levinson.c revision e2e838afcf03e603a41a0455846eaf9614537c16
1/*
2 ** Copyright 2003-2010, VisualOn, Inc.
3 **
4 ** Licensed under the Apache License, Version 2.0 (the "License");
5 ** you may not use this file except in compliance with the License.
6 ** You may obtain a copy of the License at
7 **
8 **     http://www.apache.org/licenses/LICENSE-2.0
9 **
10 ** Unless required by applicable law or agreed to in writing, software
11 ** distributed under the License is distributed on an "AS IS" BASIS,
12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 ** See the License for the specific language governing permissions and
14 ** limitations under the License.
15 */
16
17/***********************************************************************
18*      File: levinson.c                                                *
19*                                                                      *
20*      Description:LEVINSON-DURBIN algorithm in double precision       *
21*                                                                      *
22************************************************************************/
23/*---------------------------------------------------------------------------*
24 *                         LEVINSON.C					     *
25 *---------------------------------------------------------------------------*
26 *                                                                           *
27 *      LEVINSON-DURBIN algorithm in double precision                        *
28 *                                                                           *
29 *                                                                           *
30 * Algorithm                                                                 *
31 *                                                                           *
32 *       R[i]    autocorrelations.                                           *
33 *       A[i]    filter coefficients.                                        *
34 *       K       reflection coefficients.                                    *
35 *       Alpha   prediction gain.                                            *
36 *                                                                           *
37 *       Initialization:                                                     *
38 *               A[0] = 1                                                    *
39 *               K    = -R[1]/R[0]                                           *
40 *               A[1] = K                                                    *
41 *               Alpha = R[0] * (1-K**2]                                     *
42 *                                                                           *
43 *       Do for  i = 2 to M                                                  *
44 *                                                                           *
45 *            S =  SUM ( R[j]*A[i-j] ,j=1,i-1 ) +  R[i]                      *
46 *                                                                           *
47 *            K = -S / Alpha                                                 *
48 *                                                                           *
49 *            An[j] = A[j] + K*A[i-j]   for j=1 to i-1                       *
50 *                                      where   An[i] = new A[i]             *
51 *            An[i]=K                                                        *
52 *                                                                           *
53 *            Alpha=Alpha * (1-K**2)                                         *
54 *                                                                           *
55 *       END                                                                 *
56 *                                                                           *
57 * Remarks on the dynamics of the calculations.                              *
58 *                                                                           *
59 *       The numbers used are in double precision in the following format :  *
60 *       A = AH <<16 + AL<<1.  AH and AL are 16 bit signed integers.         *
61 *       Since the LSB's also contain a sign bit, this format does not       *
62 *       correspond to standard 32 bit integers.  We use this format since   *
63 *       it allows fast execution of multiplications and divisions.          *
64 *                                                                           *
65 *       "DPF" will refer to this special format in the following text.      *
66 *       See oper_32b.c                                                      *
67 *                                                                           *
68 *       The R[i] were normalized in routine AUTO (hence, R[i] < 1.0).       *
69 *       The K[i] and Alpha are theoretically < 1.0.                         *
70 *       The A[i], for a sampling frequency of 8 kHz, are in practice        *
71 *       always inferior to 16.0.                                            *
72 *                                                                           *
73 *       These characteristics allow straigthforward fixed-point             *
74 *       implementation.  We choose to represent the parameters as           *
75 *       follows :                                                           *
76 *                                                                           *
77 *               R[i]    Q31   +- .99..                                      *
78 *               K[i]    Q31   +- .99..                                      *
79 *               Alpha   Normalized -> mantissa in Q31 plus exponent         *
80 *               A[i]    Q27   +- 15.999..                                   *
81 *                                                                           *
82 *       The additions are performed in 32 bit.  For the summation used      *
83 *       to calculate the K[i], we multiply numbers in Q31 by numbers        *
84 *       in Q27, with the result of the multiplications in Q27,              *
85 *       resulting in a dynamic of +- 16.  This is sufficient to avoid       *
86 *       overflow, since the final result of the summation is                *
87 *       necessarily < 1.0 as both the K[i] and Alpha are                    *
88 *       theoretically < 1.0.                                                *
89 *___________________________________________________________________________*/
90#include "typedef.h"
91#include "basic_op.h"
92#include "oper_32b.h"
93#include "acelp.h"
94
95#define M   16
96#define NC  (M/2)
97
98void Init_Levinson(
99		Word16 * mem                          /* output  :static memory (18 words) */
100		)
101{
102	Set_zero(mem, 18);                     /* old_A[0..M-1] = 0, old_rc[0..1] = 0 */
103	return;
104}
105
106
107void Levinson(
108		Word16 Rh[],                          /* (i)     : Rh[M+1] Vector of autocorrelations (msb) */
109		Word16 Rl[],                          /* (i)     : Rl[M+1] Vector of autocorrelations (lsb) */
110		Word16 A[],                           /* (o) Q12 : A[M]    LPC coefficients  (m = 16)       */
111		Word16 rc[],                          /* (o) Q15 : rc[M]   Reflection coefficients.         */
112		Word16 * mem                          /* (i/o)   :static memory (18 words)                  */
113	     )
114{
115	Word32 i, j;
116	Word16 hi, lo;
117	Word16 Kh, Kl;                         /* reflection coefficient; hi and lo           */
118	Word16 alp_h, alp_l, alp_exp;          /* Prediction gain; hi lo and exponent         */
119	Word16 Ah[M + 1], Al[M + 1];           /* LPC coef. in double prec.                   */
120	Word16 Anh[M + 1], Anl[M + 1];         /* LPC coef.for next iteration in double prec. */
121	Word32 t0, t1, t2;                     /* temporary variable                          */
122	Word16 *old_A, *old_rc;
123
124	/* Last A(z) for case of unstable filter */
125	old_A = mem;
126	old_rc = mem + M;
127
128	/* K = A[1] = -R[1] / R[0] */
129
130	t1 = ((Rh[1] << 16) + (Rl[1] << 1));   /* R[1] in Q31 */
131	t2 = L_abs(t1);                        /* abs R[1]         */
132	t0 = Div_32(t2, Rh[0], Rl[0]);         /* R[1]/R[0] in Q31 */
133	if (t1 > 0)
134		t0 = -t0;                          /* -R[1]/R[0]       */
135
136	Kh = t0 >> 16;
137	Kl = (t0 & 0xffff)>>1;
138	rc[0] = Kh;
139	t0 = (t0 >> 4);                        /* A[1] in Q27      */
140
141	Ah[1] = t0 >> 16;
142	Al[1] = (t0 & 0xffff)>>1;
143
144	/* Alpha = R[0] * (1-K**2) */
145	t0 = Mpy_32(Kh, Kl, Kh, Kl);           /* K*K      in Q31 */
146	t0 = L_abs(t0);                        /* Some case <0 !! */
147	t0 = vo_L_sub((Word32) 0x7fffffffL, t0);  /* 1 - K*K  in Q31 */
148
149	hi = t0 >> 16;
150	lo = (t0 & 0xffff)>>1;
151
152	t0 = Mpy_32(Rh[0], Rl[0], hi, lo);     /* Alpha in Q31    */
153
154	/* Normalize Alpha */
155	alp_exp = norm_l(t0);
156	t0 = (t0 << alp_exp);
157
158	alp_h = t0 >> 16;
159	alp_l = (t0 & 0xffff)>>1;
160	/*--------------------------------------*
161	 * ITERATIONS  I=2 to M                 *
162	 *--------------------------------------*/
163	for (i = 2; i <= M; i++)
164	{
165		/* t0 = SUM ( R[j]*A[i-j] ,j=1,i-1 ) +  R[i] */
166		t0 = 0;
167		for (j = 1; j < i; j++)
168			t0 = vo_L_add(t0, Mpy_32(Rh[j], Rl[j], Ah[i - j], Al[i - j]));
169
170		t0 = t0 << 4;                 /* result in Q27 -> convert to Q31 */
171		/* No overflow possible            */
172		t1 = ((Rh[i] << 16) + (Rl[i] << 1));
173		t0 = vo_L_add(t0, t1);                /* add R[i] in Q31                 */
174
175		/* K = -t0 / Alpha */
176		t1 = L_abs(t0);
177		t2 = Div_32(t1, alp_h, alp_l);     /* abs(t0)/Alpha                   */
178		if (t0 > 0)
179			t2 = -t2;                   /* K =-t0/Alpha                    */
180		t2 = (t2 << alp_exp);           /* denormalize; compare to Alpha   */
181
182		Kh = t2 >> 16;
183		Kl = (t2 & 0xffff)>>1;
184
185		rc[i - 1] = Kh;
186		/* Test for unstable filter. If unstable keep old A(z) */
187		if (abs_s(Kh) > 32750)
188		{
189			A[0] = 4096;                    /* Ai[0] not stored (always 1.0) */
190			for (j = 0; j < M; j++)
191			{
192				A[j + 1] = old_A[j];
193			}
194			rc[0] = old_rc[0];             /* only two rc coefficients are needed */
195			rc[1] = old_rc[1];
196			return;
197		}
198		/*------------------------------------------*
199		 *  Compute new LPC coeff. -> An[i]         *
200		 *  An[j]= A[j] + K*A[i-j]     , j=1 to i-1 *
201		 *  An[i]= K                                *
202		 *------------------------------------------*/
203		for (j = 1; j < i; j++)
204		{
205			t0 = Mpy_32(Kh, Kl, Ah[i - j], Al[i - j]);
206			t0 = vo_L_add(t0, ((Ah[j] << 16) + (Al[j] << 1)));
207			Anh[j] = t0 >> 16;
208			Anl[j] = (t0 & 0xffff)>>1;
209		}
210		t2 = (t2 >> 4);                 /* t2 = K in Q31 ->convert to Q27  */
211
212		VO_L_Extract(t2, &Anh[i], &Anl[i]);   /* An[i] in Q27                    */
213
214		/* Alpha = Alpha * (1-K**2) */
215		t0 = Mpy_32(Kh, Kl, Kh, Kl);               /* K*K      in Q31 */
216		t0 = L_abs(t0);                            /* Some case <0 !! */
217		t0 = vo_L_sub((Word32) 0x7fffffffL, t0);   /* 1 - K*K  in Q31 */
218		hi = t0 >> 16;
219		lo = (t0 & 0xffff)>>1;
220		t0 = Mpy_32(alp_h, alp_l, hi, lo); /* Alpha in Q31    */
221
222		/* Normalize Alpha */
223		j = norm_l(t0);
224		t0 = (t0 << j);
225		alp_h = t0 >> 16;
226		alp_l = (t0 & 0xffff)>>1;
227		alp_exp += j;         /* Add normalization to alp_exp */
228
229		/* A[j] = An[j] */
230		for (j = 1; j <= i; j++)
231		{
232			Ah[j] = Anh[j];
233			Al[j] = Anl[j];
234		}
235	}
236	/* Truncate A[i] in Q27 to Q12 with rounding */
237	A[0] = 4096;
238	for (i = 1; i <= M; i++)
239	{
240		t0 = (Ah[i] << 16) + (Al[i] << 1);
241		old_A[i - 1] = A[i] = vo_round((t0 << 1));
242	}
243	old_rc[0] = rc[0];
244	old_rc[1] = rc[1];
245
246	return;
247}
248
249
250
251