AudioResamplerDyn.cpp revision 1af34085e18c4d5ab297232f167a71e89ff7f65d
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResamplerDyn"
18//#define LOG_NDEBUG 0
19
20#include <malloc.h>
21#include <string.h>
22#include <stdlib.h>
23#include <dlfcn.h>
24#include <math.h>
25
26#include <cutils/compiler.h>
27#include <cutils/properties.h>
28#include <utils/Log.h>
29
30#include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
31#include "AudioResamplerFirProcess.h"
32#include "AudioResamplerFirProcessNeon.h"
33#include "AudioResamplerFirGen.h" // requires math.h
34#include "AudioResamplerDyn.h"
35
36//#define DEBUG_RESAMPLER
37
38namespace android {
39
40// generate a unique resample type compile-time constant (constexpr)
41#define RESAMPLETYPE(CHANNELS, LOCKED, STRIDE, COEFTYPE) \
42    ((((CHANNELS)-1)&1) | !!(LOCKED)<<1 | (COEFTYPE)<<2 \
43    | ((STRIDE)==8 ? 1 : (STRIDE)==16 ? 2 : 0)<<3)
44
45/*
46 * InBuffer is a type agnostic input buffer.
47 *
48 * Layout of the state buffer for halfNumCoefs=8.
49 *
50 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
51 *  S            I                                R
52 *
53 * S = mState
54 * I = mImpulse
55 * R = mRingFull
56 * p = past samples, convoluted with the (p)ositive side of sinc()
57 * n = future samples, convoluted with the (n)egative side of sinc()
58 * r = extra space for implementing the ring buffer
59 */
60
61template<typename TI>
62AudioResamplerDyn::InBuffer<TI>::InBuffer()
63    : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateSize(0) {
64}
65
66template<typename TI>
67AudioResamplerDyn::InBuffer<TI>::~InBuffer() {
68    init();
69}
70
71template<typename TI>
72void AudioResamplerDyn::InBuffer<TI>::init() {
73    free(mState);
74    mState = NULL;
75    mImpulse = NULL;
76    mRingFull = NULL;
77    mStateSize = 0;
78}
79
80// resizes the state buffer to accommodate the appropriate filter length
81template<typename TI>
82void AudioResamplerDyn::InBuffer<TI>::resize(int CHANNELS, int halfNumCoefs) {
83    // calculate desired state size
84    int stateSize = halfNumCoefs * CHANNELS * 2
85            * kStateSizeMultipleOfFilterLength;
86
87    // check if buffer needs resizing
88    if (mState
89            && stateSize == mStateSize
90            && mRingFull-mState == mStateSize-halfNumCoefs*CHANNELS) {
91        return;
92    }
93
94    // create new buffer
95    TI* state = (int16_t*)memalign(32, stateSize*sizeof(*state));
96    memset(state, 0, stateSize*sizeof(*state));
97
98    // attempt to preserve state
99    if (mState) {
100        TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
101        TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
102        TI* dst = state;
103
104        if (srcLo < mState) {
105            dst += mState-srcLo;
106            srcLo = mState;
107        }
108        if (srcHi > mState + mStateSize) {
109            srcHi = mState + mStateSize;
110        }
111        memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
112        free(mState);
113    }
114
115    // set class member vars
116    mState = state;
117    mStateSize = stateSize;
118    mImpulse = mState + halfNumCoefs*CHANNELS; // actually one sample greater than needed
119    mRingFull = mState + mStateSize - halfNumCoefs*CHANNELS;
120}
121
122// copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
123template<typename TI>
124template<int CHANNELS>
125void AudioResamplerDyn::InBuffer<TI>::readAgain(TI*& impulse, const int halfNumCoefs,
126        const TI* const in, const size_t inputIndex) {
127    int16_t* head = impulse + halfNumCoefs*CHANNELS;
128    for (size_t i=0 ; i<CHANNELS ; i++) {
129        head[i] = in[inputIndex*CHANNELS + i];
130    }
131}
132
133// advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
134template<typename TI>
135template<int CHANNELS>
136void AudioResamplerDyn::InBuffer<TI>::readAdvance(TI*& impulse, const int halfNumCoefs,
137        const TI* const in, const size_t inputIndex) {
138    impulse += CHANNELS;
139
140    if (CC_UNLIKELY(impulse >= mRingFull)) {
141        const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
142        memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
143        impulse -= shiftDown;
144    }
145    readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
146}
147
148void AudioResamplerDyn::Constants::set(
149        int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
150{
151    int bits = 0;
152    int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
153            static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
154    for (int i=lscale; i; ++bits, i>>=1)
155        ;
156    mL = L;
157    mShift = kNumPhaseBits - bits;
158    mHalfNumCoefs = halfNumCoefs;
159}
160
161AudioResamplerDyn::AudioResamplerDyn(int bitDepth,
162        int inChannelCount, int32_t sampleRate, src_quality quality)
163    : AudioResampler(bitDepth, inChannelCount, sampleRate, quality),
164    mResampleType(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
165    mCoefBuffer(NULL)
166{
167    mVolumeSimd[0] = mVolumeSimd[1] = 0;
168    // The AudioResampler base class assumes we are always ready for 1:1 resampling.
169    // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
170    // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
171    mInSampleRate = 0;
172    mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
173}
174
175AudioResamplerDyn::~AudioResamplerDyn() {
176    free(mCoefBuffer);
177}
178
179void AudioResamplerDyn::init() {
180    mFilterSampleRate = 0; // always trigger new filter generation
181    mInBuffer.init();
182}
183
184void AudioResamplerDyn::setVolume(int16_t left, int16_t right) {
185    AudioResampler::setVolume(left, right);
186    mVolumeSimd[0] = static_cast<int32_t>(left)<<16;
187    mVolumeSimd[1] = static_cast<int32_t>(right)<<16;
188}
189
190template <typename T> T max(T a, T b) {return a > b ? a : b;}
191
192template <typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
193
194template<typename T>
195void AudioResamplerDyn::createKaiserFir(Constants &c, double stopBandAtten,
196        int inSampleRate, int outSampleRate, double tbwCheat) {
197    T* buf = reinterpret_cast<T*>(memalign(32, (c.mL+1)*c.mHalfNumCoefs*sizeof(T)));
198    static const double atten = 0.9998;   // to avoid ripple overflow
199    double fcr;
200    double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
201
202    if (inSampleRate < outSampleRate) { // upsample
203        fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
204    } else { // downsample
205        fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
206    }
207    // create and set filter
208    firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
209    c.setBuf(buf);
210    if (mCoefBuffer) {
211        free(mCoefBuffer);
212    }
213    mCoefBuffer = buf;
214#ifdef DEBUG_RESAMPLER
215    // print basic filter stats
216    printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
217            c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
218    // test the filter and report results
219    double fp = (fcr - tbw/2)/c.mL;
220    double fs = (fcr + tbw/2)/c.mL;
221    double passMin, passMax, passRipple;
222    double stopMax, stopRipple;
223    testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
224            passMin, passMax, passRipple, stopMax, stopRipple);
225    printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
226    printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
227#endif
228}
229
230// recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
231static int gcd(int n, int m) {
232    if (m == 0) {
233        return n;
234    }
235    return gcd(m, n % m);
236}
237
238static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
239        int32_t filterSampleRate, int32_t outSampleRate) {
240
241    // different upsampling ratios do not need a filter change.
242    if (filterSampleRate != 0
243            && filterSampleRate < outSampleRate
244            && newSampleRate < outSampleRate)
245        return true;
246
247    // check design criteria again if downsampling is detected.
248    int pdiff = absdiff(newSampleRate, prevSampleRate);
249    int adiff = absdiff(newSampleRate, filterSampleRate);
250
251    // allow up to 6% relative change increments.
252    // allow up to 12% absolute change increments (from filter design)
253    return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
254}
255
256void AudioResamplerDyn::setSampleRate(int32_t inSampleRate) {
257    if (mInSampleRate == inSampleRate) {
258        return;
259    }
260    int32_t oldSampleRate = mInSampleRate;
261    int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
262    uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
263    bool useS32 = false;
264
265    mInSampleRate = inSampleRate;
266
267    // TODO: Add precalculated Equiripple filters
268
269    if (mFilterQuality != getQuality() ||
270            !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
271        mFilterSampleRate = inSampleRate;
272        mFilterQuality = getQuality();
273
274        // Begin Kaiser Filter computation
275        //
276        // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
277        // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
278        //
279        // For s32 we keep the stop band attenuation at the same as 16b resolution, about
280        // 96-98dB
281        //
282
283        double stopBandAtten;
284        double tbwCheat = 1.; // how much we "cheat" into aliasing
285        int halfLength;
286        if (mFilterQuality == DYN_HIGH_QUALITY) {
287            // 32b coefficients, 64 length
288            useS32 = true;
289            stopBandAtten = 98.;
290            if (inSampleRate >= mSampleRate * 4) {
291                halfLength = 48;
292            } else if (inSampleRate >= mSampleRate * 2) {
293                halfLength = 40;
294            } else {
295                halfLength = 32;
296            }
297        } else if (mFilterQuality == DYN_LOW_QUALITY) {
298            // 16b coefficients, 16-32 length
299            useS32 = false;
300            stopBandAtten = 80.;
301            if (inSampleRate >= mSampleRate * 4) {
302                halfLength = 24;
303            } else if (inSampleRate >= mSampleRate * 2) {
304                halfLength = 16;
305            } else {
306                halfLength = 8;
307            }
308            if (inSampleRate <= mSampleRate) {
309                tbwCheat = 1.05;
310            } else {
311                tbwCheat = 1.03;
312            }
313        } else { // DYN_MED_QUALITY
314            // 16b coefficients, 32-64 length
315            // note: > 64 length filters with 16b coefs can have quantization noise problems
316            useS32 = false;
317            stopBandAtten = 84.;
318            if (inSampleRate >= mSampleRate * 4) {
319                halfLength = 32;
320            } else if (inSampleRate >= mSampleRate * 2) {
321                halfLength = 24;
322            } else {
323                halfLength = 16;
324            }
325            if (inSampleRate <= mSampleRate) {
326                tbwCheat = 1.03;
327            } else {
328                tbwCheat = 1.01;
329            }
330        }
331
332        // determine the number of polyphases in the filterbank.
333        // for 16b, it is desirable to have 2^(16/2) = 256 phases.
334        // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
335        //
336        // We are a bit more lax on this.
337
338        int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
339
340        // TODO: Once dynamic sample rate change is an option, the code below
341        // should be modified to execute only when dynamic sample rate change is enabled.
342        //
343        // as above, #phases less than 63 is too few phases for accurate linear interpolation.
344        // we increase the phases to compensate, but more phases means more memory per
345        // filter and more time to compute the filter.
346        //
347        // if we know that the filter will be used for dynamic sample rate changes,
348        // that would allow us skip this part for fixed sample rate resamplers.
349        //
350        while (phases<63) {
351            phases *= 2; // this code only needed to support dynamic rate changes
352        }
353
354        if (phases>=256) {  // too many phases, always interpolate
355            phases = 127;
356        }
357
358        // create the filter
359        mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
360        if (useS32) {
361            createKaiserFir<int32_t>(mConstants, stopBandAtten,
362                    inSampleRate, mSampleRate, tbwCheat);
363        } else {
364            createKaiserFir<int16_t>(mConstants, stopBandAtten,
365                    inSampleRate, mSampleRate, tbwCheat);
366        }
367    } // End Kaiser filter
368
369    // update phase and state based on the new filter.
370    const Constants& c(mConstants);
371    mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
372    const uint32_t phaseWrapLimit = c.mL << c.mShift;
373    // try to preserve as much of the phase fraction as possible for on-the-fly changes
374    mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
375            * phaseWrapLimit / oldPhaseWrapLimit;
376    mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
377    mPhaseIncrement = static_cast<uint32_t>(static_cast<double>(phaseWrapLimit)
378            * inSampleRate / mSampleRate);
379
380    // determine which resampler to use
381    // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
382    int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
383    int stride = (c.mHalfNumCoefs&7)==0 ? 16 : (c.mHalfNumCoefs&3)==0 ? 8 : 2;
384    if (locked) {
385        mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
386    }
387
388    mResampleType = RESAMPLETYPE(mChannelCount, locked, stride, !!useS32);
389#ifdef DEBUG_RESAMPLER
390    printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
391            mChannelCount, locked ? "locked" : "interpolated",
392            stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
393#endif
394}
395
396void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount,
397            AudioBufferProvider* provider)
398{
399    // TODO:
400    // 24 cases - this perhaps can be reduced later, as testing might take too long
401    switch (mResampleType) {
402
403    // stride 16 (falls back to stride 2 for machines that do not support NEON)
404    case RESAMPLETYPE(1, true, 16, 0):
405        return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
406    case RESAMPLETYPE(2, true, 16, 0):
407        return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
408    case RESAMPLETYPE(1, false, 16, 0):
409        return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
410    case RESAMPLETYPE(2, false, 16, 0):
411        return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
412    case RESAMPLETYPE(1, true, 16, 1):
413        return resample<1, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
414    case RESAMPLETYPE(2, true, 16, 1):
415        return resample<2, true, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
416    case RESAMPLETYPE(1, false, 16, 1):
417        return resample<1, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
418    case RESAMPLETYPE(2, false, 16, 1):
419        return resample<2, false, 16>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
420#if 0
421    // TODO: Remove these?
422    // stride 8
423    case RESAMPLETYPE(1, true, 8, 0):
424        return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
425    case RESAMPLETYPE(2, true, 8, 0):
426        return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
427    case RESAMPLETYPE(1, false, 8, 0):
428        return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
429    case RESAMPLETYPE(2, false, 8, 0):
430        return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
431    case RESAMPLETYPE(1, true, 8, 1):
432        return resample<1, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
433    case RESAMPLETYPE(2, true, 8, 1):
434        return resample<2, true, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
435    case RESAMPLETYPE(1, false, 8, 1):
436        return resample<1, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
437    case RESAMPLETYPE(2, false, 8, 1):
438        return resample<2, false, 8>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
439    // stride 2 (can handle any filter length)
440    case RESAMPLETYPE(1, true, 2, 0):
441        return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
442    case RESAMPLETYPE(2, true, 2, 0):
443        return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
444    case RESAMPLETYPE(1, false, 2, 0):
445        return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
446    case RESAMPLETYPE(2, false, 2, 0):
447        return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS16, provider);
448    case RESAMPLETYPE(1, true, 2, 1):
449        return resample<1, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
450    case RESAMPLETYPE(2, true, 2, 1):
451        return resample<2, true, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
452    case RESAMPLETYPE(1, false, 2, 1):
453        return resample<1, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
454    case RESAMPLETYPE(2, false, 2, 1):
455        return resample<2, false, 2>(out, outFrameCount, mConstants.mFirCoefsS32, provider);
456#endif
457    default:
458        ; // error
459    }
460}
461
462template<int CHANNELS, bool LOCKED, int STRIDE, typename TC>
463void AudioResamplerDyn::resample(int32_t* out, size_t outFrameCount,
464        const TC* const coefs,  AudioBufferProvider* provider)
465{
466    const Constants& c(mConstants);
467    int16_t* impulse = mInBuffer.getImpulse();
468    size_t inputIndex = mInputIndex;
469    uint32_t phaseFraction = mPhaseFraction;
470    const uint32_t phaseIncrement = mPhaseIncrement;
471    size_t outputIndex = 0;
472    size_t outputSampleCount = outFrameCount * 2;   // stereo output
473    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
474    const uint32_t phaseWrapLimit = c.mL << c.mShift;
475
476    // NOTE: be very careful when modifying the code here. register
477    // pressure is very high and a small change might cause the compiler
478    // to generate far less efficient code.
479    // Always sanity check the result with objdump or test-resample.
480
481    // the following logic is a bit convoluted to keep the main processing loop
482    // as tight as possible with register allocation.
483    while (outputIndex < outputSampleCount) {
484        // buffer is empty, fetch a new one
485        while (mBuffer.frameCount == 0) {
486            mBuffer.frameCount = inFrameCount;
487            provider->getNextBuffer(&mBuffer,
488                    calculateOutputPTS(outputIndex / 2));
489            if (mBuffer.raw == NULL) {
490                goto resample_exit;
491            }
492            if (phaseFraction >= phaseWrapLimit) { // read in data
493                mInBuffer.readAdvance<CHANNELS>(
494                        impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex);
495                phaseFraction -= phaseWrapLimit;
496                while (phaseFraction >= phaseWrapLimit) {
497                    inputIndex++;
498                    if (inputIndex >= mBuffer.frameCount) {
499                        inputIndex -= mBuffer.frameCount;
500                        provider->releaseBuffer(&mBuffer);
501                        break;
502                    }
503                    mInBuffer.readAdvance<CHANNELS>(
504                            impulse, c.mHalfNumCoefs, mBuffer.i16, inputIndex);
505                    phaseFraction -= phaseWrapLimit;
506                }
507            }
508        }
509        const int16_t* const in = mBuffer.i16;
510        const size_t frameCount = mBuffer.frameCount;
511        const int coefShift = c.mShift;
512        const int halfNumCoefs = c.mHalfNumCoefs;
513        const int32_t* const volumeSimd = mVolumeSimd;
514
515        // reread the last input in.
516        mInBuffer.readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
517
518        // main processing loop
519        while (CC_LIKELY(outputIndex < outputSampleCount)) {
520            // caution: fir() is inlined and may be large.
521            // output will be loaded with the appropriate values
522            //
523            // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
524            // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
525            //
526            fir<CHANNELS, LOCKED, STRIDE>(
527                    &out[outputIndex],
528                    phaseFraction, phaseWrapLimit,
529                    coefShift, halfNumCoefs, coefs,
530                    impulse, volumeSimd);
531            outputIndex += 2;
532
533            phaseFraction += phaseIncrement;
534            while (phaseFraction >= phaseWrapLimit) {
535                inputIndex++;
536                if (inputIndex >= frameCount) {
537                    goto done;  // need a new buffer
538                }
539                mInBuffer.readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
540                phaseFraction -= phaseWrapLimit;
541            }
542        }
543done:
544        // often arrives here when input buffer runs out
545        if (inputIndex >= frameCount) {
546            inputIndex -= frameCount;
547            provider->releaseBuffer(&mBuffer);
548            // mBuffer.frameCount MUST be zero here.
549        }
550    }
551
552resample_exit:
553    mInBuffer.setImpulse(impulse);
554    mInputIndex = inputIndex;
555    mPhaseFraction = phaseFraction;
556}
557
558// ----------------------------------------------------------------------------
559}; // namespace android
560