1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResampler"
18//#define LOG_NDEBUG 0
19
20#include <stdint.h>
21#include <stdlib.h>
22#include <sys/types.h>
23#include <cutils/log.h>
24#include <cutils/properties.h>
25#include <audio_utils/primitives.h>
26#include "AudioResampler.h"
27#include "AudioResamplerSinc.h"
28#include "AudioResamplerCubic.h"
29#include "AudioResamplerDyn.h"
30
31#ifdef __arm__
32#include <machine/cpu-features.h>
33#endif
34
35namespace android {
36
37#ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option
38    #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
39#endif // __ARM_HAVE_HALFWORD_MULTIPLY
40// ----------------------------------------------------------------------------
41
42class AudioResamplerOrder1 : public AudioResampler {
43public:
44    AudioResamplerOrder1(int inChannelCount, int32_t sampleRate) :
45        AudioResampler(inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) {
46    }
47    virtual void resample(int32_t* out, size_t outFrameCount,
48            AudioBufferProvider* provider);
49private:
50    // number of bits used in interpolation multiply - 15 bits avoids overflow
51    static const int kNumInterpBits = 15;
52
53    // bits to shift the phase fraction down to avoid overflow
54    static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
55
56    void init() {}
57    void resampleMono16(int32_t* out, size_t outFrameCount,
58            AudioBufferProvider* provider);
59    void resampleStereo16(int32_t* out, size_t outFrameCount,
60            AudioBufferProvider* provider);
61#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
62    void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
63            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
64            uint32_t &phaseFraction, uint32_t phaseIncrement);
65    void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
66            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
67            uint32_t &phaseFraction, uint32_t phaseIncrement);
68#endif  // ASM_ARM_RESAMP1
69
70    static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
71        return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
72    }
73    static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
74        *frac += inc;
75        *index += (size_t)(*frac >> kNumPhaseBits);
76        *frac &= kPhaseMask;
77    }
78    int mX0L;
79    int mX0R;
80};
81
82/*static*/
83const double AudioResampler::kPhaseMultiplier = 1L << AudioResampler::kNumPhaseBits;
84
85bool AudioResampler::qualityIsSupported(src_quality quality)
86{
87    switch (quality) {
88    case DEFAULT_QUALITY:
89    case LOW_QUALITY:
90    case MED_QUALITY:
91    case HIGH_QUALITY:
92    case VERY_HIGH_QUALITY:
93    case DYN_LOW_QUALITY:
94    case DYN_MED_QUALITY:
95    case DYN_HIGH_QUALITY:
96        return true;
97    default:
98        return false;
99    }
100}
101
102// ----------------------------------------------------------------------------
103
104static pthread_once_t once_control = PTHREAD_ONCE_INIT;
105static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY;
106
107void AudioResampler::init_routine()
108{
109    char value[PROPERTY_VALUE_MAX];
110    if (property_get("af.resampler.quality", value, NULL) > 0) {
111        char *endptr;
112        unsigned long l = strtoul(value, &endptr, 0);
113        if (*endptr == '\0') {
114            defaultQuality = (src_quality) l;
115            ALOGD("forcing AudioResampler quality to %d", defaultQuality);
116            if (defaultQuality < DEFAULT_QUALITY || defaultQuality > DYN_HIGH_QUALITY) {
117                defaultQuality = DEFAULT_QUALITY;
118            }
119        }
120    }
121}
122
123uint32_t AudioResampler::qualityMHz(src_quality quality)
124{
125    switch (quality) {
126    default:
127    case DEFAULT_QUALITY:
128    case LOW_QUALITY:
129        return 3;
130    case MED_QUALITY:
131        return 6;
132    case HIGH_QUALITY:
133        return 20;
134    case VERY_HIGH_QUALITY:
135        return 34;
136    case DYN_LOW_QUALITY:
137        return 4;
138    case DYN_MED_QUALITY:
139        return 6;
140    case DYN_HIGH_QUALITY:
141        return 12;
142    }
143}
144
145static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable
146static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
147static uint32_t currentMHz = 0;
148
149AudioResampler* AudioResampler::create(audio_format_t format, int inChannelCount,
150        int32_t sampleRate, src_quality quality) {
151
152    bool atFinalQuality;
153    if (quality == DEFAULT_QUALITY) {
154        // read the resampler default quality property the first time it is needed
155        int ok = pthread_once(&once_control, init_routine);
156        if (ok != 0) {
157            ALOGE("%s pthread_once failed: %d", __func__, ok);
158        }
159        quality = defaultQuality;
160        atFinalQuality = false;
161    } else {
162        atFinalQuality = true;
163    }
164
165    /* if the caller requests DEFAULT_QUALITY and af.resampler.property
166     * has not been set, the target resampler quality is set to DYN_MED_QUALITY,
167     * and allowed to "throttle" down to DYN_LOW_QUALITY if necessary
168     * due to estimated CPU load of having too many active resamplers
169     * (the code below the if).
170     */
171    if (quality == DEFAULT_QUALITY) {
172        quality = DYN_MED_QUALITY;
173    }
174
175    // naive implementation of CPU load throttling doesn't account for whether resampler is active
176    pthread_mutex_lock(&mutex);
177    for (;;) {
178        uint32_t deltaMHz = qualityMHz(quality);
179        uint32_t newMHz = currentMHz + deltaMHz;
180        if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) {
181            ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d",
182                    currentMHz, newMHz, deltaMHz, quality);
183            currentMHz = newMHz;
184            break;
185        }
186        // not enough CPU available for proposed quality level, so try next lowest level
187        switch (quality) {
188        default:
189        case LOW_QUALITY:
190            atFinalQuality = true;
191            break;
192        case MED_QUALITY:
193            quality = LOW_QUALITY;
194            break;
195        case HIGH_QUALITY:
196            quality = MED_QUALITY;
197            break;
198        case VERY_HIGH_QUALITY:
199            quality = HIGH_QUALITY;
200            break;
201        case DYN_LOW_QUALITY:
202            atFinalQuality = true;
203            break;
204        case DYN_MED_QUALITY:
205            quality = DYN_LOW_QUALITY;
206            break;
207        case DYN_HIGH_QUALITY:
208            quality = DYN_MED_QUALITY;
209            break;
210        }
211    }
212    pthread_mutex_unlock(&mutex);
213
214    AudioResampler* resampler;
215
216    switch (quality) {
217    default:
218    case LOW_QUALITY:
219        ALOGV("Create linear Resampler");
220        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
221        resampler = new AudioResamplerOrder1(inChannelCount, sampleRate);
222        break;
223    case MED_QUALITY:
224        ALOGV("Create cubic Resampler");
225        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
226        resampler = new AudioResamplerCubic(inChannelCount, sampleRate);
227        break;
228    case HIGH_QUALITY:
229        ALOGV("Create HIGH_QUALITY sinc Resampler");
230        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
231        resampler = new AudioResamplerSinc(inChannelCount, sampleRate);
232        break;
233    case VERY_HIGH_QUALITY:
234        ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality);
235        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
236        resampler = new AudioResamplerSinc(inChannelCount, sampleRate, quality);
237        break;
238    case DYN_LOW_QUALITY:
239    case DYN_MED_QUALITY:
240    case DYN_HIGH_QUALITY:
241        ALOGV("Create dynamic Resampler = %d", quality);
242        if (format == AUDIO_FORMAT_PCM_FLOAT) {
243            resampler = new AudioResamplerDyn<float, float, float>(inChannelCount,
244                    sampleRate, quality);
245        } else {
246            LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
247            if (quality == DYN_HIGH_QUALITY) {
248                resampler = new AudioResamplerDyn<int32_t, int16_t, int32_t>(inChannelCount,
249                        sampleRate, quality);
250            } else {
251                resampler = new AudioResamplerDyn<int16_t, int16_t, int32_t>(inChannelCount,
252                        sampleRate, quality);
253            }
254        }
255        break;
256    }
257
258    // initialize resampler
259    resampler->init();
260    return resampler;
261}
262
263AudioResampler::AudioResampler(int inChannelCount,
264        int32_t sampleRate, src_quality quality) :
265        mChannelCount(inChannelCount),
266        mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
267        mPhaseFraction(0), mLocalTimeFreq(0),
268        mPTS(AudioBufferProvider::kInvalidPTS), mQuality(quality) {
269
270    const int maxChannels = quality < DYN_LOW_QUALITY ? 2 : 8;
271    if (inChannelCount < 1
272            || inChannelCount > maxChannels) {
273        LOG_ALWAYS_FATAL("Unsupported sample format %d quality %d channels",
274                quality, inChannelCount);
275    }
276    if (sampleRate <= 0) {
277        LOG_ALWAYS_FATAL("Unsupported sample rate %d Hz", sampleRate);
278    }
279
280    // initialize common members
281    mVolume[0] = mVolume[1] = 0;
282    mBuffer.frameCount = 0;
283}
284
285AudioResampler::~AudioResampler() {
286    pthread_mutex_lock(&mutex);
287    src_quality quality = getQuality();
288    uint32_t deltaMHz = qualityMHz(quality);
289    int32_t newMHz = currentMHz - deltaMHz;
290    ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d",
291            currentMHz, newMHz, deltaMHz, quality);
292    LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz);
293    currentMHz = newMHz;
294    pthread_mutex_unlock(&mutex);
295}
296
297void AudioResampler::setSampleRate(int32_t inSampleRate) {
298    mInSampleRate = inSampleRate;
299    mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
300}
301
302void AudioResampler::setVolume(float left, float right) {
303    // TODO: Implement anti-zipper filter
304    // convert to U4.12 for internal integer use (round down)
305    // integer volume values are clamped to 0 to UNITY_GAIN.
306    mVolume[0] = u4_12_from_float(clampFloatVol(left));
307    mVolume[1] = u4_12_from_float(clampFloatVol(right));
308}
309
310void AudioResampler::setLocalTimeFreq(uint64_t freq) {
311    mLocalTimeFreq = freq;
312}
313
314void AudioResampler::setPTS(int64_t pts) {
315    mPTS = pts;
316}
317
318int64_t AudioResampler::calculateOutputPTS(int outputFrameIndex) {
319
320    if (mPTS == AudioBufferProvider::kInvalidPTS) {
321        return AudioBufferProvider::kInvalidPTS;
322    } else {
323        return mPTS + ((outputFrameIndex * mLocalTimeFreq) / mSampleRate);
324    }
325}
326
327void AudioResampler::reset() {
328    mInputIndex = 0;
329    mPhaseFraction = 0;
330    mBuffer.frameCount = 0;
331}
332
333// ----------------------------------------------------------------------------
334
335void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
336        AudioBufferProvider* provider) {
337
338    // should never happen, but we overflow if it does
339    // ALOG_ASSERT(outFrameCount < 32767);
340
341    // select the appropriate resampler
342    switch (mChannelCount) {
343    case 1:
344        resampleMono16(out, outFrameCount, provider);
345        break;
346    case 2:
347        resampleStereo16(out, outFrameCount, provider);
348        break;
349    }
350}
351
352void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
353        AudioBufferProvider* provider) {
354
355    int32_t vl = mVolume[0];
356    int32_t vr = mVolume[1];
357
358    size_t inputIndex = mInputIndex;
359    uint32_t phaseFraction = mPhaseFraction;
360    uint32_t phaseIncrement = mPhaseIncrement;
361    size_t outputIndex = 0;
362    size_t outputSampleCount = outFrameCount * 2;
363    size_t inFrameCount = getInFrameCountRequired(outFrameCount);
364
365    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
366    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
367
368    while (outputIndex < outputSampleCount) {
369
370        // buffer is empty, fetch a new one
371        while (mBuffer.frameCount == 0) {
372            mBuffer.frameCount = inFrameCount;
373            provider->getNextBuffer(&mBuffer,
374                                    calculateOutputPTS(outputIndex / 2));
375            if (mBuffer.raw == NULL) {
376                goto resampleStereo16_exit;
377            }
378
379            // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
380            if (mBuffer.frameCount > inputIndex) break;
381
382            inputIndex -= mBuffer.frameCount;
383            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
384            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
385            provider->releaseBuffer(&mBuffer);
386            // mBuffer.frameCount == 0 now so we reload a new buffer
387        }
388
389        int16_t *in = mBuffer.i16;
390
391        // handle boundary case
392        while (inputIndex == 0) {
393            // ALOGE("boundary case");
394            out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
395            out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
396            Advance(&inputIndex, &phaseFraction, phaseIncrement);
397            if (outputIndex == outputSampleCount) {
398                break;
399            }
400        }
401
402        // process input samples
403        // ALOGE("general case");
404
405#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
406        if (inputIndex + 2 < mBuffer.frameCount) {
407            int32_t* maxOutPt;
408            int32_t maxInIdx;
409
410            maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop
411            maxInIdx = mBuffer.frameCount - 2;
412            AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
413                    phaseFraction, phaseIncrement);
414        }
415#endif  // ASM_ARM_RESAMP1
416
417        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
418            out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
419                    in[inputIndex*2], phaseFraction);
420            out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
421                    in[inputIndex*2+1], phaseFraction);
422            Advance(&inputIndex, &phaseFraction, phaseIncrement);
423        }
424
425        // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
426
427        // if done with buffer, save samples
428        if (inputIndex >= mBuffer.frameCount) {
429            inputIndex -= mBuffer.frameCount;
430
431            // ALOGE("buffer done, new input index %d", inputIndex);
432
433            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
434            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
435            provider->releaseBuffer(&mBuffer);
436
437            // verify that the releaseBuffer resets the buffer frameCount
438            // ALOG_ASSERT(mBuffer.frameCount == 0);
439        }
440    }
441
442    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
443
444resampleStereo16_exit:
445    // save state
446    mInputIndex = inputIndex;
447    mPhaseFraction = phaseFraction;
448}
449
450void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
451        AudioBufferProvider* provider) {
452
453    int32_t vl = mVolume[0];
454    int32_t vr = mVolume[1];
455
456    size_t inputIndex = mInputIndex;
457    uint32_t phaseFraction = mPhaseFraction;
458    uint32_t phaseIncrement = mPhaseIncrement;
459    size_t outputIndex = 0;
460    size_t outputSampleCount = outFrameCount * 2;
461    size_t inFrameCount = getInFrameCountRequired(outFrameCount);
462
463    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
464    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
465    while (outputIndex < outputSampleCount) {
466        // buffer is empty, fetch a new one
467        while (mBuffer.frameCount == 0) {
468            mBuffer.frameCount = inFrameCount;
469            provider->getNextBuffer(&mBuffer,
470                                    calculateOutputPTS(outputIndex / 2));
471            if (mBuffer.raw == NULL) {
472                mInputIndex = inputIndex;
473                mPhaseFraction = phaseFraction;
474                goto resampleMono16_exit;
475            }
476            // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
477            if (mBuffer.frameCount >  inputIndex) break;
478
479            inputIndex -= mBuffer.frameCount;
480            mX0L = mBuffer.i16[mBuffer.frameCount-1];
481            provider->releaseBuffer(&mBuffer);
482            // mBuffer.frameCount == 0 now so we reload a new buffer
483        }
484        int16_t *in = mBuffer.i16;
485
486        // handle boundary case
487        while (inputIndex == 0) {
488            // ALOGE("boundary case");
489            int32_t sample = Interp(mX0L, in[0], phaseFraction);
490            out[outputIndex++] += vl * sample;
491            out[outputIndex++] += vr * sample;
492            Advance(&inputIndex, &phaseFraction, phaseIncrement);
493            if (outputIndex == outputSampleCount) {
494                break;
495            }
496        }
497
498        // process input samples
499        // ALOGE("general case");
500
501#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
502        if (inputIndex + 2 < mBuffer.frameCount) {
503            int32_t* maxOutPt;
504            int32_t maxInIdx;
505
506            maxOutPt = out + (outputSampleCount - 2);
507            maxInIdx = (int32_t)mBuffer.frameCount - 2;
508                AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
509                        phaseFraction, phaseIncrement);
510        }
511#endif  // ASM_ARM_RESAMP1
512
513        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
514            int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
515                    phaseFraction);
516            out[outputIndex++] += vl * sample;
517            out[outputIndex++] += vr * sample;
518            Advance(&inputIndex, &phaseFraction, phaseIncrement);
519        }
520
521
522        // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
523
524        // if done with buffer, save samples
525        if (inputIndex >= mBuffer.frameCount) {
526            inputIndex -= mBuffer.frameCount;
527
528            // ALOGE("buffer done, new input index %d", inputIndex);
529
530            mX0L = mBuffer.i16[mBuffer.frameCount-1];
531            provider->releaseBuffer(&mBuffer);
532
533            // verify that the releaseBuffer resets the buffer frameCount
534            // ALOG_ASSERT(mBuffer.frameCount == 0);
535        }
536    }
537
538    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
539
540resampleMono16_exit:
541    // save state
542    mInputIndex = inputIndex;
543    mPhaseFraction = phaseFraction;
544}
545
546#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
547
548/*******************************************************************
549*
550*   AsmMono16Loop
551*   asm optimized monotonic loop version; one loop is 2 frames
552*   Input:
553*       in : pointer on input samples
554*       maxOutPt : pointer on first not filled
555*       maxInIdx : index on first not used
556*       outputIndex : pointer on current output index
557*       out : pointer on output buffer
558*       inputIndex : pointer on current input index
559*       vl, vr : left and right gain
560*       phaseFraction : pointer on current phase fraction
561*       phaseIncrement
562*   Ouput:
563*       outputIndex :
564*       out : updated buffer
565*       inputIndex : index of next to use
566*       phaseFraction : phase fraction for next interpolation
567*
568*******************************************************************/
569__attribute__((noinline))
570void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
571            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
572            uint32_t &phaseFraction, uint32_t phaseIncrement)
573{
574    (void)maxOutPt; // remove unused parameter warnings
575    (void)maxInIdx;
576    (void)outputIndex;
577    (void)out;
578    (void)inputIndex;
579    (void)vl;
580    (void)vr;
581    (void)phaseFraction;
582    (void)phaseIncrement;
583    (void)in;
584#define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex)
585
586    asm(
587        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
588        // get parameters
589        "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
590        "   ldr r6, [r6]\n"                         // phaseFraction
591        "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
592        "   ldr r7, [r7]\n"                         // inputIndex
593        "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out
594        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
595        "   ldr r0, [r0]\n"                         // outputIndex
596        "   add r8, r8, r0, asl #2\n"               // curOut
597        "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement
598        "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl
599        "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr
600
601        // r0 pin, x0, Samp
602
603        // r1 in
604        // r2 maxOutPt
605        // r3 maxInIdx
606
607        // r4 x1, i1, i3, Out1
608        // r5 out0
609
610        // r6 frac
611        // r7 inputIndex
612        // r8 curOut
613
614        // r9 inc
615        // r10 vl
616        // r11 vr
617
618        // r12
619        // r13 sp
620        // r14
621
622        // the following loop works on 2 frames
623
624        "1:\n"
625        "   cmp r8, r2\n"                   // curOut - maxCurOut
626        "   bcs 2f\n"
627
628#define MO_ONE_FRAME \
629    "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\
630    "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\
631    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
632    "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\
633    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
634    "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\
635    "   mov r4, r4, lsl #2\n"           /* <<2 */\
636    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
637    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
638    "   add r0, r0, r4\n"               /* x0 - (..) */\
639    "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\
640    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
641    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
642    "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\
643    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\
644    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */
645
646        MO_ONE_FRAME    // frame 1
647        MO_ONE_FRAME    // frame 2
648
649        "   cmp r7, r3\n"                   // inputIndex - maxInIdx
650        "   bcc 1b\n"
651        "2:\n"
652
653        "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ...
654        // save modified values
655        "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
656        "   str r6, [r0]\n"                         // phaseFraction
657        "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
658        "   str r7, [r0]\n"                         // inputIndex
659        "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out
660        "   sub r8, r0\n"                           // curOut - out
661        "   asr r8, #2\n"                           // new outputIndex
662        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
663        "   str r8, [r0]\n"                         // save outputIndex
664
665        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
666    );
667}
668
669/*******************************************************************
670*
671*   AsmStereo16Loop
672*   asm optimized stereo loop version; one loop is 2 frames
673*   Input:
674*       in : pointer on input samples
675*       maxOutPt : pointer on first not filled
676*       maxInIdx : index on first not used
677*       outputIndex : pointer on current output index
678*       out : pointer on output buffer
679*       inputIndex : pointer on current input index
680*       vl, vr : left and right gain
681*       phaseFraction : pointer on current phase fraction
682*       phaseIncrement
683*   Ouput:
684*       outputIndex :
685*       out : updated buffer
686*       inputIndex : index of next to use
687*       phaseFraction : phase fraction for next interpolation
688*
689*******************************************************************/
690__attribute__((noinline))
691void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
692            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
693            uint32_t &phaseFraction, uint32_t phaseIncrement)
694{
695    (void)maxOutPt; // remove unused parameter warnings
696    (void)maxInIdx;
697    (void)outputIndex;
698    (void)out;
699    (void)inputIndex;
700    (void)vl;
701    (void)vr;
702    (void)phaseFraction;
703    (void)phaseIncrement;
704    (void)in;
705#define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex)
706    asm(
707        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
708        // get parameters
709        "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
710        "   ldr r6, [r6]\n"                         // phaseFraction
711        "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
712        "   ldr r7, [r7]\n"                         // inputIndex
713        "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out
714        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
715        "   ldr r0, [r0]\n"                         // outputIndex
716        "   add r8, r8, r0, asl #2\n"               // curOut
717        "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement
718        "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl
719        "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr
720
721        // r0 pin, x0, Samp
722
723        // r1 in
724        // r2 maxOutPt
725        // r3 maxInIdx
726
727        // r4 x1, i1, i3, out1
728        // r5 out0
729
730        // r6 frac
731        // r7 inputIndex
732        // r8 curOut
733
734        // r9 inc
735        // r10 vl
736        // r11 vr
737
738        // r12 temporary
739        // r13 sp
740        // r14
741
742        "3:\n"
743        "   cmp r8, r2\n"                   // curOut - maxCurOut
744        "   bcs 4f\n"
745
746#define ST_ONE_FRAME \
747    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
748\
749    "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\
750\
751    "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\
752    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
753    "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\
754    "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\
755    "   mov r4, r4, lsl #2\n"           /* <<2 */\
756    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
757    "   add r12, r12, r4\n"             /* x0 - (..) */\
758    "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\
759    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
760    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
761\
762    "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\
763    "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\
764    "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\
765    "   mov r12, r12, lsl #2\n"         /* <<2 */\
766    "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\
767    "   add r12, r0, r12\n"             /* x0 - (..) */\
768    "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\
769    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\
770\
771    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
772    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */
773
774    ST_ONE_FRAME    // frame 1
775    ST_ONE_FRAME    // frame 1
776
777        "   cmp r7, r3\n"                       // inputIndex - maxInIdx
778        "   bcc 3b\n"
779        "4:\n"
780
781        "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ...
782        // save modified values
783        "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
784        "   str r6, [r0]\n"                         // phaseFraction
785        "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
786        "   str r7, [r0]\n"                         // inputIndex
787        "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out
788        "   sub r8, r0\n"                           // curOut - out
789        "   asr r8, #2\n"                           // new outputIndex
790        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
791        "   str r8, [r0]\n"                         // save outputIndex
792
793        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
794    );
795}
796
797#endif  // ASM_ARM_RESAMP1
798
799
800// ----------------------------------------------------------------------------
801
802} // namespace android
803