AudioResampler.cpp revision 3348e36c51e91e78020bcc6578eda83d97c31bec
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResampler"
18//#define LOG_NDEBUG 0
19
20#include <stdint.h>
21#include <stdlib.h>
22#include <sys/types.h>
23#include <cutils/log.h>
24#include <cutils/properties.h>
25#include "AudioResampler.h"
26#include "AudioResamplerSinc.h"
27#include "AudioResamplerCubic.h"
28#include "AudioResamplerDyn.h"
29
30#ifdef __arm__
31#include <machine/cpu-features.h>
32#endif
33
34namespace android {
35
36#ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option
37    #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
38#endif // __ARM_HAVE_HALFWORD_MULTIPLY
39// ----------------------------------------------------------------------------
40
41class AudioResamplerOrder1 : public AudioResampler {
42public:
43    AudioResamplerOrder1(int inChannelCount, int32_t sampleRate) :
44        AudioResampler(inChannelCount, sampleRate, LOW_QUALITY), mX0L(0), mX0R(0) {
45    }
46    virtual void resample(int32_t* out, size_t outFrameCount,
47            AudioBufferProvider* provider);
48private:
49    // number of bits used in interpolation multiply - 15 bits avoids overflow
50    static const int kNumInterpBits = 15;
51
52    // bits to shift the phase fraction down to avoid overflow
53    static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
54
55    void init() {}
56    void resampleMono16(int32_t* out, size_t outFrameCount,
57            AudioBufferProvider* provider);
58    void resampleStereo16(int32_t* out, size_t outFrameCount,
59            AudioBufferProvider* provider);
60#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
61    void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
62            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
63            uint32_t &phaseFraction, uint32_t phaseIncrement);
64    void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
65            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
66            uint32_t &phaseFraction, uint32_t phaseIncrement);
67#endif  // ASM_ARM_RESAMP1
68
69    static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
70        return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
71    }
72    static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
73        *frac += inc;
74        *index += (size_t)(*frac >> kNumPhaseBits);
75        *frac &= kPhaseMask;
76    }
77    int mX0L;
78    int mX0R;
79};
80
81/*static*/
82const double AudioResampler::kPhaseMultiplier = 1L << AudioResampler::kNumPhaseBits;
83
84bool AudioResampler::qualityIsSupported(src_quality quality)
85{
86    switch (quality) {
87    case DEFAULT_QUALITY:
88    case LOW_QUALITY:
89    case MED_QUALITY:
90    case HIGH_QUALITY:
91    case VERY_HIGH_QUALITY:
92    case DYN_LOW_QUALITY:
93    case DYN_MED_QUALITY:
94    case DYN_HIGH_QUALITY:
95        return true;
96    default:
97        return false;
98    }
99}
100
101// ----------------------------------------------------------------------------
102
103static pthread_once_t once_control = PTHREAD_ONCE_INIT;
104static AudioResampler::src_quality defaultQuality = AudioResampler::DEFAULT_QUALITY;
105
106void AudioResampler::init_routine()
107{
108    char value[PROPERTY_VALUE_MAX];
109    if (property_get("af.resampler.quality", value, NULL) > 0) {
110        char *endptr;
111        unsigned long l = strtoul(value, &endptr, 0);
112        if (*endptr == '\0') {
113            defaultQuality = (src_quality) l;
114            ALOGD("forcing AudioResampler quality to %d", defaultQuality);
115            if (defaultQuality < DEFAULT_QUALITY || defaultQuality > DYN_HIGH_QUALITY) {
116                defaultQuality = DEFAULT_QUALITY;
117            }
118        }
119    }
120}
121
122uint32_t AudioResampler::qualityMHz(src_quality quality)
123{
124    switch (quality) {
125    default:
126    case DEFAULT_QUALITY:
127    case LOW_QUALITY:
128        return 3;
129    case MED_QUALITY:
130        return 6;
131    case HIGH_QUALITY:
132        return 20;
133    case VERY_HIGH_QUALITY:
134        return 34;
135    case DYN_LOW_QUALITY:
136        return 4;
137    case DYN_MED_QUALITY:
138        return 6;
139    case DYN_HIGH_QUALITY:
140        return 12;
141    }
142}
143
144static const uint32_t maxMHz = 130; // an arbitrary number that permits 3 VHQ, should be tunable
145static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
146static uint32_t currentMHz = 0;
147
148AudioResampler* AudioResampler::create(audio_format_t format, int inChannelCount,
149        int32_t sampleRate, src_quality quality) {
150
151    bool atFinalQuality;
152    if (quality == DEFAULT_QUALITY) {
153        // read the resampler default quality property the first time it is needed
154        int ok = pthread_once(&once_control, init_routine);
155        if (ok != 0) {
156            ALOGE("%s pthread_once failed: %d", __func__, ok);
157        }
158        quality = defaultQuality;
159        atFinalQuality = false;
160    } else {
161        atFinalQuality = true;
162    }
163
164    /* if the caller requests DEFAULT_QUALITY and af.resampler.property
165     * has not been set, the target resampler quality is set to DYN_MED_QUALITY,
166     * and allowed to "throttle" down to DYN_LOW_QUALITY if necessary
167     * due to estimated CPU load of having too many active resamplers
168     * (the code below the if).
169     */
170    if (quality == DEFAULT_QUALITY) {
171        quality = DYN_MED_QUALITY;
172    }
173
174    // naive implementation of CPU load throttling doesn't account for whether resampler is active
175    pthread_mutex_lock(&mutex);
176    for (;;) {
177        uint32_t deltaMHz = qualityMHz(quality);
178        uint32_t newMHz = currentMHz + deltaMHz;
179        if ((qualityIsSupported(quality) && newMHz <= maxMHz) || atFinalQuality) {
180            ALOGV("resampler load %u -> %u MHz due to delta +%u MHz from quality %d",
181                    currentMHz, newMHz, deltaMHz, quality);
182            currentMHz = newMHz;
183            break;
184        }
185        // not enough CPU available for proposed quality level, so try next lowest level
186        switch (quality) {
187        default:
188        case LOW_QUALITY:
189            atFinalQuality = true;
190            break;
191        case MED_QUALITY:
192            quality = LOW_QUALITY;
193            break;
194        case HIGH_QUALITY:
195            quality = MED_QUALITY;
196            break;
197        case VERY_HIGH_QUALITY:
198            quality = HIGH_QUALITY;
199            break;
200        case DYN_LOW_QUALITY:
201            atFinalQuality = true;
202            break;
203        case DYN_MED_QUALITY:
204            quality = DYN_LOW_QUALITY;
205            break;
206        case DYN_HIGH_QUALITY:
207            quality = DYN_MED_QUALITY;
208            break;
209        }
210    }
211    pthread_mutex_unlock(&mutex);
212
213    AudioResampler* resampler;
214
215    switch (quality) {
216    default:
217    case LOW_QUALITY:
218        ALOGV("Create linear Resampler");
219        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
220        resampler = new AudioResamplerOrder1(inChannelCount, sampleRate);
221        break;
222    case MED_QUALITY:
223        ALOGV("Create cubic Resampler");
224        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
225        resampler = new AudioResamplerCubic(inChannelCount, sampleRate);
226        break;
227    case HIGH_QUALITY:
228        ALOGV("Create HIGH_QUALITY sinc Resampler");
229        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
230        resampler = new AudioResamplerSinc(inChannelCount, sampleRate);
231        break;
232    case VERY_HIGH_QUALITY:
233        ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality);
234        LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
235        resampler = new AudioResamplerSinc(inChannelCount, sampleRate, quality);
236        break;
237    case DYN_LOW_QUALITY:
238    case DYN_MED_QUALITY:
239    case DYN_HIGH_QUALITY:
240        ALOGV("Create dynamic Resampler = %d", quality);
241        if (format == AUDIO_FORMAT_PCM_FLOAT) {
242            resampler = new AudioResamplerDyn<float, float, float>(inChannelCount,
243                    sampleRate, quality);
244        } else {
245            LOG_ALWAYS_FATAL_IF(format != AUDIO_FORMAT_PCM_16_BIT);
246            if (quality == DYN_HIGH_QUALITY) {
247                resampler = new AudioResamplerDyn<int32_t, int16_t, int32_t>(inChannelCount,
248                        sampleRate, quality);
249            } else {
250                resampler = new AudioResamplerDyn<int16_t, int16_t, int32_t>(inChannelCount,
251                        sampleRate, quality);
252            }
253        }
254        break;
255    }
256
257    // initialize resampler
258    resampler->init();
259    return resampler;
260}
261
262AudioResampler::AudioResampler(int inChannelCount,
263        int32_t sampleRate, src_quality quality) :
264        mChannelCount(inChannelCount),
265        mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
266        mPhaseFraction(0), mLocalTimeFreq(0),
267        mPTS(AudioBufferProvider::kInvalidPTS), mQuality(quality) {
268
269    if (inChannelCount < 1
270            || inChannelCount > (quality < DYN_LOW_QUALITY ? 2 : 8)) {
271        LOG_ALWAYS_FATAL("Unsupported sample format %d quality %d channels",
272                quality, inChannelCount);
273    }
274    if (sampleRate <= 0) {
275        LOG_ALWAYS_FATAL("Unsupported sample rate %d Hz", sampleRate);
276    }
277
278    // initialize common members
279    mVolume[0] = mVolume[1] = 0;
280    mBuffer.frameCount = 0;
281}
282
283AudioResampler::~AudioResampler() {
284    pthread_mutex_lock(&mutex);
285    src_quality quality = getQuality();
286    uint32_t deltaMHz = qualityMHz(quality);
287    int32_t newMHz = currentMHz - deltaMHz;
288    ALOGV("resampler load %u -> %d MHz due to delta -%u MHz from quality %d",
289            currentMHz, newMHz, deltaMHz, quality);
290    LOG_ALWAYS_FATAL_IF(newMHz < 0, "negative resampler load %d MHz", newMHz);
291    currentMHz = newMHz;
292    pthread_mutex_unlock(&mutex);
293}
294
295void AudioResampler::setSampleRate(int32_t inSampleRate) {
296    mInSampleRate = inSampleRate;
297    mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
298}
299
300void AudioResampler::setVolume(int16_t left, int16_t right) {
301    // TODO: Implement anti-zipper filter
302    mVolume[0] = left;
303    mVolume[1] = right;
304}
305
306void AudioResampler::setLocalTimeFreq(uint64_t freq) {
307    mLocalTimeFreq = freq;
308}
309
310void AudioResampler::setPTS(int64_t pts) {
311    mPTS = pts;
312}
313
314int64_t AudioResampler::calculateOutputPTS(int outputFrameIndex) {
315
316    if (mPTS == AudioBufferProvider::kInvalidPTS) {
317        return AudioBufferProvider::kInvalidPTS;
318    } else {
319        return mPTS + ((outputFrameIndex * mLocalTimeFreq) / mSampleRate);
320    }
321}
322
323void AudioResampler::reset() {
324    mInputIndex = 0;
325    mPhaseFraction = 0;
326    mBuffer.frameCount = 0;
327}
328
329// ----------------------------------------------------------------------------
330
331void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
332        AudioBufferProvider* provider) {
333
334    // should never happen, but we overflow if it does
335    // ALOG_ASSERT(outFrameCount < 32767);
336
337    // select the appropriate resampler
338    switch (mChannelCount) {
339    case 1:
340        resampleMono16(out, outFrameCount, provider);
341        break;
342    case 2:
343        resampleStereo16(out, outFrameCount, provider);
344        break;
345    }
346}
347
348void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
349        AudioBufferProvider* provider) {
350
351    int32_t vl = mVolume[0];
352    int32_t vr = mVolume[1];
353
354    size_t inputIndex = mInputIndex;
355    uint32_t phaseFraction = mPhaseFraction;
356    uint32_t phaseIncrement = mPhaseIncrement;
357    size_t outputIndex = 0;
358    size_t outputSampleCount = outFrameCount * 2;
359    size_t inFrameCount = getInFrameCountRequired(outFrameCount);
360
361    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
362    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
363
364    while (outputIndex < outputSampleCount) {
365
366        // buffer is empty, fetch a new one
367        while (mBuffer.frameCount == 0) {
368            mBuffer.frameCount = inFrameCount;
369            provider->getNextBuffer(&mBuffer,
370                                    calculateOutputPTS(outputIndex / 2));
371            if (mBuffer.raw == NULL) {
372                goto resampleStereo16_exit;
373            }
374
375            // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
376            if (mBuffer.frameCount > inputIndex) break;
377
378            inputIndex -= mBuffer.frameCount;
379            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
380            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
381            provider->releaseBuffer(&mBuffer);
382            // mBuffer.frameCount == 0 now so we reload a new buffer
383        }
384
385        int16_t *in = mBuffer.i16;
386
387        // handle boundary case
388        while (inputIndex == 0) {
389            // ALOGE("boundary case");
390            out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
391            out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
392            Advance(&inputIndex, &phaseFraction, phaseIncrement);
393            if (outputIndex == outputSampleCount) {
394                break;
395            }
396        }
397
398        // process input samples
399        // ALOGE("general case");
400
401#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
402        if (inputIndex + 2 < mBuffer.frameCount) {
403            int32_t* maxOutPt;
404            int32_t maxInIdx;
405
406            maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop
407            maxInIdx = mBuffer.frameCount - 2;
408            AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
409                    phaseFraction, phaseIncrement);
410        }
411#endif  // ASM_ARM_RESAMP1
412
413        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
414            out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
415                    in[inputIndex*2], phaseFraction);
416            out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
417                    in[inputIndex*2+1], phaseFraction);
418            Advance(&inputIndex, &phaseFraction, phaseIncrement);
419        }
420
421        // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
422
423        // if done with buffer, save samples
424        if (inputIndex >= mBuffer.frameCount) {
425            inputIndex -= mBuffer.frameCount;
426
427            // ALOGE("buffer done, new input index %d", inputIndex);
428
429            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
430            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
431            provider->releaseBuffer(&mBuffer);
432
433            // verify that the releaseBuffer resets the buffer frameCount
434            // ALOG_ASSERT(mBuffer.frameCount == 0);
435        }
436    }
437
438    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
439
440resampleStereo16_exit:
441    // save state
442    mInputIndex = inputIndex;
443    mPhaseFraction = phaseFraction;
444}
445
446void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
447        AudioBufferProvider* provider) {
448
449    int32_t vl = mVolume[0];
450    int32_t vr = mVolume[1];
451
452    size_t inputIndex = mInputIndex;
453    uint32_t phaseFraction = mPhaseFraction;
454    uint32_t phaseIncrement = mPhaseIncrement;
455    size_t outputIndex = 0;
456    size_t outputSampleCount = outFrameCount * 2;
457    size_t inFrameCount = getInFrameCountRequired(outFrameCount);
458
459    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d",
460    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
461    while (outputIndex < outputSampleCount) {
462        // buffer is empty, fetch a new one
463        while (mBuffer.frameCount == 0) {
464            mBuffer.frameCount = inFrameCount;
465            provider->getNextBuffer(&mBuffer,
466                                    calculateOutputPTS(outputIndex / 2));
467            if (mBuffer.raw == NULL) {
468                mInputIndex = inputIndex;
469                mPhaseFraction = phaseFraction;
470                goto resampleMono16_exit;
471            }
472            // ALOGE("New buffer fetched: %d frames", mBuffer.frameCount);
473            if (mBuffer.frameCount >  inputIndex) break;
474
475            inputIndex -= mBuffer.frameCount;
476            mX0L = mBuffer.i16[mBuffer.frameCount-1];
477            provider->releaseBuffer(&mBuffer);
478            // mBuffer.frameCount == 0 now so we reload a new buffer
479        }
480        int16_t *in = mBuffer.i16;
481
482        // handle boundary case
483        while (inputIndex == 0) {
484            // ALOGE("boundary case");
485            int32_t sample = Interp(mX0L, in[0], phaseFraction);
486            out[outputIndex++] += vl * sample;
487            out[outputIndex++] += vr * sample;
488            Advance(&inputIndex, &phaseFraction, phaseIncrement);
489            if (outputIndex == outputSampleCount) {
490                break;
491            }
492        }
493
494        // process input samples
495        // ALOGE("general case");
496
497#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
498        if (inputIndex + 2 < mBuffer.frameCount) {
499            int32_t* maxOutPt;
500            int32_t maxInIdx;
501
502            maxOutPt = out + (outputSampleCount - 2);
503            maxInIdx = (int32_t)mBuffer.frameCount - 2;
504                AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
505                        phaseFraction, phaseIncrement);
506        }
507#endif  // ASM_ARM_RESAMP1
508
509        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
510            int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
511                    phaseFraction);
512            out[outputIndex++] += vl * sample;
513            out[outputIndex++] += vr * sample;
514            Advance(&inputIndex, &phaseFraction, phaseIncrement);
515        }
516
517
518        // ALOGE("loop done - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
519
520        // if done with buffer, save samples
521        if (inputIndex >= mBuffer.frameCount) {
522            inputIndex -= mBuffer.frameCount;
523
524            // ALOGE("buffer done, new input index %d", inputIndex);
525
526            mX0L = mBuffer.i16[mBuffer.frameCount-1];
527            provider->releaseBuffer(&mBuffer);
528
529            // verify that the releaseBuffer resets the buffer frameCount
530            // ALOG_ASSERT(mBuffer.frameCount == 0);
531        }
532    }
533
534    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d", outputIndex, inputIndex);
535
536resampleMono16_exit:
537    // save state
538    mInputIndex = inputIndex;
539    mPhaseFraction = phaseFraction;
540}
541
542#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
543
544/*******************************************************************
545*
546*   AsmMono16Loop
547*   asm optimized monotonic loop version; one loop is 2 frames
548*   Input:
549*       in : pointer on input samples
550*       maxOutPt : pointer on first not filled
551*       maxInIdx : index on first not used
552*       outputIndex : pointer on current output index
553*       out : pointer on output buffer
554*       inputIndex : pointer on current input index
555*       vl, vr : left and right gain
556*       phaseFraction : pointer on current phase fraction
557*       phaseIncrement
558*   Ouput:
559*       outputIndex :
560*       out : updated buffer
561*       inputIndex : index of next to use
562*       phaseFraction : phase fraction for next interpolation
563*
564*******************************************************************/
565__attribute__((noinline))
566void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
567            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
568            uint32_t &phaseFraction, uint32_t phaseIncrement)
569{
570    (void)maxOutPt; // remove unused parameter warnings
571    (void)maxInIdx;
572    (void)outputIndex;
573    (void)out;
574    (void)inputIndex;
575    (void)vl;
576    (void)vr;
577    (void)phaseFraction;
578    (void)phaseIncrement;
579    (void)in;
580#define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex)
581
582    asm(
583        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
584        // get parameters
585        "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
586        "   ldr r6, [r6]\n"                         // phaseFraction
587        "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
588        "   ldr r7, [r7]\n"                         // inputIndex
589        "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out
590        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
591        "   ldr r0, [r0]\n"                         // outputIndex
592        "   add r8, r8, r0, asl #2\n"               // curOut
593        "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement
594        "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl
595        "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr
596
597        // r0 pin, x0, Samp
598
599        // r1 in
600        // r2 maxOutPt
601        // r3 maxInIdx
602
603        // r4 x1, i1, i3, Out1
604        // r5 out0
605
606        // r6 frac
607        // r7 inputIndex
608        // r8 curOut
609
610        // r9 inc
611        // r10 vl
612        // r11 vr
613
614        // r12
615        // r13 sp
616        // r14
617
618        // the following loop works on 2 frames
619
620        "1:\n"
621        "   cmp r8, r2\n"                   // curOut - maxCurOut
622        "   bcs 2f\n"
623
624#define MO_ONE_FRAME \
625    "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\
626    "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\
627    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
628    "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\
629    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
630    "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\
631    "   mov r4, r4, lsl #2\n"           /* <<2 */\
632    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
633    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
634    "   add r0, r0, r4\n"               /* x0 - (..) */\
635    "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\
636    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
637    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
638    "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\
639    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\
640    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */
641
642        MO_ONE_FRAME    // frame 1
643        MO_ONE_FRAME    // frame 2
644
645        "   cmp r7, r3\n"                   // inputIndex - maxInIdx
646        "   bcc 1b\n"
647        "2:\n"
648
649        "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ...
650        // save modified values
651        "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
652        "   str r6, [r0]\n"                         // phaseFraction
653        "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
654        "   str r7, [r0]\n"                         // inputIndex
655        "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out
656        "   sub r8, r0\n"                           // curOut - out
657        "   asr r8, #2\n"                           // new outputIndex
658        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
659        "   str r8, [r0]\n"                         // save outputIndex
660
661        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
662    );
663}
664
665/*******************************************************************
666*
667*   AsmStereo16Loop
668*   asm optimized stereo loop version; one loop is 2 frames
669*   Input:
670*       in : pointer on input samples
671*       maxOutPt : pointer on first not filled
672*       maxInIdx : index on first not used
673*       outputIndex : pointer on current output index
674*       out : pointer on output buffer
675*       inputIndex : pointer on current input index
676*       vl, vr : left and right gain
677*       phaseFraction : pointer on current phase fraction
678*       phaseIncrement
679*   Ouput:
680*       outputIndex :
681*       out : updated buffer
682*       inputIndex : index of next to use
683*       phaseFraction : phase fraction for next interpolation
684*
685*******************************************************************/
686__attribute__((noinline))
687void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
688            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
689            uint32_t &phaseFraction, uint32_t phaseIncrement)
690{
691    (void)maxOutPt; // remove unused parameter warnings
692    (void)maxInIdx;
693    (void)outputIndex;
694    (void)out;
695    (void)inputIndex;
696    (void)vl;
697    (void)vr;
698    (void)phaseFraction;
699    (void)phaseIncrement;
700    (void)in;
701#define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex)
702    asm(
703        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
704        // get parameters
705        "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
706        "   ldr r6, [r6]\n"                         // phaseFraction
707        "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
708        "   ldr r7, [r7]\n"                         // inputIndex
709        "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out
710        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
711        "   ldr r0, [r0]\n"                         // outputIndex
712        "   add r8, r8, r0, asl #2\n"               // curOut
713        "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement
714        "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl
715        "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr
716
717        // r0 pin, x0, Samp
718
719        // r1 in
720        // r2 maxOutPt
721        // r3 maxInIdx
722
723        // r4 x1, i1, i3, out1
724        // r5 out0
725
726        // r6 frac
727        // r7 inputIndex
728        // r8 curOut
729
730        // r9 inc
731        // r10 vl
732        // r11 vr
733
734        // r12 temporary
735        // r13 sp
736        // r14
737
738        "3:\n"
739        "   cmp r8, r2\n"                   // curOut - maxCurOut
740        "   bcs 4f\n"
741
742#define ST_ONE_FRAME \
743    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
744\
745    "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\
746\
747    "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\
748    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
749    "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\
750    "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\
751    "   mov r4, r4, lsl #2\n"           /* <<2 */\
752    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
753    "   add r12, r12, r4\n"             /* x0 - (..) */\
754    "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\
755    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
756    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
757\
758    "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\
759    "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\
760    "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\
761    "   mov r12, r12, lsl #2\n"         /* <<2 */\
762    "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\
763    "   add r12, r0, r12\n"             /* x0 - (..) */\
764    "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\
765    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\
766\
767    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
768    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */
769
770    ST_ONE_FRAME    // frame 1
771    ST_ONE_FRAME    // frame 1
772
773        "   cmp r7, r3\n"                       // inputIndex - maxInIdx
774        "   bcc 3b\n"
775        "4:\n"
776
777        "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ...
778        // save modified values
779        "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
780        "   str r6, [r0]\n"                         // phaseFraction
781        "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
782        "   str r7, [r0]\n"                         // inputIndex
783        "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out
784        "   sub r8, r0\n"                           // curOut - out
785        "   asr r8, #2\n"                           // new outputIndex
786        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
787        "   str r8, [r0]\n"                         // save outputIndex
788
789        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
790    );
791}
792
793#endif  // ASM_ARM_RESAMP1
794
795
796// ----------------------------------------------------------------------------
797
798} // namespace android
799