AudioResamplerFirProcess.h revision 68ffa200de7c4662c088851a328923be715c6c24
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
18#define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
19
20namespace android {
21
22// depends on AudioResamplerFirOps.h
23
24/* variant for input type TI = int16_t input samples */
25template<typename TC>
26static inline
27void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples)
28{
29    uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
30    l = mulAddRL(1, rl, coef, l);
31    r = mulAddRL(0, rl, coef, r);
32}
33
34template<typename TC>
35static inline
36void mac(int32_t& l, TC coef, const int16_t* samples)
37{
38    l = mulAdd(samples[0], coef, l);
39}
40
41/* variant for input type TI = float input samples */
42template<typename TC>
43static inline
44void mac(float& l, float& r, TC coef,  const float* samples)
45{
46    l += *samples++ * coef;
47    r += *samples * coef;
48}
49
50template<typename TC>
51static inline
52void mac(float& l, TC coef,  const float* samples)
53{
54    l += *samples * coef;
55}
56
57/* variant for output type TO = int32_t output samples */
58static inline
59int32_t volumeAdjust(int32_t value, int32_t volume)
60{
61    return 2 * mulRL(0, value, volume);  // Note: only use top 16b
62}
63
64/* variant for output type TO = float output samples */
65static inline
66float volumeAdjust(float value, float volume)
67{
68    return value * volume;
69}
70
71/*
72 * Helper template functions for loop unrolling accumulator operations.
73 *
74 * Unrolling the loops achieves about 2x gain.
75 * Using a recursive template rather than an array of TO[] for the accumulator
76 * values is an additional 10-20% gain.
77 */
78
79template<int CHANNELS, typename TO>
80class Accumulator : public Accumulator<CHANNELS-1, TO> // recursive
81{
82public:
83    inline void clear() {
84        value = 0;
85        Accumulator<CHANNELS-1, TO>::clear();
86    }
87    template<typename TC, typename TI>
88    inline void acc(TC coef, const TI*& data) {
89        mac(value, coef, data++);
90        Accumulator<CHANNELS-1, TO>::acc(coef, data);
91    }
92    inline void volume(TO*& out, TO gain) {
93        *out++ = volumeAdjust(value, gain);
94        Accumulator<CHANNELS-1, TO>::volume(out, gain);
95    }
96
97    TO value; // one per recursive inherited base class
98};
99
100template<typename TO>
101class Accumulator<0, TO> {
102public:
103    inline void clear() {
104    }
105    template<typename TC, typename TI>
106    inline void acc(TC coef __unused, const TI*& data __unused) {
107    }
108    inline void volume(TO*& out __unused, TO gain __unused) {
109    }
110};
111
112/*
113 * Helper template functions for interpolating filter coefficients.
114 */
115
116template<typename TC, typename T>
117void adjustLerp(T& lerpP __unused)
118{
119}
120
121template<int32_t, typename T>
122void adjustLerp(T& lerpP)
123{
124    lerpP >>= 16;   // lerpP is 32bit for NEON int32_t, but always 16 bit for non-NEON path
125}
126
127template<typename TC, typename TINTERP>
128static inline
129TC interpolate(TC coef_0, TC coef_1, TINTERP lerp)
130{
131    return lerp * (coef_1 - coef_0) + coef_0;
132}
133
134template<int16_t, uint32_t>
135static inline
136int16_t interpolate(int16_t coef_0, int16_t coef_1, uint32_t lerp)
137{
138    return (static_cast<int16_t>(lerp) * ((coef_1-coef_0)<<1)>>16) + coef_0;
139}
140
141template<int32_t, uint32_t>
142static inline
143int32_t interpolate(int32_t coef_0, int32_t coef_1, uint32_t lerp)
144{
145    return mulAdd(static_cast<int16_t>(lerp), (coef_1-coef_0)<<1, coef_0);
146}
147
148/* class scope for passing in functions into templates */
149struct InterpCompute {
150    template<typename TC, typename TINTERP>
151    static inline
152    TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) {
153        return interpolate(coef_0, coef_1, lerp);
154    }
155
156    template<typename TC, typename TINTERP>
157    static inline
158    TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) {
159        return interpolate(coef_0, coef_1, lerp);
160    }
161};
162
163struct InterpNull {
164    template<typename TC, typename TINTERP>
165    static inline
166    TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) {
167        return coef_0;
168    }
169
170    template<typename TC, typename TINTERP>
171    static inline
172    TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) {
173        return coef_1;
174    }
175};
176
177/*
178 * Calculates a single output frame (two samples).
179 *
180 * The Process*() functions compute both the positive half FIR dot product and
181 * the negative half FIR dot product, accumulates, and then applies the volume.
182 *
183 * Use fir() to compute the proper coefficient pointers for a polyphase
184 * filter bank.
185 *
186 * ProcessBase() is the fundamental processing template function.
187 *
188 * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase.
189 * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase.
190 */
191
192template <int CHANNELS, int STRIDE, typename TFUNC, typename TC, typename TI, typename TO, typename TINTERP>
193static inline
194void ProcessBase(TO* const out,
195        int count,
196        const TC* coefsP,
197        const TC* coefsN,
198        const TI* sP,
199        const TI* sN,
200        TINTERP lerpP,
201        const TO* const volumeLR)
202{
203    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS > 0)
204
205    if (CHANNELS > 2) {
206        // TO accum[CHANNELS];
207        Accumulator<CHANNELS, TO> accum;
208
209        // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0;
210        accum.clear();
211        for (size_t i = 0; i < count; ++i) {
212            TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP);
213
214            // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j);
215            const TI *tmp_data = sP; // tmp_ptr seems to work better
216            accum.acc(c, tmp_data);
217
218            coefsP++;
219            sP -= CHANNELS;
220            c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP);
221
222            // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j);
223            tmp_data = sN; // tmp_ptr seems faster than directly using sN
224            accum.acc(c, tmp_data);
225
226            coefsN++;
227            sN += CHANNELS;
228        }
229        // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]);
230        TO *tmp_out = out; // may remove if const out definition changes.
231        accum.volume(tmp_out, volumeLR[0]);
232    } else if (CHANNELS == 2) {
233        TO l = 0;
234        TO r = 0;
235        for (size_t i = 0; i < count; ++i) {
236            mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
237            coefsP++;
238            sP -= CHANNELS;
239            mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
240            coefsN++;
241            sN += CHANNELS;
242        }
243        out[0] += volumeAdjust(l, volumeLR[0]);
244        out[1] += volumeAdjust(r, volumeLR[1]);
245    } else { /* CHANNELS == 1 */
246        TO l = 0;
247        for (size_t i = 0; i < count; ++i) {
248            mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
249            coefsP++;
250            sP -= CHANNELS;
251            mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
252            coefsN++;
253            sN += CHANNELS;
254        }
255        out[0] += volumeAdjust(l, volumeLR[0]);
256        out[1] += volumeAdjust(l, volumeLR[1]);
257    }
258}
259
260template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO>
261static inline
262void ProcessL(TO* const out,
263        int count,
264        const TC* coefsP,
265        const TC* coefsN,
266        const TI* sP,
267        const TI* sN,
268        const TO* const volumeLR)
269{
270    ProcessBase<CHANNELS, STRIDE, InterpNull>(out, count, coefsP, coefsN, sP, sN, 0, volumeLR);
271}
272
273template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO, typename TINTERP>
274static inline
275void Process(TO* const out,
276        int count,
277        const TC* coefsP,
278        const TC* coefsN,
279        const TC* coefsP1 __unused,
280        const TC* coefsN1 __unused,
281        const TI* sP,
282        const TI* sN,
283        TINTERP lerpP,
284        const TO* const volumeLR)
285{
286    adjustLerp<TC, TINTERP>(lerpP); // coefficient type adjustment for interpolations
287    ProcessBase<CHANNELS, STRIDE, InterpCompute>(out, count, coefsP, coefsN, sP, sN, lerpP, volumeLR);
288}
289
290/*
291 * Calculates a single output frame (two samples) from input sample pointer.
292 *
293 * This sets up the params for the accelerated Process() and ProcessL()
294 * functions to do the appropriate dot products.
295 *
296 * @param out should point to the output buffer with space for at least one output frame.
297 *
298 * @param phase is the fractional distance between input frames for interpolation:
299 * phase >= 0  && phase < phaseWrapLimit.  It can be thought of as a rational fraction
300 * of phase/phaseWrapLimit.
301 *
302 * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases
303 * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift).
304 *
305 * @param coefShift gives the bit alignment of the polyphase index in the phase parameter.
306 *
307 * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the
308 * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored.
309 *
310 * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to
311 * and including the #polyphases.  Each polyphase of the filter has half-length halfNumCoefs
312 * (due to symmetry).  The total size of the filter bank in coefficients is
313 * (#polyphases+1)*halfNumCoefs.
314 *
315 * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line).
316 *
317 * The coefs should be attenuated (to compensate for passband ripple)
318 * if storing back into the native format.
319 *
320 * @param samples are unaligned input samples.  The position is in the "middle" of the
321 * sample array with respect to the FIR filter:
322 * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs;
323 * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1.
324 *
325 * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
326 * expressed as a S32 integer.  A negative value inverts the channel 180 degrees.
327 * The pointer volumeLR should be aligned to a minimum of 8 bytes.
328 * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
329 *
330 * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where
331 * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling.
332 *
333 * The filter polyphase index is given by indexP = phase >> coefShift. Due to
334 * odd length symmetric filter, the polyphase index of the negative half depends on
335 * whether interpolation is used.
336 *
337 * The fractional siting between the polyphase indices is given by the bits below coefShift:
338 *
339 * lerpP = phase << 32 - coefShift >> 1;  // for 32 bit unsigned phase multiply
340 * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply
341 *
342 * For integer types, this is expressed as:
343 *
344 * lerpP = phase << sizeof(phase)*8 - coefShift
345 *              >> (sizeof(phase)-sizeof(*coefs))*8 + 1;
346 *
347 * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0):
348 *
349 * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent
350 */
351
352template<int CHANNELS, bool LOCKED, int STRIDE, typename TC, typename TI, typename TO>
353static inline
354void fir(TO* const out,
355        const uint32_t phase, const uint32_t phaseWrapLimit,
356        const int coefShift, const int halfNumCoefs, const TC* const coefs,
357        const TI* const samples, const TO* const volumeLR)
358{
359    // NOTE: be very careful when modifying the code here. register
360    // pressure is very high and a small change might cause the compiler
361    // to generate far less efficient code.
362    // Always sanity check the result with objdump or test-resample.
363
364    if (LOCKED) {
365        // locked polyphase (no interpolation)
366        // Compute the polyphase filter index on the positive and negative side.
367        uint32_t indexP = phase >> coefShift;
368        uint32_t indexN = (phaseWrapLimit - phase) >> coefShift;
369        const TC* coefsP = coefs + indexP*halfNumCoefs;
370        const TC* coefsN = coefs + indexN*halfNumCoefs;
371        const TI* sP = samples;
372        const TI* sN = samples + CHANNELS;
373
374        // dot product filter.
375        ProcessL<CHANNELS, STRIDE>(out,
376                halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR);
377    } else {
378        // interpolated polyphase
379        // Compute the polyphase filter index on the positive and negative side.
380        uint32_t indexP = phase >> coefShift;
381        uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement.
382        const TC* coefsP = coefs + indexP*halfNumCoefs;
383        const TC* coefsN = coefs + indexN*halfNumCoefs;
384        const TC* coefsP1 = coefsP + halfNumCoefs;
385        const TC* coefsN1 = coefsN + halfNumCoefs;
386        const TI* sP = samples;
387        const TI* sN = samples + CHANNELS;
388
389        // Interpolation fraction lerpP derived by shifting all the way up and down
390        // to clear the appropriate bits and align to the appropriate level
391        // for the integer multiply.  The constants should resolve in compile time.
392        //
393        // The interpolated filter coefficient is derived as follows for the pos/neg half:
394        //
395        // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP)
396        // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP)
397
398        // on-the-fly interpolated dot product filter
399        if (is_same<TC, float>::value || is_same<TC, double>::value) {
400            static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0)
401            TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale;
402
403            Process<CHANNELS, STRIDE>(out,
404                    halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
405        } else {
406            uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift)
407                    >> ((sizeof(phase)-sizeof(*coefs))*8 + 1);
408
409            Process<CHANNELS, STRIDE>(out,
410                    halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
411        }
412    }
413}
414
415}; // namespace android
416
417#endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/
418