FastMixer.cpp revision 4dbb17e333b843a7e446f0fde47eda8564743ef3
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// <IMPORTANT_WARNING>
18// Design rules for threadLoop() are given in the comments at section "Fast mixer thread" of
19// StateQueue.h.  In particular, avoid library and system calls except at well-known points.
20// The design rules are only for threadLoop(), and don't apply to FastMixerDumpState methods.
21// </IMPORTANT_WARNING>
22
23#define LOG_TAG "FastMixer"
24//#define LOG_NDEBUG 0
25
26#define ATRACE_TAG ATRACE_TAG_AUDIO
27
28#include <sys/atomics.h>
29#include <time.h>
30#include <utils/Log.h>
31#include <utils/Trace.h>
32#include <system/audio.h>
33#ifdef FAST_MIXER_STATISTICS
34#include <cpustats/CentralTendencyStatistics.h>
35#ifdef CPU_FREQUENCY_STATISTICS
36#include <cpustats/ThreadCpuUsage.h>
37#endif
38#endif
39#include "AudioMixer.h"
40#include "FastMixer.h"
41
42#define FAST_HOT_IDLE_NS     1000000L   // 1 ms: time to sleep while hot idling
43#define FAST_DEFAULT_NS    999999999L   // ~1 sec: default time to sleep
44#define MIN_WARMUP_CYCLES          2    // minimum number of loop cycles to wait for warmup
45#define MAX_WARMUP_CYCLES         10    // maximum number of loop cycles to wait for warmup
46
47namespace android {
48
49// Fast mixer thread
50bool FastMixer::threadLoop()
51{
52    static const FastMixerState initial;
53    const FastMixerState *previous = &initial, *current = &initial;
54    FastMixerState preIdle; // copy of state before we went into idle
55    struct timespec oldTs = {0, 0};
56    bool oldTsValid = false;
57    long slopNs = 0;    // accumulated time we've woken up too early (> 0) or too late (< 0)
58    long sleepNs = -1;  // -1: busy wait, 0: sched_yield, > 0: nanosleep
59    int fastTrackNames[FastMixerState::kMaxFastTracks]; // handles used by mixer to identify tracks
60    int generations[FastMixerState::kMaxFastTracks];    // last observed mFastTracks[i].mGeneration
61    unsigned i;
62    for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
63        fastTrackNames[i] = -1;
64        generations[i] = 0;
65    }
66    NBAIO_Sink *outputSink = NULL;
67    int outputSinkGen = 0;
68    AudioMixer* mixer = NULL;
69    short *mixBuffer = NULL;
70    enum {UNDEFINED, MIXED, ZEROED} mixBufferState = UNDEFINED;
71    NBAIO_Format format = Format_Invalid;
72    unsigned sampleRate = 0;
73    int fastTracksGen = 0;
74    long periodNs = 0;      // expected period; the time required to render one mix buffer
75    long underrunNs = 0;    // underrun likely when write cycle is greater than this value
76    long overrunNs = 0;     // overrun likely when write cycle is less than this value
77    long forceNs = 0;       // if overrun detected, force the write cycle to take this much time
78    long warmupNs = 0;      // warmup complete when write cycle is greater than to this value
79    FastMixerDumpState dummyDumpState, *dumpState = &dummyDumpState;
80    bool ignoreNextOverrun = true;  // used to ignore initial overrun and first after an underrun
81#ifdef FAST_MIXER_STATISTICS
82    struct timespec oldLoad = {0, 0};    // previous value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
83    bool oldLoadValid = false;  // whether oldLoad is valid
84    uint32_t bounds = 0;
85    bool full = false;      // whether we have collected at least kSamplingN samples
86#ifdef CPU_FREQUENCY_STATISTICS
87    ThreadCpuUsage tcu;     // for reading the current CPU clock frequency in kHz
88#endif
89#endif
90    unsigned coldGen = 0;   // last observed mColdGen
91    bool isWarm = false;    // true means ready to mix, false means wait for warmup before mixing
92    struct timespec measuredWarmupTs = {0, 0};  // how long did it take for warmup to complete
93    uint32_t warmupCycles = 0;  // counter of number of loop cycles required to warmup
94    NBAIO_Sink* teeSink = NULL; // if non-NULL, then duplicate write() to this non-blocking sink
95    NBLog::Writer dummyLogWriter, *logWriter = &dummyLogWriter;
96
97    for (;;) {
98
99        // either nanosleep, sched_yield, or busy wait
100        if (sleepNs >= 0) {
101            if (sleepNs > 0) {
102                ALOG_ASSERT(sleepNs < 1000000000);
103                const struct timespec req = {0, sleepNs};
104                nanosleep(&req, NULL);
105            } else {
106                sched_yield();
107            }
108        }
109        // default to long sleep for next cycle
110        sleepNs = FAST_DEFAULT_NS;
111
112        // poll for state change
113        const FastMixerState *next = mSQ.poll();
114        if (next == NULL) {
115            // continue to use the default initial state until a real state is available
116            ALOG_ASSERT(current == &initial && previous == &initial);
117            next = current;
118        }
119
120        FastMixerState::Command command = next->mCommand;
121        if (next != current) {
122
123            logWriter->logTimestamp();
124            logWriter->log("next != current");
125
126            // As soon as possible of learning of a new dump area, start using it
127            dumpState = next->mDumpState != NULL ? next->mDumpState : &dummyDumpState;
128            teeSink = next->mTeeSink;
129            logWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &dummyLogWriter;
130            if (mixer != NULL) {
131                mixer->setLog(logWriter);
132            }
133
134            // We want to always have a valid reference to the previous (non-idle) state.
135            // However, the state queue only guarantees access to current and previous states.
136            // So when there is a transition from a non-idle state into an idle state, we make a
137            // copy of the last known non-idle state so it is still available on return from idle.
138            // The possible transitions are:
139            //  non-idle -> non-idle    update previous from current in-place
140            //  non-idle -> idle        update previous from copy of current
141            //  idle     -> idle        don't update previous
142            //  idle     -> non-idle    don't update previous
143            if (!(current->mCommand & FastMixerState::IDLE)) {
144                if (command & FastMixerState::IDLE) {
145                    preIdle = *current;
146                    current = &preIdle;
147                    oldTsValid = false;
148                    oldLoadValid = false;
149                    ignoreNextOverrun = true;
150                }
151                previous = current;
152            }
153            current = next;
154        }
155#if !LOG_NDEBUG
156        next = NULL;    // not referenced again
157#endif
158
159        dumpState->mCommand = command;
160
161        switch (command) {
162        case FastMixerState::INITIAL:
163        case FastMixerState::HOT_IDLE:
164            sleepNs = FAST_HOT_IDLE_NS;
165            continue;
166        case FastMixerState::COLD_IDLE:
167            // only perform a cold idle command once
168            // FIXME consider checking previous state and only perform if previous != COLD_IDLE
169            if (current->mColdGen != coldGen) {
170                int32_t *coldFutexAddr = current->mColdFutexAddr;
171                ALOG_ASSERT(coldFutexAddr != NULL);
172                int32_t old = android_atomic_dec(coldFutexAddr);
173                if (old <= 0) {
174                    logWriter->log("wait");
175                    __futex_syscall4(coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
176                }
177                // This may be overly conservative; there could be times that the normal mixer
178                // requests such a brief cold idle that it doesn't require resetting this flag.
179                isWarm = false;
180                measuredWarmupTs.tv_sec = 0;
181                measuredWarmupTs.tv_nsec = 0;
182                warmupCycles = 0;
183                sleepNs = -1;
184                coldGen = current->mColdGen;
185                bounds = 0;
186                full = false;
187                oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs);
188            } else {
189                sleepNs = FAST_HOT_IDLE_NS;
190            }
191            continue;
192        case FastMixerState::EXIT:
193            logWriter->log("exit");
194            delete mixer;
195            delete[] mixBuffer;
196            return false;
197        case FastMixerState::MIX:
198        case FastMixerState::WRITE:
199        case FastMixerState::MIX_WRITE:
200            break;
201        default:
202            LOG_FATAL("bad command %d", command);
203        }
204
205        // there is a non-idle state available to us; did the state change?
206        size_t frameCount = current->mFrameCount;
207        if (current != previous) {
208
209            // handle state change here, but since we want to diff the state,
210            // we're prepared for previous == &initial the first time through
211            unsigned previousTrackMask;
212
213            // check for change in output HAL configuration
214            NBAIO_Format previousFormat = format;
215            if (current->mOutputSinkGen != outputSinkGen) {
216                outputSink = current->mOutputSink;
217                outputSinkGen = current->mOutputSinkGen;
218                if (outputSink == NULL) {
219                    format = Format_Invalid;
220                    sampleRate = 0;
221                } else {
222                    format = outputSink->format();
223                    sampleRate = Format_sampleRate(format);
224                    ALOG_ASSERT(Format_channelCount(format) == 2);
225                }
226                dumpState->mSampleRate = sampleRate;
227            }
228
229            if ((format != previousFormat) || (frameCount != previous->mFrameCount)) {
230                // FIXME to avoid priority inversion, don't delete here
231                delete mixer;
232                mixer = NULL;
233                delete[] mixBuffer;
234                mixBuffer = NULL;
235                if (frameCount > 0 && sampleRate > 0) {
236                    // FIXME new may block for unbounded time at internal mutex of the heap
237                    //       implementation; it would be better to have normal mixer allocate for us
238                    //       to avoid blocking here and to prevent possible priority inversion
239                    mixer = new AudioMixer(frameCount, sampleRate, FastMixerState::kMaxFastTracks);
240                    mixBuffer = new short[frameCount * 2];
241                    periodNs = (frameCount * 1000000000LL) / sampleRate;    // 1.00
242                    underrunNs = (frameCount * 1750000000LL) / sampleRate;  // 1.75
243                    overrunNs = (frameCount * 500000000LL) / sampleRate;    // 0.50
244                    forceNs = (frameCount * 950000000LL) / sampleRate;      // 0.95
245                    warmupNs = (frameCount * 500000000LL) / sampleRate;     // 0.50
246                } else {
247                    periodNs = 0;
248                    underrunNs = 0;
249                    overrunNs = 0;
250                    forceNs = 0;
251                    warmupNs = 0;
252                }
253                mixBufferState = UNDEFINED;
254#if !LOG_NDEBUG
255                for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) {
256                    fastTrackNames[i] = -1;
257                }
258#endif
259                // we need to reconfigure all active tracks
260                previousTrackMask = 0;
261                fastTracksGen = current->mFastTracksGen - 1;
262                dumpState->mFrameCount = frameCount;
263            } else {
264                previousTrackMask = previous->mTrackMask;
265            }
266
267            // check for change in active track set
268            unsigned currentTrackMask = current->mTrackMask;
269            dumpState->mTrackMask = currentTrackMask;
270            if (current->mFastTracksGen != fastTracksGen) {
271                logWriter->logf("gen %d", current->mFastTracksGen);
272                ALOG_ASSERT(mixBuffer != NULL);
273                int name;
274
275                // process removed tracks first to avoid running out of track names
276                unsigned removedTracks = previousTrackMask & ~currentTrackMask;
277                if (removedTracks) {
278                    logWriter->logf("removed %#x", removedTracks);
279                }
280                while (removedTracks != 0) {
281                    i = __builtin_ctz(removedTracks);
282                    removedTracks &= ~(1 << i);
283                    const FastTrack* fastTrack = &current->mFastTracks[i];
284                    ALOG_ASSERT(fastTrack->mBufferProvider == NULL);
285                    if (mixer != NULL) {
286                        name = fastTrackNames[i];
287                        ALOG_ASSERT(name >= 0);
288                        mixer->deleteTrackName(name);
289                    }
290#if !LOG_NDEBUG
291                    fastTrackNames[i] = -1;
292#endif
293                    // don't reset track dump state, since other side is ignoring it
294                    generations[i] = fastTrack->mGeneration;
295                }
296
297                // now process added tracks
298                unsigned addedTracks = currentTrackMask & ~previousTrackMask;
299                if (addedTracks) {
300                    logWriter->logf("added %#x", addedTracks);
301                }
302                while (addedTracks != 0) {
303                    i = __builtin_ctz(addedTracks);
304                    addedTracks &= ~(1 << i);
305                    const FastTrack* fastTrack = &current->mFastTracks[i];
306                    AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
307                    logWriter->logf("bp %d i=%d %p", __LINE__, i, bufferProvider);
308                    ALOG_ASSERT(bufferProvider != NULL && fastTrackNames[i] == -1);
309                    if (bufferProvider == NULL ||
310                            bufferProvider->getValid() != AudioBufferProvider::kValid) {
311                        logWriter->logTimestamp();
312                        logWriter->logf("added invalid %#x", i);
313                    }
314                    if (mixer != NULL) {
315                        // calling getTrackName with default channel mask and a random invalid
316                        //   sessionId (no effects here)
317                        name = mixer->getTrackName(AUDIO_CHANNEL_OUT_STEREO, -555);
318                        ALOG_ASSERT(name >= 0);
319                        fastTrackNames[i] = name;
320                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::FAST_INDEX,
321                                (void *) i);
322                        mixer->setBufferProvider(name, bufferProvider);
323                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER,
324                                (void *) mixBuffer);
325                        // newly allocated track names default to full scale volume
326                        if (fastTrack->mSampleRate != 0 && fastTrack->mSampleRate != sampleRate) {
327                            mixer->setParameter(name, AudioMixer::RESAMPLE,
328                                    AudioMixer::SAMPLE_RATE, (void*) fastTrack->mSampleRate);
329                        }
330                        mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
331                                (void *) fastTrack->mChannelMask);
332                        if (!mixer->enabled(name)) {
333                            logWriter->logf("enable %d i=%d name=%d", __LINE__, i, name);
334                        }
335                        mixer->enable(name);
336                    }
337                    generations[i] = fastTrack->mGeneration;
338                }
339
340                // finally process (potentially) modified tracks; these use the same slot
341                // but may have a different buffer provider or volume provider
342                unsigned modifiedTracks = currentTrackMask & previousTrackMask;
343                if (modifiedTracks) {
344                    logWriter->logf("pot. mod. %#x", modifiedTracks);
345                }
346                unsigned actuallyModifiedTracks = 0;
347                while (modifiedTracks != 0) {
348                    i = __builtin_ctz(modifiedTracks);
349                    modifiedTracks &= ~(1 << i);
350                    const FastTrack* fastTrack = &current->mFastTracks[i];
351                    if (fastTrack->mGeneration != generations[i]) {
352                        actuallyModifiedTracks |= 1 << i;
353                        AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
354                        logWriter->logf("bp %d i=%d %p", __LINE__, i, bufferProvider);
355                        ALOG_ASSERT(bufferProvider != NULL);
356                        if (bufferProvider == NULL ||
357                                bufferProvider->getValid() != AudioBufferProvider::kValid) {
358                            logWriter->logTimestamp();
359                            logWriter->logf("modified invalid %#x", i);
360                        }
361                        if (mixer != NULL) {
362                            name = fastTrackNames[i];
363                            ALOG_ASSERT(name >= 0);
364                            mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::FAST_INDEX,
365                                    (void *) i);
366                            mixer->setBufferProvider(name, bufferProvider);
367                            if (fastTrack->mVolumeProvider == NULL) {
368                                mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
369                                        (void *)0x1000);
370                                mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
371                                        (void *)0x1000);
372                            }
373                            if (fastTrack->mSampleRate != 0 &&
374                                    fastTrack->mSampleRate != sampleRate) {
375                                mixer->setParameter(name, AudioMixer::RESAMPLE,
376                                        AudioMixer::SAMPLE_RATE, (void*) fastTrack->mSampleRate);
377                            } else {
378                                mixer->setParameter(name, AudioMixer::RESAMPLE,
379                                        AudioMixer::REMOVE, NULL);
380                            }
381                            mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK,
382                                    (void *) fastTrack->mChannelMask);
383                            // already enabled
384                        }
385                        generations[i] = fastTrack->mGeneration;
386                    }
387                }
388                if (actuallyModifiedTracks) {
389                    logWriter->logf("act. mod. %#x", actuallyModifiedTracks);
390                }
391
392                fastTracksGen = current->mFastTracksGen;
393
394                dumpState->mNumTracks = popcount(currentTrackMask);
395            }
396
397#if 1   // FIXME shouldn't need this
398            // only process state change once
399            previous = current;
400#endif
401        }
402
403        // do work using current state here
404        if ((command & FastMixerState::MIX) && (mixer != NULL) && isWarm) {
405            ALOG_ASSERT(mixBuffer != NULL);
406            // for each track, update volume and check for underrun
407            unsigned currentTrackMask = current->mTrackMask;
408            logWriter->logf("ctm %#x", currentTrackMask);
409            while (currentTrackMask != 0) {
410                i = __builtin_ctz(currentTrackMask);
411                currentTrackMask &= ~(1 << i);
412                const FastTrack* fastTrack = &current->mFastTracks[i];
413                int name = fastTrackNames[i];
414                ALOG_ASSERT(name >= 0);
415                if (fastTrack->mVolumeProvider != NULL) {
416                    uint32_t vlr = fastTrack->mVolumeProvider->getVolumeLR();
417                    mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0,
418                            (void *)(vlr & 0xFFFF));
419                    mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1,
420                            (void *)(vlr >> 16));
421                }
422                // FIXME The current implementation of framesReady() for fast tracks
423                // takes a tryLock, which can block
424                // up to 1 ms.  If enough active tracks all blocked in sequence, this would result
425                // in the overall fast mix cycle being delayed.  Should use a non-blocking FIFO.
426                size_t framesReady = fastTrack->mBufferProvider->framesReady();
427                if (ATRACE_ENABLED()) {
428                    // I wish we had formatted trace names
429                    char traceName[16];
430                    strcpy(traceName, "framesReady");
431                    traceName[11] = i + (i < 10 ? '0' : 'A' - 10);
432                    traceName[12] = '\0';
433                    ATRACE_INT(traceName, framesReady);
434                }
435                FastTrackDump *ftDump = &dumpState->mTracks[i];
436                FastTrackUnderruns underruns = ftDump->mUnderruns;
437                if (framesReady < frameCount) {
438                    if (framesReady == 0) {
439                        underruns.mBitFields.mEmpty++;
440                        underruns.mBitFields.mMostRecent = UNDERRUN_EMPTY;
441                        mixer->disable(name);
442                    } else {
443                        // allow mixing partial buffer
444                        underruns.mBitFields.mPartial++;
445                        underruns.mBitFields.mMostRecent = UNDERRUN_PARTIAL;
446                        if (!mixer->enabled(name)) {
447                            logWriter->logf("enable %d i=%d name=%d", __LINE__, i, name);
448                        }
449                        mixer->enable(name);
450                    }
451                } else {
452                    underruns.mBitFields.mFull++;
453                    underruns.mBitFields.mMostRecent = UNDERRUN_FULL;
454                    if (!mixer->enabled(name)) {
455                        logWriter->logf("enable %d i=%d name=%d", __LINE__, i, name);
456                    }
457                    mixer->enable(name);
458                }
459                ftDump->mUnderruns = underruns;
460                ftDump->mFramesReady = framesReady;
461                AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider;
462                if (bufferProvider == NULL ||
463                        bufferProvider->getValid() != AudioBufferProvider::kValid) {
464                    logWriter->logTimestamp();
465                    logWriter->logf("mixing invalid %#x", i);
466                }
467            }
468
469            int64_t pts;
470            if (outputSink == NULL || (OK != outputSink->getNextWriteTimestamp(&pts)))
471                pts = AudioBufferProvider::kInvalidPTS;
472
473            // process() is CPU-bound
474            mixer->process(pts);
475            mixBufferState = MIXED;
476        } else if (mixBufferState == MIXED) {
477            mixBufferState = UNDEFINED;
478        }
479        bool attemptedWrite = false;
480        //bool didFullWrite = false;    // dumpsys could display a count of partial writes
481        if ((command & FastMixerState::WRITE) && (outputSink != NULL) && (mixBuffer != NULL)) {
482            if (mixBufferState == UNDEFINED) {
483                memset(mixBuffer, 0, frameCount * 2 * sizeof(short));
484                mixBufferState = ZEROED;
485            }
486            if (teeSink != NULL) {
487                (void) teeSink->write(mixBuffer, frameCount);
488            }
489            // FIXME write() is non-blocking and lock-free for a properly implemented NBAIO sink,
490            //       but this code should be modified to handle both non-blocking and blocking sinks
491            dumpState->mWriteSequence++;
492            ATRACE_BEGIN("write");
493            ssize_t framesWritten = outputSink->write(mixBuffer, frameCount);
494            ATRACE_END();
495            dumpState->mWriteSequence++;
496            if (framesWritten >= 0) {
497                ALOG_ASSERT(framesWritten <= frameCount);
498                dumpState->mFramesWritten += framesWritten;
499                //if ((size_t) framesWritten == frameCount) {
500                //    didFullWrite = true;
501                //}
502            } else {
503                dumpState->mWriteErrors++;
504            }
505            attemptedWrite = true;
506            // FIXME count # of writes blocked excessively, CPU usage, etc. for dump
507        }
508
509        // To be exactly periodic, compute the next sleep time based on current time.
510        // This code doesn't have long-term stability when the sink is non-blocking.
511        // FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
512        struct timespec newTs;
513        int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
514        if (rc == 0) {
515            logWriter->logTimestamp(newTs);
516            if (oldTsValid) {
517                time_t sec = newTs.tv_sec - oldTs.tv_sec;
518                long nsec = newTs.tv_nsec - oldTs.tv_nsec;
519                ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
520                        "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
521                        oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
522                if (nsec < 0) {
523                    --sec;
524                    nsec += 1000000000;
525                }
526                // To avoid an initial underrun on fast tracks after exiting standby,
527                // do not start pulling data from tracks and mixing until warmup is complete.
528                // Warmup is considered complete after the earlier of:
529                //      MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs
530                //      MAX_WARMUP_CYCLES write() attempts.
531                // This is overly conservative, but to get better accuracy requires a new HAL API.
532                if (!isWarm && attemptedWrite) {
533                    measuredWarmupTs.tv_sec += sec;
534                    measuredWarmupTs.tv_nsec += nsec;
535                    if (measuredWarmupTs.tv_nsec >= 1000000000) {
536                        measuredWarmupTs.tv_sec++;
537                        measuredWarmupTs.tv_nsec -= 1000000000;
538                    }
539                    ++warmupCycles;
540                    if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) ||
541                            (warmupCycles >= MAX_WARMUP_CYCLES)) {
542                        isWarm = true;
543                        dumpState->mMeasuredWarmupTs = measuredWarmupTs;
544                        dumpState->mWarmupCycles = warmupCycles;
545                    }
546                }
547                sleepNs = -1;
548              if (isWarm) {
549                if (sec > 0 || nsec > underrunNs) {
550                    ATRACE_NAME("underrun");
551                    // FIXME only log occasionally
552                    ALOGV("underrun: time since last cycle %d.%03ld sec",
553                            (int) sec, nsec / 1000000L);
554                    dumpState->mUnderruns++;
555                    ignoreNextOverrun = true;
556                } else if (nsec < overrunNs) {
557                    if (ignoreNextOverrun) {
558                        ignoreNextOverrun = false;
559                    } else {
560                        // FIXME only log occasionally
561                        ALOGV("overrun: time since last cycle %d.%03ld sec",
562                                (int) sec, nsec / 1000000L);
563                        dumpState->mOverruns++;
564                    }
565                    // This forces a minimum cycle time. It:
566                    //   - compensates for an audio HAL with jitter due to sample rate conversion
567                    //   - works with a variable buffer depth audio HAL that never pulls at a rate
568                    //     < than overrunNs per buffer.
569                    //   - recovers from overrun immediately after underrun
570                    // It doesn't work with a non-blocking audio HAL.
571                    sleepNs = forceNs - nsec;
572                } else {
573                    ignoreNextOverrun = false;
574                }
575              }
576#ifdef FAST_MIXER_STATISTICS
577              if (isWarm) {
578                // advance the FIFO queue bounds
579                size_t i = bounds & (FastMixerDumpState::kSamplingN - 1);
580                bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF);
581                if (full) {
582                    bounds += 0x10000;
583                } else if (!(bounds & (FastMixerDumpState::kSamplingN - 1))) {
584                    full = true;
585                }
586                // compute the delta value of clock_gettime(CLOCK_MONOTONIC)
587                uint32_t monotonicNs = nsec;
588                if (sec > 0 && sec < 4) {
589                    monotonicNs += sec * 1000000000;
590                }
591                // compute the raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
592                uint32_t loadNs = 0;
593                struct timespec newLoad;
594                rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
595                if (rc == 0) {
596                    if (oldLoadValid) {
597                        sec = newLoad.tv_sec - oldLoad.tv_sec;
598                        nsec = newLoad.tv_nsec - oldLoad.tv_nsec;
599                        if (nsec < 0) {
600                            --sec;
601                            nsec += 1000000000;
602                        }
603                        loadNs = nsec;
604                        if (sec > 0 && sec < 4) {
605                            loadNs += sec * 1000000000;
606                        }
607                    } else {
608                        // first time through the loop
609                        oldLoadValid = true;
610                    }
611                    oldLoad = newLoad;
612                }
613#ifdef CPU_FREQUENCY_STATISTICS
614                // get the absolute value of CPU clock frequency in kHz
615                int cpuNum = sched_getcpu();
616                uint32_t kHz = tcu.getCpukHz(cpuNum);
617                kHz = (kHz << 4) | (cpuNum & 0xF);
618#endif
619                // save values in FIFO queues for dumpsys
620                // these stores #1, #2, #3 are not atomic with respect to each other,
621                // or with respect to store #4 below
622                dumpState->mMonotonicNs[i] = monotonicNs;
623                dumpState->mLoadNs[i] = loadNs;
624#ifdef CPU_FREQUENCY_STATISTICS
625                dumpState->mCpukHz[i] = kHz;
626#endif
627                // this store #4 is not atomic with respect to stores #1, #2, #3 above, but
628                // the newest open and oldest closed halves are atomic with respect to each other
629                dumpState->mBounds = bounds;
630                ATRACE_INT("cycle_ms", monotonicNs / 1000000);
631                ATRACE_INT("load_us", loadNs / 1000);
632              }
633#endif
634            } else {
635                // first time through the loop
636                oldTsValid = true;
637                sleepNs = periodNs;
638                ignoreNextOverrun = true;
639            }
640            oldTs = newTs;
641        } else {
642            // monotonic clock is broken
643            oldTsValid = false;
644            sleepNs = periodNs;
645        }
646
647
648    }   // for (;;)
649
650    // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
651}
652
653FastMixerDumpState::FastMixerDumpState() :
654    mCommand(FastMixerState::INITIAL), mWriteSequence(0), mFramesWritten(0),
655    mNumTracks(0), mWriteErrors(0), mUnderruns(0), mOverruns(0),
656    mSampleRate(0), mFrameCount(0), /* mMeasuredWarmupTs({0, 0}), */ mWarmupCycles(0),
657    mTrackMask(0)
658#ifdef FAST_MIXER_STATISTICS
659    , mBounds(0)
660#endif
661{
662    mMeasuredWarmupTs.tv_sec = 0;
663    mMeasuredWarmupTs.tv_nsec = 0;
664    // sample arrays aren't accessed atomically with respect to the bounds,
665    // so clearing reduces chance for dumpsys to read random uninitialized samples
666    memset(&mMonotonicNs, 0, sizeof(mMonotonicNs));
667    memset(&mLoadNs, 0, sizeof(mLoadNs));
668#ifdef CPU_FREQUENCY_STATISTICS
669    memset(&mCpukHz, 0, sizeof(mCpukHz));
670#endif
671}
672
673FastMixerDumpState::~FastMixerDumpState()
674{
675}
676
677// helper function called by qsort()
678static int compare_uint32_t(const void *pa, const void *pb)
679{
680    uint32_t a = *(const uint32_t *)pa;
681    uint32_t b = *(const uint32_t *)pb;
682    if (a < b) {
683        return -1;
684    } else if (a > b) {
685        return 1;
686    } else {
687        return 0;
688    }
689}
690
691void FastMixerDumpState::dump(int fd)
692{
693    if (mCommand == FastMixerState::INITIAL) {
694        fdprintf(fd, "FastMixer not initialized\n");
695        return;
696    }
697#define COMMAND_MAX 32
698    char string[COMMAND_MAX];
699    switch (mCommand) {
700    case FastMixerState::INITIAL:
701        strcpy(string, "INITIAL");
702        break;
703    case FastMixerState::HOT_IDLE:
704        strcpy(string, "HOT_IDLE");
705        break;
706    case FastMixerState::COLD_IDLE:
707        strcpy(string, "COLD_IDLE");
708        break;
709    case FastMixerState::EXIT:
710        strcpy(string, "EXIT");
711        break;
712    case FastMixerState::MIX:
713        strcpy(string, "MIX");
714        break;
715    case FastMixerState::WRITE:
716        strcpy(string, "WRITE");
717        break;
718    case FastMixerState::MIX_WRITE:
719        strcpy(string, "MIX_WRITE");
720        break;
721    default:
722        snprintf(string, COMMAND_MAX, "%d", mCommand);
723        break;
724    }
725    double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1000.0) +
726            (mMeasuredWarmupTs.tv_nsec / 1000000.0);
727    double mixPeriodSec = (double) mFrameCount / (double) mSampleRate;
728    fdprintf(fd, "FastMixer command=%s writeSequence=%u framesWritten=%u\n"
729                 "          numTracks=%u writeErrors=%u underruns=%u overruns=%u\n"
730                 "          sampleRate=%u frameCount=%u measuredWarmup=%.3g ms, warmupCycles=%u\n"
731                 "          mixPeriod=%.2f ms\n",
732                 string, mWriteSequence, mFramesWritten,
733                 mNumTracks, mWriteErrors, mUnderruns, mOverruns,
734                 mSampleRate, mFrameCount, measuredWarmupMs, mWarmupCycles,
735                 mixPeriodSec * 1e3);
736#ifdef FAST_MIXER_STATISTICS
737    // find the interval of valid samples
738    uint32_t bounds = mBounds;
739    uint32_t newestOpen = bounds & 0xFFFF;
740    uint32_t oldestClosed = bounds >> 16;
741    uint32_t n = (newestOpen - oldestClosed) & 0xFFFF;
742    if (n > kSamplingN) {
743        ALOGE("too many samples %u", n);
744        n = kSamplingN;
745    }
746    // statistics for monotonic (wall clock) time, thread raw CPU load in time, CPU clock frequency,
747    // and adjusted CPU load in MHz normalized for CPU clock frequency
748    CentralTendencyStatistics wall, loadNs;
749#ifdef CPU_FREQUENCY_STATISTICS
750    CentralTendencyStatistics kHz, loadMHz;
751    uint32_t previousCpukHz = 0;
752#endif
753    // Assuming a normal distribution for cycle times, three standard deviations on either side of
754    // the mean account for 99.73% of the population.  So if we take each tail to be 1/1000 of the
755    // sample set, we get 99.8% combined, or close to three standard deviations.
756    static const uint32_t kTailDenominator = 1000;
757    uint32_t *tail = n >= kTailDenominator ? new uint32_t[n] : NULL;
758    // loop over all the samples
759    for (uint32_t j = 0; j < n; ++j) {
760        size_t i = oldestClosed++ & (kSamplingN - 1);
761        uint32_t wallNs = mMonotonicNs[i];
762        if (tail != NULL) {
763            tail[j] = wallNs;
764        }
765        wall.sample(wallNs);
766        uint32_t sampleLoadNs = mLoadNs[i];
767        loadNs.sample(sampleLoadNs);
768#ifdef CPU_FREQUENCY_STATISTICS
769        uint32_t sampleCpukHz = mCpukHz[i];
770        // skip bad kHz samples
771        if ((sampleCpukHz & ~0xF) != 0) {
772            kHz.sample(sampleCpukHz >> 4);
773            if (sampleCpukHz == previousCpukHz) {
774                double megacycles = (double) sampleLoadNs * (double) (sampleCpukHz >> 4) * 1e-12;
775                double adjMHz = megacycles / mixPeriodSec;  // _not_ wallNs * 1e9
776                loadMHz.sample(adjMHz);
777            }
778        }
779        previousCpukHz = sampleCpukHz;
780#endif
781    }
782    fdprintf(fd, "Simple moving statistics over last %.1f seconds:\n", wall.n() * mixPeriodSec);
783    fdprintf(fd, "  wall clock time in ms per mix cycle:\n"
784                 "    mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
785                 wall.mean()*1e-6, wall.minimum()*1e-6, wall.maximum()*1e-6, wall.stddev()*1e-6);
786    fdprintf(fd, "  raw CPU load in us per mix cycle:\n"
787                 "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
788                 loadNs.mean()*1e-3, loadNs.minimum()*1e-3, loadNs.maximum()*1e-3,
789                 loadNs.stddev()*1e-3);
790#ifdef CPU_FREQUENCY_STATISTICS
791    fdprintf(fd, "  CPU clock frequency in MHz:\n"
792                 "    mean=%.0f min=%.0f max=%.0f stddev=%.0f\n",
793                 kHz.mean()*1e-3, kHz.minimum()*1e-3, kHz.maximum()*1e-3, kHz.stddev()*1e-3);
794    fdprintf(fd, "  adjusted CPU load in MHz (i.e. normalized for CPU clock frequency):\n"
795                 "    mean=%.1f min=%.1f max=%.1f stddev=%.1f\n",
796                 loadMHz.mean(), loadMHz.minimum(), loadMHz.maximum(), loadMHz.stddev());
797#endif
798    if (tail != NULL) {
799        qsort(tail, n, sizeof(uint32_t), compare_uint32_t);
800        // assume same number of tail samples on each side, left and right
801        uint32_t count = n / kTailDenominator;
802        CentralTendencyStatistics left, right;
803        for (uint32_t i = 0; i < count; ++i) {
804            left.sample(tail[i]);
805            right.sample(tail[n - (i + 1)]);
806        }
807        fdprintf(fd, "Distribution of mix cycle times in ms for the tails (> ~3 stddev outliers):\n"
808                     "  left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n"
809                     "  right tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n",
810                     left.mean()*1e-6, left.minimum()*1e-6, left.maximum()*1e-6, left.stddev()*1e-6,
811                     right.mean()*1e-6, right.minimum()*1e-6, right.maximum()*1e-6,
812                     right.stddev()*1e-6);
813        delete[] tail;
814    }
815#endif
816    // The active track mask and track states are updated non-atomically.
817    // So if we relied on isActive to decide whether to display,
818    // then we might display an obsolete track or omit an active track.
819    // Instead we always display all tracks, with an indication
820    // of whether we think the track is active.
821    uint32_t trackMask = mTrackMask;
822    fdprintf(fd, "Fast tracks: kMaxFastTracks=%u activeMask=%#x\n",
823            FastMixerState::kMaxFastTracks, trackMask);
824    fdprintf(fd, "Index Active Full Partial Empty  Recent Ready\n");
825    for (uint32_t i = 0; i < FastMixerState::kMaxFastTracks; ++i, trackMask >>= 1) {
826        bool isActive = trackMask & 1;
827        const FastTrackDump *ftDump = &mTracks[i];
828        const FastTrackUnderruns& underruns = ftDump->mUnderruns;
829        const char *mostRecent;
830        switch (underruns.mBitFields.mMostRecent) {
831        case UNDERRUN_FULL:
832            mostRecent = "full";
833            break;
834        case UNDERRUN_PARTIAL:
835            mostRecent = "partial";
836            break;
837        case UNDERRUN_EMPTY:
838            mostRecent = "empty";
839            break;
840        default:
841            mostRecent = "?";
842            break;
843        }
844        fdprintf(fd, "%5u %6s %4u %7u %5u %7s %5u\n", i, isActive ? "yes" : "no",
845                (underruns.mBitFields.mFull) & UNDERRUN_MASK,
846                (underruns.mBitFields.mPartial) & UNDERRUN_MASK,
847                (underruns.mBitFields.mEmpty) & UNDERRUN_MASK,
848                mostRecent, ftDump->mFramesReady);
849    }
850}
851
852}   // namespace android
853