FastMixer.cpp revision 4b76d27d6c4751b31a1cb8ac5e6da1d4b7724a7b
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// <IMPORTANT_WARNING>
18// Design rules for threadLoop() are given in the comments at section "Fast mixer thread" of
19// StateQueue.h.  In particular, avoid library and system calls except at well-known points.
20// The design rules are only for threadLoop(), and don't apply to FastMixerDumpState methods.
21// </IMPORTANT_WARNING>
22
23#define LOG_TAG "FastMixer"
24//#define LOG_NDEBUG 0
25
26#define ATRACE_TAG ATRACE_TAG_AUDIO
27
28#include "Configuration.h"
29#include <sys/atomics.h>
30#include <time.h>
31#include <utils/Log.h>
32#include <utils/Trace.h>
33#include <system/audio.h>
34#ifdef FAST_MIXER_STATISTICS
35#include <cpustats/CentralTendencyStatistics.h>
36#ifdef CPU_FREQUENCY_STATISTICS
37#include <cpustats/ThreadCpuUsage.h>
38#endif
39#endif
40#include "AudioMixer.h"
41#include "FastMixer.h"
42
43#define FAST_HOT_IDLE_NS     1000000L   // 1 ms: time to sleep while hot idling
44#define FAST_DEFAULT_NS    999999999L   // ~1 sec: default time to sleep
45#define MIN_WARMUP_CYCLES          2    // minimum number of loop cycles to wait for warmup
46#define MAX_WARMUP_CYCLES         10    // maximum number of loop cycles to wait for warmup
47
48#define FCC_2                       2   // fixed channel count assumption
49
50namespace android {
51
52// Fast mixer thread
53bool FastMixer::threadLoop()
54{
55    static const FastMixerState initial;
56    const FastMixerState *previous = &initial, *current = &initial;
57    FastMixerState preIdle; // copy of state before we went into idle
58    struct timespec oldTs = {0, 0};
59    bool oldTsValid = false;
60    long slopNs = 0;    // accumulated time we've woken up too early (> 0) or too late (< 0)
61    long sleepNs = -1;  // -1: busy wait, 0: sched_yield, > 0: nanosleep
62    int fastTrackNames[FastMixerState::kMaxFastTracks]; // handles used by mixer to identify tracks
63    int generations[FastMixerState::kMaxFastTracks];    // last observed mFastTracks[i].mGeneration
64    unsigned i;
65    for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
66        fastTrackNames[i] = -1;
67        generations[i] = 0;
68    }
69    NBAIO_Sink *outputSink = NULL;
70    int outputSinkGen = 0;
71    AudioMixer* mixer = NULL;
72    short *mixBuffer = NULL;
73    enum {UNDEFINED, MIXED, ZEROED} mixBufferState = UNDEFINED;
74    NBAIO_Format format = Format_Invalid;
75    unsigned sampleRate = 0;
76    int fastTracksGen = 0;
77    long periodNs = 0;      // expected period; the time required to render one mix buffer
78    long underrunNs = 0;    // underrun likely when write cycle is greater than this value
79    long overrunNs = 0;     // overrun likely when write cycle is less than this value
80    long forceNs = 0;       // if overrun detected, force the write cycle to take this much time
81    long warmupNs = 0;      // warmup complete when write cycle is greater than to this value
82    FastMixerDumpState dummyDumpState, *dumpState = &dummyDumpState;
83    bool ignoreNextOverrun = true;  // used to ignore initial overrun and first after an underrun
84#ifdef FAST_MIXER_STATISTICS
85    struct timespec oldLoad = {0, 0};    // previous value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
86    bool oldLoadValid = false;  // whether oldLoad is valid
87    uint32_t bounds = 0;
88    bool full = false;      // whether we have collected at least mSamplingN samples
89#ifdef CPU_FREQUENCY_STATISTICS
90    ThreadCpuUsage tcu;     // for reading the current CPU clock frequency in kHz
91#endif
92#endif
93    unsigned coldGen = 0;   // last observed mColdGen
94    bool isWarm = false;    // true means ready to mix, false means wait for warmup before mixing
95    struct timespec measuredWarmupTs = {0, 0};  // how long did it take for warmup to complete
96    uint32_t warmupCycles = 0;  // counter of number of loop cycles required to warmup
97    NBAIO_Sink* teeSink = NULL; // if non-NULL, then duplicate write() to this non-blocking sink
98    NBLog::Writer dummyLogWriter, *logWriter = &dummyLogWriter;
99    uint32_t totalNativeFramesWritten = 0;  // copied to dumpState->mFramesWritten
100
101    // next 2 fields are valid only when timestampStatus == NO_ERROR
102    AudioTimestamp timestamp;
103    uint32_t nativeFramesWrittenButNotPresented = 0;    // the = 0 is to silence the compiler
104    status_t timestampStatus = INVALID_OPERATION;
105
106    for (;;) {
107
108        // either nanosleep, sched_yield, or busy wait
109        if (sleepNs >= 0) {
110            if (sleepNs > 0) {
111                ALOG_ASSERT(sleepNs < 1000000000);
112                const struct timespec req = {0, sleepNs};
113                nanosleep(&req, NULL);
114            } else {
115                sched_yield();
116            }
117        }
118        // default to long sleep for next cycle
119        sleepNs = FAST_DEFAULT_NS;
120
121        // poll for state change
122        const FastMixerState *next = mSQ.poll();
123        if (next == NULL) {
124            // continue to use the default initial state until a real state is available
125            ALOG_ASSERT(current == &initial && previous == &initial);
126            next = current;
127        }
128
129        FastMixerState::Command command = next->mCommand;
130        if (next != current) {
131
132            // As soon as possible of learning of a new dump area, start using it
133            dumpState = next->mDumpState != NULL ? next->mDumpState : &dummyDumpState;
134            teeSink = next->mTeeSink;
135            logWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &dummyLogWriter;
136            if (mixer != NULL) {
137                mixer->setLog(logWriter);
138            }
139
140            // We want to always have a valid reference to the previous (non-idle) state.
141            // However, the state queue only guarantees access to current and previous states.
142            // So when there is a transition from a non-idle state into an idle state, we make a
143            // copy of the last known non-idle state so it is still available on return from idle.
144            // The possible transitions are:
145            //  non-idle -> non-idle    update previous from current in-place
146            //  non-idle -> idle        update previous from copy of current
147            //  idle     -> idle        don't update previous
148            //  idle     -> non-idle    don't update previous
149            if (!(current->mCommand & FastMixerState::IDLE)) {
150                if (command & FastMixerState::IDLE) {
151                    preIdle = *current;
152                    current = &preIdle;
153                    oldTsValid = false;
154#ifdef FAST_MIXER_STATISTICS
155                    oldLoadValid = false;
156#endif
157                    ignoreNextOverrun = true;
158                }
159                previous = current;
160            }
161            current = next;
162        }
163#if !LOG_NDEBUG
164        next = NULL;    // not referenced again
165#endif
166
167        dumpState->mCommand = command;
168
169        switch (command) {
170        case FastMixerState::INITIAL:
171        case FastMixerState::HOT_IDLE:
172            sleepNs = FAST_HOT_IDLE_NS;
173            continue;
174        case FastMixerState::COLD_IDLE:
175            // only perform a cold idle command once
176            // FIXME consider checking previous state and only perform if previous != COLD_IDLE
177            if (current->mColdGen != coldGen) {
178                int32_t *coldFutexAddr = current->mColdFutexAddr;
179                ALOG_ASSERT(coldFutexAddr != NULL);
180                int32_t old = android_atomic_dec(coldFutexAddr);
181                if (old <= 0) {
182                    __futex_syscall4(coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
183                }
184                int policy = sched_getscheduler(0);
185                if (!(policy == SCHED_FIFO || policy == SCHED_RR)) {
186                    ALOGE("did not receive expected priority boost");
187                }
188                // This may be overly conservative; there could be times that the normal mixer
189                // requests such a brief cold idle that it doesn't require resetting this flag.
190                isWarm = false;
191                measuredWarmupTs.tv_sec = 0;
192                measuredWarmupTs.tv_nsec = 0;
193                warmupCycles = 0;
194                sleepNs = -1;
195                coldGen = current->mColdGen;
196#ifdef FAST_MIXER_STATISTICS
197                bounds = 0;
198                full = false;
199#endif
200                oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs);
201                timestampStatus = INVALID_OPERATION;
202            } else {
203                sleepNs = FAST_HOT_IDLE_NS;
204            }
205            continue;
206        case FastMixerState::EXIT:
207            delete mixer;
208            delete[] mixBuffer;
209            return false;
210        case FastMixerState::MIX:
211        case FastMixerState::WRITE:
212        case FastMixerState::MIX_WRITE:
213            break;
214        default:
215            LOG_FATAL("bad command %d", command);
216        }
217
218        // there is a non-idle state available to us; did the state change?
219        size_t frameCount = current->mFrameCount;
220        if (current != previous) {
221
222            // handle state change here, but since we want to diff the state,
223            // we're prepared for previous == &initial the first time through
224            unsigned previousTrackMask;
225
226            // check for change in output HAL configuration
227            NBAIO_Format previousFormat = format;
228            if (current->mOutputSinkGen != outputSinkGen) {
229                outputSink = current->mOutputSink;
230                outputSinkGen = current->mOutputSinkGen;
231                if (outputSink == NULL) {
232                    format = Format_Invalid;
233                    sampleRate = 0;
234                } else {
235                    format = outputSink->format();
236                    sampleRate = Format_sampleRate(format);
237                    ALOG_ASSERT(Format_channelCount(format) == FCC_2);
238                }
239            }
240
241            if ((!Format_isEqual(format, previousFormat)) || (frameCount != previous->mFrameCount)) {
242                // FIXME to avoid priority inversion, don't delete here
243                delete mixer;
244                mixer = NULL;
245                delete[] mixBuffer;
246                mixBuffer = NULL;
247                if (frameCount > 0 && sampleRate > 0) {
248                    // FIXME new may block for unbounded time at internal mutex of the heap
249                    //       implementation; it would be better to have normal mixer allocate for us
250                    //       to avoid blocking here and to prevent possible priority inversion
251                    mixer = new AudioMixer(frameCount, sampleRate, FastMixerState::kMaxFastTracks);
252                    mixBuffer = new short[frameCount * FCC_2];
253                    periodNs = (frameCount * 1000000000LL) / sampleRate;    // 1.00
254                    underrunNs = (frameCount * 1750000000LL) / sampleRate;  // 1.75
255                    overrunNs = (frameCount * 500000000LL) / sampleRate;    // 0.50
256                    forceNs = (frameCount * 950000000LL) / sampleRate;      // 0.95
257                    warmupNs = (frameCount * 500000000LL) / sampleRate;     // 0.50
258                } else {
259                    periodNs = 0;
260                    underrunNs = 0;
261                    overrunNs = 0;
262                    forceNs = 0;
263                    warmupNs = 0;
264                }
265                mixBufferState = UNDEFINED;
266#if !LOG_NDEBUG
267                for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
268                    fastTrackNames[i] = -1;
269                }
270#endif
271                // we need to reconfigure all active tracks
272                previousTrackMask = 0;
273                fastTracksGen = current->mFastTracksGen - 1;
274                dumpState->mFrameCount = frameCount;
275            } else {
276                previousTrackMask = previous->mTrackMask;
277            }
278
279            // check for change in active track set
280            unsigned currentTrackMask = current->mTrackMask;
281            dumpState->mTrackMask = currentTrackMask;
282            if (current->mFastTracksGen != fastTracksGen) {
283                ALOG_ASSERT(mixBuffer != NULL);
284                int name;
285
286                // process removed tracks first to avoid running out of track names
287                unsigned removedTracks = previousTrackMask & ~currentTrackMask;
288                while (removedTracks != 0) {
289                    i = __builtin_ctz(removedTracks);
290                    removedTracks &= ~(1 << i);
291                    const FastTrack* fastTrack = &current->mFastTracks[i];
292                    ALOG_ASSERT(fastTrack->mBufferProvider == NULL);
293                    if (mixer != NULL) {
294                        name = fastTrackNames[i];
295                        ALOG_ASSERT(name >= 0);
296                        mixer->deleteTrackName(name);
297                    }
298#if !LOG_NDEBUG
299                    fastTrackNames[i] = -1;
300#endif
301                    // don't reset track dump state, since other side is ignoring it
302                    generations[i] = fastTrack->mGeneration;
303                }
304
305                // now process added tracks
306                unsigned addedTracks = currentTrackMask & ~previousTrackMask;
307                while (addedTracks != 0) {
308                    i = __builtin_ctz(addedTracks);
309                    addedTracks &= ~(1 << i);
310                    const FastTrack* fastTrack = &current->mFastTracks[i];
311                    AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
312                    ALOG_ASSERT(bufferProvider != NULL && fastTrackNames[i] == -1);
313                    if (mixer != NULL) {
314                        // calling getTrackName with default channel mask and a random invalid
315                        //   sessionId (no effects here)
316                        name = mixer->getTrackName(AUDIO_CHANNEL_OUT_STEREO, -555);
317                        ALOG_ASSERT(name >= 0);
318                        fastTrackNames[i] = name;
319                        mixer->setBufferProvider(name, bufferProvider);
320                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER,
321                                (void *) mixBuffer);
322                        // newly allocated track names default to full scale volume
323                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
324                                (void *) fastTrack->mChannelMask);
325                        mixer->enable(name);
326                    }
327                    generations[i] = fastTrack->mGeneration;
328                }
329
330                // finally process (potentially) modified tracks; these use the same slot
331                // but may have a different buffer provider or volume provider
332                unsigned modifiedTracks = currentTrackMask & previousTrackMask;
333                while (modifiedTracks != 0) {
334                    i = __builtin_ctz(modifiedTracks);
335                    modifiedTracks &= ~(1 << i);
336                    const FastTrack* fastTrack = &current->mFastTracks[i];
337                    if (fastTrack->mGeneration != generations[i]) {
338                        // this track was actually modified
339                        AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
340                        ALOG_ASSERT(bufferProvider != NULL);
341                        if (mixer != NULL) {
342                            name = fastTrackNames[i];
343                            ALOG_ASSERT(name >= 0);
344                            mixer->setBufferProvider(name, bufferProvider);
345                            if (fastTrack->mVolumeProvider == NULL) {
346                                mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
347                                        (void *)0x1000);
348                                mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
349                                        (void *)0x1000);
350                            }
351                            mixer->setParameter(name, AudioMixer::RESAMPLE,
352                                    AudioMixer::REMOVE, NULL);
353                            mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
354                                    (void *) fastTrack->mChannelMask);
355                            // already enabled
356                        }
357                        generations[i] = fastTrack->mGeneration;
358                    }
359                }
360
361                fastTracksGen = current->mFastTracksGen;
362
363                dumpState->mNumTracks = popcount(currentTrackMask);
364            }
365
366#if 1   // FIXME shouldn't need this
367            // only process state change once
368            previous = current;
369#endif
370        }
371
372        // do work using current state here
373        if ((command & FastMixerState::MIX) && (mixer != NULL) && isWarm) {
374            ALOG_ASSERT(mixBuffer != NULL);
375            // for each track, update volume and check for underrun
376            unsigned currentTrackMask = current->mTrackMask;
377            while (currentTrackMask != 0) {
378                i = __builtin_ctz(currentTrackMask);
379                currentTrackMask &= ~(1 << i);
380                const FastTrack* fastTrack = &current->mFastTracks[i];
381
382                // Refresh the per-track timestamp
383                if (timestampStatus == NO_ERROR) {
384                    uint32_t trackFramesWrittenButNotPresented =
385                        nativeFramesWrittenButNotPresented;
386                    uint32_t trackFramesWritten = fastTrack->mBufferProvider->framesReleased();
387                    // Can't provide an AudioTimestamp before first frame presented,
388                    // or during the brief 32-bit wraparound window
389                    if (trackFramesWritten >= trackFramesWrittenButNotPresented) {
390                        AudioTimestamp perTrackTimestamp;
391                        perTrackTimestamp.mPosition =
392                                trackFramesWritten - trackFramesWrittenButNotPresented;
393                        perTrackTimestamp.mTime = timestamp.mTime;
394                        fastTrack->mBufferProvider->onTimestamp(perTrackTimestamp);
395                    }
396                }
397
398                int name = fastTrackNames[i];
399                ALOG_ASSERT(name >= 0);
400                if (fastTrack->mVolumeProvider != NULL) {
401                    uint32_t vlr = fastTrack->mVolumeProvider->getVolumeLR();
402                    mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
403                            (void *)(vlr & 0xFFFF));
404                    mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
405                            (void *)(vlr >> 16));
406                }
407                // FIXME The current implementation of framesReady() for fast tracks
408                // takes a tryLock, which can block
409                // up to 1 ms.  If enough active tracks all blocked in sequence, this would result
410                // in the overall fast mix cycle being delayed.  Should use a non-blocking FIFO.
411                size_t framesReady = fastTrack->mBufferProvider->framesReady();
412                if (ATRACE_ENABLED()) {
413                    // I wish we had formatted trace names
414                    char traceName[16];
415                    strcpy(traceName, "fRdy");
416                    traceName[4] = i + (i < 10 ? '0' : 'A' - 10);
417                    traceName[5] = '\0';
418                    ATRACE_INT(traceName, framesReady);
419                }
420                FastTrackDump *ftDump = &dumpState->mTracks[i];
421                FastTrackUnderruns underruns = ftDump->mUnderruns;
422                if (framesReady < frameCount) {
423                    if (framesReady == 0) {
424                        underruns.mBitFields.mEmpty++;
425                        underruns.mBitFields.mMostRecent = UNDERRUN_EMPTY;
426                        mixer->disable(name);
427                    } else {
428                        // allow mixing partial buffer
429                        underruns.mBitFields.mPartial++;
430                        underruns.mBitFields.mMostRecent = UNDERRUN_PARTIAL;
431                        mixer->enable(name);
432                    }
433                } else {
434                    underruns.mBitFields.mFull++;
435                    underruns.mBitFields.mMostRecent = UNDERRUN_FULL;
436                    mixer->enable(name);
437                }
438                ftDump->mUnderruns = underruns;
439                ftDump->mFramesReady = framesReady;
440            }
441
442            int64_t pts;
443            if (outputSink == NULL || (OK != outputSink->getNextWriteTimestamp(&pts))) {
444                pts = AudioBufferProvider::kInvalidPTS;
445            }
446
447            // process() is CPU-bound
448            mixer->process(pts);
449            mixBufferState = MIXED;
450        } else if (mixBufferState == MIXED) {
451            mixBufferState = UNDEFINED;
452        }
453        bool attemptedWrite = false;
454        //bool didFullWrite = false;    // dumpsys could display a count of partial writes
455        if ((command & FastMixerState::WRITE) && (outputSink != NULL) && (mixBuffer != NULL)) {
456            if (mixBufferState == UNDEFINED) {
457                memset(mixBuffer, 0, frameCount * FCC_2 * sizeof(short));
458                mixBufferState = ZEROED;
459            }
460            if (teeSink != NULL) {
461                (void) teeSink->write(mixBuffer, frameCount);
462            }
463            // FIXME write() is non-blocking and lock-free for a properly implemented NBAIO sink,
464            //       but this code should be modified to handle both non-blocking and blocking sinks
465            dumpState->mWriteSequence++;
466            ATRACE_BEGIN("write");
467            ssize_t framesWritten = outputSink->write(mixBuffer, frameCount);
468            ATRACE_END();
469            dumpState->mWriteSequence++;
470            if (framesWritten >= 0) {
471                ALOG_ASSERT((size_t) framesWritten <= frameCount);
472                totalNativeFramesWritten += framesWritten;
473                dumpState->mFramesWritten = totalNativeFramesWritten;
474                //if ((size_t) framesWritten == frameCount) {
475                //    didFullWrite = true;
476                //}
477            } else {
478                dumpState->mWriteErrors++;
479            }
480            attemptedWrite = true;
481            // FIXME count # of writes blocked excessively, CPU usage, etc. for dump
482
483            timestampStatus = outputSink->getTimestamp(timestamp);
484            if (timestampStatus == NO_ERROR) {
485                uint32_t totalNativeFramesPresented = timestamp.mPosition;
486                if (totalNativeFramesPresented <= totalNativeFramesWritten) {
487                    nativeFramesWrittenButNotPresented =
488                        totalNativeFramesWritten - totalNativeFramesPresented;
489                } else {
490                    // HAL reported that more frames were presented than were written
491                    timestampStatus = INVALID_OPERATION;
492                }
493            }
494        }
495
496        // To be exactly periodic, compute the next sleep time based on current time.
497        // This code doesn't have long-term stability when the sink is non-blocking.
498        // FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
499        struct timespec newTs;
500        int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
501        if (rc == 0) {
502            //logWriter->logTimestamp(newTs);
503            if (oldTsValid) {
504                time_t sec = newTs.tv_sec - oldTs.tv_sec;
505                long nsec = newTs.tv_nsec - oldTs.tv_nsec;
506                ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
507                        "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
508                        oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
509                if (nsec < 0) {
510                    --sec;
511                    nsec += 1000000000;
512                }
513                // To avoid an initial underrun on fast tracks after exiting standby,
514                // do not start pulling data from tracks and mixing until warmup is complete.
515                // Warmup is considered complete after the earlier of:
516                //      MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs
517                //      MAX_WARMUP_CYCLES write() attempts.
518                // This is overly conservative, but to get better accuracy requires a new HAL API.
519                if (!isWarm && attemptedWrite) {
520                    measuredWarmupTs.tv_sec += sec;
521                    measuredWarmupTs.tv_nsec += nsec;
522                    if (measuredWarmupTs.tv_nsec >= 1000000000) {
523                        measuredWarmupTs.tv_sec++;
524                        measuredWarmupTs.tv_nsec -= 1000000000;
525                    }
526                    ++warmupCycles;
527                    if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) ||
528                            (warmupCycles >= MAX_WARMUP_CYCLES)) {
529                        isWarm = true;
530                        dumpState->mMeasuredWarmupTs = measuredWarmupTs;
531                        dumpState->mWarmupCycles = warmupCycles;
532                    }
533                }
534                sleepNs = -1;
535                if (isWarm) {
536                    if (sec > 0 || nsec > underrunNs) {
537                        ATRACE_NAME("underrun");
538                        // FIXME only log occasionally
539                        ALOGV("underrun: time since last cycle %d.%03ld sec",
540                                (int) sec, nsec / 1000000L);
541                        dumpState->mUnderruns++;
542                        ignoreNextOverrun = true;
543                    } else if (nsec < overrunNs) {
544                        if (ignoreNextOverrun) {
545                            ignoreNextOverrun = false;
546                        } else {
547                            // FIXME only log occasionally
548                            ALOGV("overrun: time since last cycle %d.%03ld sec",
549                                    (int) sec, nsec / 1000000L);
550                            dumpState->mOverruns++;
551                        }
552                        // This forces a minimum cycle time. It:
553                        //  - compensates for an audio HAL with jitter due to sample rate conversion
554                        //  - works with a variable buffer depth audio HAL that never pulls at a
555                        //    rate < than overrunNs per buffer.
556                        //  - recovers from overrun immediately after underrun
557                        // It doesn't work with a non-blocking audio HAL.
558                        sleepNs = forceNs - nsec;
559                    } else {
560                        ignoreNextOverrun = false;
561                    }
562                }
563#ifdef FAST_MIXER_STATISTICS
564                if (isWarm) {
565                    // advance the FIFO queue bounds
566                    size_t i = bounds & (dumpState->mSamplingN - 1);
567                    bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF);
568                    if (full) {
569                        bounds += 0x10000;
570                    } else if (!(bounds & (dumpState->mSamplingN - 1))) {
571                        full = true;
572                    }
573                    // compute the delta value of clock_gettime(CLOCK_MONOTONIC)
574                    uint32_t monotonicNs = nsec;
575                    if (sec > 0 && sec < 4) {
576                        monotonicNs += sec * 1000000000;
577                    }
578                    // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
579                    uint32_t loadNs = 0;
580                    struct timespec newLoad;
581                    rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
582                    if (rc == 0) {
583                        if (oldLoadValid) {
584                            sec = newLoad.tv_sec - oldLoad.tv_sec;
585                            nsec = newLoad.tv_nsec - oldLoad.tv_nsec;
586                            if (nsec < 0) {
587                                --sec;
588                                nsec += 1000000000;
589                            }
590                            loadNs = nsec;
591                            if (sec > 0 && sec < 4) {
592                                loadNs += sec * 1000000000;
593                            }
594                        } else {
595                            // first time through the loop
596                            oldLoadValid = true;
597                        }
598                        oldLoad = newLoad;
599                    }
600#ifdef CPU_FREQUENCY_STATISTICS
601                    // get the absolute value of CPU clock frequency in kHz
602                    int cpuNum = sched_getcpu();
603                    uint32_t kHz = tcu.getCpukHz(cpuNum);
604                    kHz = (kHz << 4) | (cpuNum & 0xF);
605#endif
606                    // save values in FIFO queues for dumpsys
607                    // these stores #1, #2, #3 are not atomic with respect to each other,
608                    // or with respect to store #4 below
609                    dumpState->mMonotonicNs[i] = monotonicNs;
610                    dumpState->mLoadNs[i] = loadNs;
611#ifdef CPU_FREQUENCY_STATISTICS
612                    dumpState->mCpukHz[i] = kHz;
613#endif
614                    // this store #4 is not atomic with respect to stores #1, #2, #3 above, but
615                    // the newest open & oldest closed halves are atomic with respect to each other
616                    dumpState->mBounds = bounds;
617                    ATRACE_INT("cycle_ms", monotonicNs / 1000000);
618                    ATRACE_INT("load_us", loadNs / 1000);
619                }
620#endif
621            } else {
622                // first time through the loop
623                oldTsValid = true;
624                sleepNs = periodNs;
625                ignoreNextOverrun = true;
626            }
627            oldTs = newTs;
628        } else {
629            // monotonic clock is broken
630            oldTsValid = false;
631            sleepNs = periodNs;
632        }
633
634
635    }   // for (;;)
636
637    // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
638}
639
640FastMixerDumpState::FastMixerDumpState(
641#ifdef FAST_MIXER_STATISTICS
642        uint32_t samplingN
643#endif
644        ) :
645    mCommand(FastMixerState::INITIAL), mWriteSequence(0), mFramesWritten(0),
646    mNumTracks(0), mWriteErrors(0), mUnderruns(0), mOverruns(0),
647    mSampleRate(0), mFrameCount(0), /* mMeasuredWarmupTs({0, 0}), */ mWarmupCycles(0),
648    mTrackMask(0)
649#ifdef FAST_MIXER_STATISTICS
650    , mSamplingN(0), mBounds(0)
651#endif
652{
653    mMeasuredWarmupTs.tv_sec = 0;
654    mMeasuredWarmupTs.tv_nsec = 0;
655#ifdef FAST_MIXER_STATISTICS
656    increaseSamplingN(samplingN);
657#endif
658}
659
660#ifdef FAST_MIXER_STATISTICS
661void FastMixerDumpState::increaseSamplingN(uint32_t samplingN)
662{
663    if (samplingN <= mSamplingN || samplingN > kSamplingN || roundup(samplingN) != samplingN) {
664        return;
665    }
666    uint32_t additional = samplingN - mSamplingN;
667    // sample arrays aren't accessed atomically with respect to the bounds,
668    // so clearing reduces chance for dumpsys to read random uninitialized samples
669    memset(&mMonotonicNs[mSamplingN], 0, sizeof(mMonotonicNs[0]) * additional);
670    memset(&mLoadNs[mSamplingN], 0, sizeof(mLoadNs[0]) * additional);
671#ifdef CPU_FREQUENCY_STATISTICS
672    memset(&mCpukHz[mSamplingN], 0, sizeof(mCpukHz[0]) * additional);
673#endif
674    mSamplingN = samplingN;
675}
676#endif
677
678FastMixerDumpState::~FastMixerDumpState()
679{
680}
681
682// helper function called by qsort()
683static int compare_uint32_t(const void *pa, const void *pb)
684{
685    uint32_t a = *(const uint32_t *)pa;
686    uint32_t b = *(const uint32_t *)pb;
687    if (a < b) {
688        return -1;
689    } else if (a > b) {
690        return 1;
691    } else {
692        return 0;
693    }
694}
695
696void FastMixerDumpState::dump(int fd) const
697{
698    if (mCommand == FastMixerState::INITIAL) {
699        fdprintf(fd, "  FastMixer not initialized\n");
700        return;
701    }
702#define COMMAND_MAX 32
703    char string[COMMAND_MAX];
704    switch (mCommand) {
705    case FastMixerState::INITIAL:
706        strcpy(string, "INITIAL");
707        break;
708    case FastMixerState::HOT_IDLE:
709        strcpy(string, "HOT_IDLE");
710        break;
711    case FastMixerState::COLD_IDLE:
712        strcpy(string, "COLD_IDLE");
713        break;
714    case FastMixerState::EXIT:
715        strcpy(string, "EXIT");
716        break;
717    case FastMixerState::MIX:
718        strcpy(string, "MIX");
719        break;
720    case FastMixerState::WRITE:
721        strcpy(string, "WRITE");
722        break;
723    case FastMixerState::MIX_WRITE:
724        strcpy(string, "MIX_WRITE");
725        break;
726    default:
727        snprintf(string, COMMAND_MAX, "%d", mCommand);
728        break;
729    }
730    double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1000.0) +
731            (mMeasuredWarmupTs.tv_nsec / 1000000.0);
732    double mixPeriodSec = (double) mFrameCount / (double) mSampleRate;
733    fdprintf(fd, "  FastMixer command=%s writeSequence=%u framesWritten=%u\n"
734                 "            numTracks=%u writeErrors=%u underruns=%u overruns=%u\n"
735                 "            sampleRate=%u frameCount=%u measuredWarmup=%.3g ms, warmupCycles=%u\n"
736                 "            mixPeriod=%.2f ms\n",
737                 string, mWriteSequence, mFramesWritten,
738                 mNumTracks, mWriteErrors, mUnderruns, mOverruns,
739                 mSampleRate, mFrameCount, measuredWarmupMs, mWarmupCycles,
740                 mixPeriodSec * 1e3);
741#ifdef FAST_MIXER_STATISTICS
742    // find the interval of valid samples
743    uint32_t bounds = mBounds;
744    uint32_t newestOpen = bounds & 0xFFFF;
745    uint32_t oldestClosed = bounds >> 16;
746    uint32_t n = (newestOpen - oldestClosed) & 0xFFFF;
747    if (n > mSamplingN) {
748        ALOGE("too many samples %u", n);
749        n = mSamplingN;
750    }
751    // statistics for monotonic (wall clock) time, thread raw CPU load in time, CPU clock frequency,
752    // and adjusted CPU load in MHz normalized for CPU clock frequency
753    CentralTendencyStatistics wall, loadNs;
754#ifdef CPU_FREQUENCY_STATISTICS
755    CentralTendencyStatistics kHz, loadMHz;
756    uint32_t previousCpukHz = 0;
757#endif
758    // Assuming a normal distribution for cycle times, three standard deviations on either side of
759    // the mean account for 99.73% of the population.  So if we take each tail to be 1/1000 of the
760    // sample set, we get 99.8% combined, or close to three standard deviations.
761    static const uint32_t kTailDenominator = 1000;
762    uint32_t *tail = n >= kTailDenominator ? new uint32_t[n] : NULL;
763    // loop over all the samples
764    for (uint32_t j = 0; j < n; ++j) {
765        size_t i = oldestClosed++ & (mSamplingN - 1);
766        uint32_t wallNs = mMonotonicNs[i];
767        if (tail != NULL) {
768            tail[j] = wallNs;
769        }
770        wall.sample(wallNs);
771        uint32_t sampleLoadNs = mLoadNs[i];
772        loadNs.sample(sampleLoadNs);
773#ifdef CPU_FREQUENCY_STATISTICS
774        uint32_t sampleCpukHz = mCpukHz[i];
775        // skip bad kHz samples
776        if ((sampleCpukHz & ~0xF) != 0) {
777            kHz.sample(sampleCpukHz >> 4);
778            if (sampleCpukHz == previousCpukHz) {
779                double megacycles = (double) sampleLoadNs * (double) (sampleCpukHz >> 4) * 1e-12;
780                double adjMHz = megacycles / mixPeriodSec;  // _not_ wallNs * 1e9
781                loadMHz.sample(adjMHz);
782            }
783        }
784        previousCpukHz = sampleCpukHz;
785#endif
786    }
787    if (n) {
788        fdprintf(fd, "  Simple moving statistics over last %.1f seconds:\n",
789                     wall.n() * mixPeriodSec);
790        fdprintf(fd, "    wall clock time in ms per mix cycle:\n"
791                     "      mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
792                     wall.mean()*1e-6, wall.minimum()*1e-6, wall.maximum()*1e-6,
793                     wall.stddev()*1e-6);
794        fdprintf(fd, "    raw CPU load in us per mix cycle:\n"
795                     "      mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
796                     loadNs.mean()*1e-3, loadNs.minimum()*1e-3, loadNs.maximum()*1e-3,
797                     loadNs.stddev()*1e-3);
798    } else {
799        fdprintf(fd, "  No FastMixer statistics available currently\n");
800    }
801#ifdef CPU_FREQUENCY_STATISTICS
802    fdprintf(fd, "  CPU clock frequency in MHz:\n"
803                 "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
804                 kHz.mean()*1e-3, kHz.minimum()*1e-3, kHz.maximum()*1e-3, kHz.stddev()*1e-3);
805    fdprintf(fd, "  adjusted CPU load in MHz (i.e. normalized for CPU clock frequency):\n"
806                 "    mean=%.1f min=%.1f max=%.1f stddev=%.1f\n",
807                 loadMHz.mean(), loadMHz.minimum(), loadMHz.maximum(), loadMHz.stddev());
808#endif
809    if (tail != NULL) {
810        qsort(tail, n, sizeof(uint32_t), compare_uint32_t);
811        // assume same number of tail samples on each side, left and right
812        uint32_t count = n / kTailDenominator;
813        CentralTendencyStatistics left, right;
814        for (uint32_t i = 0; i < count; ++i) {
815            left.sample(tail[i]);
816            right.sample(tail[n - (i + 1)]);
817        }
818        fdprintf(fd, "  Distribution of mix cycle times in ms for the tails (> ~3 stddev outliers):\n"
819                     "    left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n"
820                     "    right tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
821                     left.mean()*1e-6, left.minimum()*1e-6, left.maximum()*1e-6, left.stddev()*1e-6,
822                     right.mean()*1e-6, right.minimum()*1e-6, right.maximum()*1e-6,
823                     right.stddev()*1e-6);
824        delete[] tail;
825    }
826#endif
827    // The active track mask and track states are updated non-atomically.
828    // So if we relied on isActive to decide whether to display,
829    // then we might display an obsolete track or omit an active track.
830    // Instead we always display all tracks, with an indication
831    // of whether we think the track is active.
832    uint32_t trackMask = mTrackMask;
833    fdprintf(fd, "  Fast tracks: kMaxFastTracks=%u activeMask=%#x\n",
834            FastMixerState::kMaxFastTracks, trackMask);
835    fdprintf(fd, "  Index Active Full Partial Empty  Recent Ready\n");
836    for (uint32_t i = 0; i < FastMixerState::kMaxFastTracks; ++i, trackMask >>= 1) {
837        bool isActive = trackMask & 1;
838        const FastTrackDump *ftDump = &mTracks[i];
839        const FastTrackUnderruns& underruns = ftDump->mUnderruns;
840        const char *mostRecent;
841        switch (underruns.mBitFields.mMostRecent) {
842        case UNDERRUN_FULL:
843            mostRecent = "full";
844            break;
845        case UNDERRUN_PARTIAL:
846            mostRecent = "partial";
847            break;
848        case UNDERRUN_EMPTY:
849            mostRecent = "empty";
850            break;
851        default:
852            mostRecent = "?";
853            break;
854        }
855        fdprintf(fd, "  %5u %6s %4u %7u %5u %7s %5u\n", i, isActive ? "yes" : "no",
856                (underruns.mBitFields.mFull) & UNDERRUN_MASK,
857                (underruns.mBitFields.mPartial) & UNDERRUN_MASK,
858                (underruns.mBitFields.mEmpty) & UNDERRUN_MASK,
859                mostRecent, ftDump->mFramesReady);
860    }
861}
862
863}   // namespace android
864