132
2133   switch (sxpt->tag) {
2134    case SigSXPt:
2135      // Print the SXPt itself.
2136      if (0 == depth) {
2137         if (clo_heap) {
2138            ip_desc =
2139               ( clo_pages_as_heap
2140               ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2141               : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2142               );
2143         } else {
2144            // XXX: --alloc-fns?
2145         }
2146      } else {
2147         // If it's main-or-below-main, we (if appropriate) ignore everything
2148         // below it by pretending it has no children.
2149         if ( ! VG_(clo_show_below_main) ) {
2150            Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2151            if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2152               sxpt->Sig.n_children = 0;
2153            }
2154         }
2155
2156         // We need the -1 to get the line number right, But I'm not sure why.
2157         ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN);
2158      }
2159
2160      // Do the non-ip_desc part first...
2161      FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2162
2163      // For ip_descs beginning with "0xABCD...:" addresses, we first
2164      // measure the length of the "0xabcd: " address at the start of the
2165      // ip_desc.
2166      j = 0;
2167      if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2168         j = 2;
2169         while (True) {
2170            if (ip_desc[j]) {
2171               if (':' == ip_desc[j]) break;
2172               j++;
2173            } else {
2174               tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2175            }
2176         }
2177      }
2178      // Nb: We treat this specially (ie. we don't use FP) so that if the
2179      // ip_desc is too long (eg. due to a long C++ function name), it'll
2180      // get truncated, but the '\n' is still there so its a valid file.
2181      // (At one point we were truncating without adding the '\n', which
2182      // caused bug #155929.)
2183      //
2184      // Also, we account for the length of the address in ip_desc when
2185      // truncating.  (The longest address we could have is 18 chars:  "0x"
2186      // plus 16 address digits.)  This ensures that the truncated function
2187      // name always has the same length, which makes truncation
2188      // deterministic and thus makes testing easier.
2189      tl_assert(j <= 18);
2190      VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc);
2191      FP_buf[BUF_LEN-18+j-5] = '.';    // "..." at the end make the
2192      FP_buf[BUF_LEN-18+j-4] = '.';    //   truncation more obvious.
2193      FP_buf[BUF_LEN-18+j-3] = '.';
2194      FP_buf[BUF_LEN-18+j-2] = '\n';   // The last char is '\n'.
2195      FP_buf[BUF_LEN-18+j-1] = '\0';   // The string is terminated.
2196      VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf));
2197
2198      // Indent.
2199      tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
2200      depth_str[depth+0] = ' ';
2201      depth_str[depth+1] = '\0';
2202
2203      // Sort SXPt's children by szB (reverse order:  biggest to smallest).
2204      // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2205      // two reasons.  First, if we do it during dup_XTree, it can get
2206      // expensive (eg. 15% of execution time for konqueror
2207      // startup/shutdown).  Second, this way we get the Insig SXPt (if one
2208      // is present) in its sorted position, not at the end.
2209      VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2210                 SXPt_revcmp_szB);
2211
2212      // Print the SXPt's children.  They should already be in sorted order.
2213      n_insig_children_sxpts = 0;
2214      for (i = 0; i < sxpt->Sig.n_children; i++) {
2215         child = sxpt->Sig.children[i];
2216
2217         if (InsigSXPt == child->tag)
2218            n_insig_children_sxpts++;
2219
2220         // Ok, print the child.  NB: contents of ip_desc_array will be
2221         // trashed by this recursive call.  Doesn't matter currently,
2222         // but worth noting.
2223         pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len,
2224            snapshot_heap_szB, snapshot_total_szB);
2225      }
2226
2227      // Unindent.
2228      depth_str[depth+0] = '\0';
2229      depth_str[depth+1] = '\0';
2230
2231      // There should be 0 or 1 Insig children SXPts.
2232      tl_assert(n_insig_children_sxpts <= 1);
2233      break;
2234
2235    case InsigSXPt: {
2236      Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2237      FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n",
2238         depth_str, sxpt->szB, sxpt->Insig.n_xpts, s,
2239         make_perc(clo_threshold));
2240      break;
2241    }
2242
2243    default:
2244      tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2245   }
2246}
2247
2248static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n)
2249{
2250   sanity_check_snapshot(snapshot);
2251
2252   FP("#-----------\n");
2253   FP("snapshot=%d\n", snapshot_n);
2254   FP("#-----------\n");
2255   FP("time=%lld\n",            snapshot->time);
2256   FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
2257   FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2258   FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
2259
2260   if (is_detailed_snapshot(snapshot)) {
2261      // Detailed snapshot -- print heap tree.
2262      Int   depth_str_len = clo_depth + 3;
2263      Char* depth_str = VG_(malloc)("ms.main.pps.1",
2264                                    sizeof(Char) * depth_str_len);
2265      SizeT snapshot_total_szB =
2266         snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2267      depth_str[0] = '\0';   // Initialise depth_str to "".
2268
2269      FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2270      pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str,
2271                       depth_str_len, snapshot->heap_szB,
2272                       snapshot_total_szB);
2273
2274      VG_(free)(depth_str);
2275
2276   } else {
2277      FP("heap_tree=empty\n");
2278   }
2279}
2280
2281static void write_snapshots_to_file(void)
2282{
2283   Int i, fd;
2284   SysRes sres;
2285
2286   // Setup output filename.  Nb: it's important to do this now, ie. as late
2287   // as possible.  If we do it at start-up and the program forks and the
2288   // output file format string contains a %p (pid) specifier, both the
2289   // parent and child will incorrectly write to the same file;  this
2290   // happened in 3.3.0.
2291   Char* massif_out_file =
2292      VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2293
2294   sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2295                                     VKI_S_IRUSR|VKI_S_IWUSR);
2296   if (sr_isError(sres)) {
2297      // If the file can't be opened for whatever reason (conflict
2298      // between multiple cachegrinded processes?), give up now.
2299      VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2300      VG_(umsg)("       ... so profiling results will be missing.\n");
2301      VG_(free)(massif_out_file);
2302      return;
2303   } else {
2304      fd = sr_Res(sres);
2305      VG_(free)(massif_out_file);
2306   }
2307
2308   // Print massif-specific options that were used.
2309   // XXX: is it worth having a "desc:" line?  Could just call it "options:"
2310   // -- this file format isn't as generic as Cachegrind's, so the
2311   // implied genericity of "desc:" is bogus.
2312   FP("desc:");
2313   for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2314      Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i);
2315      FP(" %s", arg);
2316   }
2317   if (0 == i) FP(" (none)");
2318   FP("\n");
2319
2320   // Print "cmd:" line.
2321   FP("cmd: ");
2322   if (VG_(args_the_exename)) {
2323      FP("%s", VG_(args_the_exename));
2324      for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2325         HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2326         if (arg)
2327            FP(" %s", arg);
2328      }
2329   } else {
2330      FP(" ???");
2331   }
2332   FP("\n");
2333
2334   FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2335
2336   for (i = 0; i < next_snapshot_i; i++) {
2337      Snapshot* snapshot = & snapshots[i];
2338      pp_snapshot(fd, snapshot, i);     // Detailed snapshot!
2339   }
2340}
2341
2342
2343//------------------------------------------------------------//
2344//--- Finalisation                                         ---//
2345//------------------------------------------------------------//
2346
2347static void ms_fini(Int exit_status)
2348{
2349   // Output.
2350   write_snapshots_to_file();
2351
2352   // Stats
2353   tl_assert(n_xpts > 0);  // always have alloc_xpt
2354   STATS("heap allocs:           %u\n", n_heap_allocs);
2355   STATS("heap reallocs:         %u\n", n_heap_reallocs);
2356   STATS("heap frees:            %u\n", n_heap_frees);
2357   STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
2358   STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
2359   STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2360   STATS("stack allocs:          %u\n", n_stack_allocs);
2361   STATS("stack frees:           %u\n", n_stack_frees);
2362   STATS("XPts:                  %u\n", n_xpts);
2363   STATS("top-XPts:              %u (%d%%)\n",
2364      alloc_xpt->n_children,
2365      ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2366   STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
2367   STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
2368   STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
2369   STATS("SXPt frees:            %u\n", n_sxpt_frees);
2370   STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
2371   STATS("real snapshots:        %u\n", n_real_snapshots);
2372   STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
2373   STATS("peak snapshots:        %u\n", n_peak_snapshots);
2374   STATS("cullings:              %u\n", n_cullings);
2375   STATS("XCon redos:            %u\n", n_XCon_redos);
2376}
2377
2378
2379//------------------------------------------------------------//
2380//--- Initialisation                                       ---//
2381//------------------------------------------------------------//
2382
2383static void ms_post_clo_init(void)
2384{
2385   Int i;
2386   Char* LD_PRELOAD_val;
2387   Char* s;
2388   Char* s2;
2389
2390   // Check options.
2391   if (clo_pages_as_heap) {
2392      if (clo_stacks) {
2393         VG_(fmsg_bad_option)(
2394            "--pages-as-heap=yes together with --stacks=yes", "");
2395      }
2396   }
2397   if (!clo_heap) {
2398      clo_pages_as_heap = False;
2399   }
2400
2401   // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
2402   // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2403   // platform-equivalent).  We replace it entirely with spaces because then
2404   // the linker doesn't complain (it does complain if we just change the name
2405   // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
2406   // before tool initialisation, so this seems the best way to do it.
2407   if (clo_pages_as_heap) {
2408      clo_heap_admin = 0;     // No heap admin on pages.
2409
2410      LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) );
2411      tl_assert(LD_PRELOAD_val);
2412
2413      // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2414      s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2415      tl_assert(s2);
2416
2417      // Now find the vgpreload_massif-$PLATFORM entry.
2418      s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2419      tl_assert(s2);
2420
2421      // Blank out everything to the previous ':', which must be there because
2422      // of the preceding vgpreload_core-$PLATFORM entry.
2423      for (s = s2; *s != ':'; s--) {
2424         *s = ' ';
2425      }
2426
2427      // Blank out everything to the end of the entry, which will be '\0' if
2428      // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2429      for (s = s2; *s != ':' && *s != '\0'; s++) {
2430         *s = ' ';
2431      }
2432   }
2433
2434   // Print alloc-fns and ignore-fns, if necessary.
2435   if (VG_(clo_verbosity) > 1) {
2436      VERB(1, "alloc-fns:\n");
2437      for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2438         Char** fn_ptr = VG_(indexXA)(alloc_fns, i);
2439         VERB(1, "  %s\n", *fn_ptr);
2440      }
2441
2442      VERB(1, "ignore-fns:\n");
2443      if (0 == VG_(sizeXA)(ignore_fns)) {
2444         VERB(1, "  <empty>\n");
2445      }
2446      for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2447         Char** fn_ptr = VG_(indexXA)(ignore_fns, i);
2448         VERB(1, "  %d: %s\n", i, *fn_ptr);
2449      }
2450   }
2451
2452   // Events to track.
2453   if (clo_stacks) {
2454      VG_(track_new_mem_stack)        ( new_mem_stack        );
2455      VG_(track_die_mem_stack)        ( die_mem_stack        );
2456      VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2457      VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2458   }
2459
2460   if (clo_pages_as_heap) {
2461      VG_(track_new_mem_startup) ( ms_new_mem_startup );
2462      VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
2463      VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
2464
2465      VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
2466
2467      VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
2468      VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
2469   }
2470
2471   // Initialise snapshot array, and sanity-check it.
2472   snapshots = VG_(malloc)("ms.main.mpoci.1",
2473                           sizeof(Snapshot) * clo_max_snapshots);
2474   // We don't want to do snapshot sanity checks here, because they're
2475   // currently uninitialised.
2476   for (i = 0; i < clo_max_snapshots; i++) {
2477      clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2478   }
2479   sanity_check_snapshots_array();
2480}
2481
2482static void ms_pre_clo_init(void)
2483{
2484   VG_(details_name)            ("Massif");
2485   VG_(details_version)         (NULL);
2486   VG_(details_description)     ("a heap profiler");
2487   VG_(details_copyright_author)(
2488      "Copyright (C) 2003-2010, and GNU GPL'd, by Nicholas Nethercote");
2489   VG_(details_bug_reports_to)  (VG_BUGS_TO);
2490
2491   // Basic functions.
2492   VG_(basic_tool_funcs)          (ms_post_clo_init,
2493                                   ms_instrument,
2494                                   ms_fini);
2495
2496   // Needs.
2497   VG_(needs_libc_freeres)();
2498   VG_(needs_command_line_options)(ms_process_cmd_line_option,
2499                                   ms_print_usage,
2500                                   ms_print_debug_usage);
2501   VG_(needs_client_requests)     (ms_handle_client_request);
2502   VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
2503                                   ms_expensive_sanity_check);
2504   VG_(needs_malloc_replacement)  (ms_malloc,
2505                                   ms___builtin_new,
2506                                   ms___builtin_vec_new,
2507                                   ms_memalign,
2508                                   ms_calloc,
2509                                   ms_free,
2510                                   ms___builtin_delete,
2511                                   ms___builtin_vec_delete,
2512                                   ms_realloc,
2513                                   ms_malloc_usable_size,
2514                                   0 );
2515
2516   // HP_Chunks.
2517   malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2518
2519   // Dummy node at top of the context structure.
2520   alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2521
2522   // Initialise alloc_fns and ignore_fns.
2523   init_alloc_fns();
2524   init_ignore_fns();
2525
2526   // Initialise args_for_massif.
2527   args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2528                                VG_(free), sizeof(HChar*));
2529}
2530
2531VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2532
2533//--------------------------------------------------------------------//
2534//--- end                                                          ---//
2535//--------------------------------------------------------------------//
2536