SensorManager.java revision 1f9b32f006f7c506d9df5bf73294710665746397
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.os.Handler;
20import android.util.Log;
21import android.util.SparseArray;
22
23import java.util.ArrayList;
24import java.util.Collections;
25import java.util.List;
26
27/**
28 * <p>
29 * SensorManager lets you access the device's {@link android.hardware.Sensor
30 * sensors}. Get an instance of this class by calling
31 * {@link android.content.Context#getSystemService(java.lang.String)
32 * Context.getSystemService()} with the argument
33 * {@link android.content.Context#SENSOR_SERVICE}.
34 * </p>
35 * <p>
36 * Always make sure to disable sensors you don't need, especially when your
37 * activity is paused. Failing to do so can drain the battery in just a few
38 * hours. Note that the system will <i>not</i> disable sensors automatically when
39 * the screen turns off.
40 * </p>
41 * <p class="note">
42 * Note: Don't use this mechanism with a Trigger Sensor, have a look
43 * at {@link TriggerEventListener}. {@link Sensor#TYPE_SIGNIFICANT_MOTION}
44 * is an example of a trigger sensor.
45 * </p>
46 * <pre class="prettyprint">
47 * public class SensorActivity extends Activity, implements SensorEventListener {
48 *     private final SensorManager mSensorManager;
49 *     private final Sensor mAccelerometer;
50 *
51 *     public SensorActivity() {
52 *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
53 *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
54 *     }
55 *
56 *     protected void onResume() {
57 *         super.onResume();
58 *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
59 *     }
60 *
61 *     protected void onPause() {
62 *         super.onPause();
63 *         mSensorManager.unregisterListener(this);
64 *     }
65 *
66 *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
67 *     }
68 *
69 *     public void onSensorChanged(SensorEvent event) {
70 *     }
71 * }
72 * </pre>
73 *
74 * @see SensorEventListener
75 * @see SensorEvent
76 * @see Sensor
77 *
78 */
79public abstract class SensorManager {
80    /** @hide */
81    protected static final String TAG = "SensorManager";
82
83    private static final float[] mTempMatrix = new float[16];
84
85    // Cached lists of sensors by type.  Guarded by mSensorListByType.
86    private final SparseArray<List<Sensor>> mSensorListByType =
87            new SparseArray<List<Sensor>>();
88
89    // Legacy sensor manager implementation.  Guarded by mSensorListByType during initialization.
90    private LegacySensorManager mLegacySensorManager;
91
92    /* NOTE: sensor IDs must be a power of 2 */
93
94    /**
95     * A constant describing an orientation sensor. See
96     * {@link android.hardware.SensorListener SensorListener} for more details.
97     *
98     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
99     */
100    @Deprecated
101    public static final int SENSOR_ORIENTATION = 1 << 0;
102
103    /**
104     * A constant describing an accelerometer. See
105     * {@link android.hardware.SensorListener SensorListener} for more details.
106     *
107     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
108     */
109    @Deprecated
110    public static final int SENSOR_ACCELEROMETER = 1 << 1;
111
112    /**
113     * A constant describing a temperature sensor See
114     * {@link android.hardware.SensorListener SensorListener} for more details.
115     *
116     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
117     */
118    @Deprecated
119    public static final int SENSOR_TEMPERATURE = 1 << 2;
120
121    /**
122     * A constant describing a magnetic sensor See
123     * {@link android.hardware.SensorListener SensorListener} for more details.
124     *
125     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
126     */
127    @Deprecated
128    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
129
130    /**
131     * A constant describing an ambient light sensor See
132     * {@link android.hardware.SensorListener SensorListener} for more details.
133     *
134     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
135     */
136    @Deprecated
137    public static final int SENSOR_LIGHT = 1 << 4;
138
139    /**
140     * A constant describing a proximity sensor See
141     * {@link android.hardware.SensorListener SensorListener} for more details.
142     *
143     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
144     */
145    @Deprecated
146    public static final int SENSOR_PROXIMITY = 1 << 5;
147
148    /**
149     * A constant describing a Tricorder See
150     * {@link android.hardware.SensorListener SensorListener} for more details.
151     *
152     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
153     */
154    @Deprecated
155    public static final int SENSOR_TRICORDER = 1 << 6;
156
157    /**
158     * A constant describing an orientation sensor. See
159     * {@link android.hardware.SensorListener SensorListener} for more details.
160     *
161     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
162     */
163    @Deprecated
164    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
165
166    /**
167     * A constant that includes all sensors
168     *
169     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
170     */
171    @Deprecated
172    public static final int SENSOR_ALL = 0x7F;
173
174    /**
175     * Smallest sensor ID
176     *
177     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
178     */
179    @Deprecated
180    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
181
182    /**
183     * Largest sensor ID
184     *
185     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
186     */
187    @Deprecated
188    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
189
190
191    /**
192     * Index of the X value in the array returned by
193     * {@link android.hardware.SensorListener#onSensorChanged}
194     *
195     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
196     */
197    @Deprecated
198    public static final int DATA_X = 0;
199
200    /**
201     * Index of the Y value in the array returned by
202     * {@link android.hardware.SensorListener#onSensorChanged}
203     *
204     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
205     */
206    @Deprecated
207    public static final int DATA_Y = 1;
208
209    /**
210     * Index of the Z value in the array returned by
211     * {@link android.hardware.SensorListener#onSensorChanged}
212     *
213     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
214     */
215    @Deprecated
216    public static final int DATA_Z = 2;
217
218    /**
219     * Offset to the untransformed values in the array returned by
220     * {@link android.hardware.SensorListener#onSensorChanged}
221     *
222     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
223     */
224    @Deprecated
225    public static final int RAW_DATA_INDEX = 3;
226
227    /**
228     * Index of the untransformed X value in the array returned by
229     * {@link android.hardware.SensorListener#onSensorChanged}
230     *
231     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
232     */
233    @Deprecated
234    public static final int RAW_DATA_X = 3;
235
236    /**
237     * Index of the untransformed Y value in the array returned by
238     * {@link android.hardware.SensorListener#onSensorChanged}
239     *
240     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
241     */
242    @Deprecated
243    public static final int RAW_DATA_Y = 4;
244
245    /**
246     * Index of the untransformed Z value in the array returned by
247     * {@link android.hardware.SensorListener#onSensorChanged}
248     *
249     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
250     */
251    @Deprecated
252    public static final int RAW_DATA_Z = 5;
253
254    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
255    public static final float STANDARD_GRAVITY = 9.80665f;
256
257    /** Sun's gravity in SI units (m/s^2) */
258    public static final float GRAVITY_SUN             = 275.0f;
259    /** Mercury's gravity in SI units (m/s^2) */
260    public static final float GRAVITY_MERCURY         = 3.70f;
261    /** Venus' gravity in SI units (m/s^2) */
262    public static final float GRAVITY_VENUS           = 8.87f;
263    /** Earth's gravity in SI units (m/s^2) */
264    public static final float GRAVITY_EARTH           = 9.80665f;
265    /** The Moon's gravity in SI units (m/s^2) */
266    public static final float GRAVITY_MOON            = 1.6f;
267    /** Mars' gravity in SI units (m/s^2) */
268    public static final float GRAVITY_MARS            = 3.71f;
269    /** Jupiter's gravity in SI units (m/s^2) */
270    public static final float GRAVITY_JUPITER         = 23.12f;
271    /** Saturn's gravity in SI units (m/s^2) */
272    public static final float GRAVITY_SATURN          = 8.96f;
273    /** Uranus' gravity in SI units (m/s^2) */
274    public static final float GRAVITY_URANUS          = 8.69f;
275    /** Neptune's gravity in SI units (m/s^2) */
276    public static final float GRAVITY_NEPTUNE         = 11.0f;
277    /** Pluto's gravity in SI units (m/s^2) */
278    public static final float GRAVITY_PLUTO           = 0.6f;
279    /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
280    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
281    /** Gravity on the island */
282    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
283
284
285    /** Maximum magnetic field on Earth's surface */
286    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
287    /** Minimum magnetic field on Earth's surface */
288    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
289
290
291    /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
292    public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
293
294
295    /** Maximum luminance of sunlight in lux */
296    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
297    /** luminance of sunlight in lux */
298    public static final float LIGHT_SUNLIGHT     = 110000.0f;
299    /** luminance in shade in lux */
300    public static final float LIGHT_SHADE        = 20000.0f;
301    /** luminance under an overcast sky in lux */
302    public static final float LIGHT_OVERCAST     = 10000.0f;
303    /** luminance at sunrise in lux */
304    public static final float LIGHT_SUNRISE      = 400.0f;
305    /** luminance under a cloudy sky in lux */
306    public static final float LIGHT_CLOUDY       = 100.0f;
307    /** luminance at night with full moon in lux */
308    public static final float LIGHT_FULLMOON     = 0.25f;
309    /** luminance at night with no moon in lux*/
310    public static final float LIGHT_NO_MOON      = 0.001f;
311
312
313    /** get sensor data as fast as possible */
314    public static final int SENSOR_DELAY_FASTEST = 0;
315    /** rate suitable for games */
316    public static final int SENSOR_DELAY_GAME = 1;
317    /** rate suitable for the user interface  */
318    public static final int SENSOR_DELAY_UI = 2;
319    /** rate (default) suitable for screen orientation changes */
320    public static final int SENSOR_DELAY_NORMAL = 3;
321
322
323    /**
324      * The values returned by this sensor cannot be trusted because the sensor
325      * had no contact with what it was measuring (for example, the heart rate
326      * monitor is not in contact with the user).
327      */
328    public static final int SENSOR_STATUS_NO_CONTACT = -1;
329
330    /**
331     * The values returned by this sensor cannot be trusted, calibration is
332     * needed or the environment doesn't allow readings
333     */
334    public static final int SENSOR_STATUS_UNRELIABLE = 0;
335
336    /**
337     * This sensor is reporting data with low accuracy, calibration with the
338     * environment is needed
339     */
340    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
341
342    /**
343     * This sensor is reporting data with an average level of accuracy,
344     * calibration with the environment may improve the readings
345     */
346    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
347
348    /** This sensor is reporting data with maximum accuracy */
349    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
350
351    /** see {@link #remapCoordinateSystem} */
352    public static final int AXIS_X = 1;
353    /** see {@link #remapCoordinateSystem} */
354    public static final int AXIS_Y = 2;
355    /** see {@link #remapCoordinateSystem} */
356    public static final int AXIS_Z = 3;
357    /** see {@link #remapCoordinateSystem} */
358    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
359    /** see {@link #remapCoordinateSystem} */
360    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
361    /** see {@link #remapCoordinateSystem} */
362    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
363
364
365    /**
366     * {@hide}
367     */
368    public SensorManager() {
369    }
370
371    /**
372     * Gets the full list of sensors that are available.
373     * @hide
374     */
375    protected abstract List<Sensor> getFullSensorList();
376
377    /**
378     * @return available sensors.
379     * @deprecated This method is deprecated, use
380     *             {@link SensorManager#getSensorList(int)} instead
381     */
382    @Deprecated
383    public int getSensors() {
384        return getLegacySensorManager().getSensors();
385    }
386
387    /**
388     * Use this method to get the list of available sensors of a certain type.
389     * Make multiple calls to get sensors of different types or use
390     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
391     * sensors.
392     *
393     * <p class="note">
394     * NOTE: Both wake-up and non wake-up sensors matching the given type are
395     * returned. Check {@link Sensor#isWakeUpSensor()} to know the wake-up properties
396     * of the returned {@link Sensor}.
397     * </p>
398     *
399     * @param type
400     *        of sensors requested
401     *
402     * @return a list of sensors matching the asked type.
403     *
404     * @see #getDefaultSensor(int)
405     * @see Sensor
406     */
407    public List<Sensor> getSensorList(int type) {
408        // cache the returned lists the first time
409        List<Sensor> list;
410        final List<Sensor> fullList = getFullSensorList();
411        synchronized (mSensorListByType) {
412            list = mSensorListByType.get(type);
413            if (list == null) {
414                if (type == Sensor.TYPE_ALL) {
415                    list = fullList;
416                } else {
417                    list = new ArrayList<Sensor>();
418                    for (Sensor i : fullList) {
419                        if (i.getType() == type)
420                            list.add(i);
421                    }
422                }
423                list = Collections.unmodifiableList(list);
424                mSensorListByType.append(type, list);
425            }
426        }
427        return list;
428    }
429
430    /**
431     * Use this method to get the default sensor for a given type. Note that the
432     * returned sensor could be a composite sensor, and its data could be
433     * averaged or filtered. If you need to access the raw sensors use
434     * {@link SensorManager#getSensorList(int) getSensorList}.
435     *
436     * @param type
437     *         of sensors requested
438     *
439     * @return the default sensor matching the requested type if one exists and the application
440     *         has the necessary permissions, or null otherwise.
441     *
442     * @see #getSensorList(int)
443     * @see Sensor
444     */
445    public Sensor getDefaultSensor(int type) {
446        // TODO: need to be smarter, for now, just return the 1st sensor
447        List<Sensor> l = getSensorList(type);
448        boolean wakeUpSensor = false;
449        // For the following sensor types, return a wake-up sensor. These types are by default
450        // defined as wake-up sensors. For the rest of the SDK defined sensor types return a
451        // non_wake-up version.
452        if (type == Sensor.TYPE_PROXIMITY || type == Sensor.TYPE_SIGNIFICANT_MOTION ||
453                type == Sensor.TYPE_TILT_DETECTOR || type == Sensor.TYPE_WAKE_GESTURE ||
454                type == Sensor.TYPE_GLANCE_GESTURE || type == Sensor.TYPE_PICK_UP_GESTURE) {
455            wakeUpSensor = true;
456        }
457
458        for (Sensor sensor : l) {
459            if (sensor.isWakeUpSensor() == wakeUpSensor) return sensor;
460        }
461        return null;
462    }
463
464    /**
465     * Return a Sensor with the given type and wakeUp properties. If multiple sensors of this
466     * type exist, any one of them may be returned.
467     * <p>
468     * For example,
469     * <ul>
470     *     <li>getDefaultSensor({@link Sensor#TYPE_ACCELEROMETER}, true) returns a wake-up accelerometer
471     *     sensor if it exists. </li>
472     *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, false) returns a non wake-up proximity
473     *     sensor if it exists. </li>
474     *     <li>getDefaultSensor({@link Sensor#TYPE_PROXIMITY}, true) returns a wake-up proximity sensor
475     *     which is the same as the Sensor returned by {@link #getDefaultSensor(int)}. </li>
476     * </ul>
477     * </p>
478     * <p class="note">
479     * Note: Sensors like {@link Sensor#TYPE_PROXIMITY} and {@link Sensor#TYPE_SIGNIFICANT_MOTION}
480     * are declared as wake-up sensors by default.
481     * </p>
482     * @param type
483     *        type of sensor requested
484     * @param wakeUp
485     *        flag to indicate whether the Sensor is a wake-up or non wake-up sensor.
486     * @return the default sensor matching the requested type and wakeUp properties if one exists
487     *         and the application has the necessary permissions, or null otherwise.
488     * @see Sensor#isWakeUpSensor()
489     */
490    public Sensor getDefaultSensor(int type, boolean wakeUp) {
491        List<Sensor> l = getSensorList(type);
492        for (Sensor sensor : l) {
493            if (sensor.isWakeUpSensor() == wakeUp)
494                return sensor;
495        }
496        return null;
497    }
498
499    /**
500     * Registers a listener for given sensors.
501     *
502     * @deprecated This method is deprecated, use
503     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
504     *             instead.
505     *
506     * @param listener
507     *        sensor listener object
508     *
509     * @param sensors
510     *        a bit masks of the sensors to register to
511     *
512     * @return <code>true</code> if the sensor is supported and successfully
513     *         enabled
514     */
515    @Deprecated
516    public boolean registerListener(SensorListener listener, int sensors) {
517        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
518    }
519
520    /**
521     * Registers a SensorListener for given sensors.
522     *
523     * @deprecated This method is deprecated, use
524     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
525     *             instead.
526     *
527     * @param listener
528     *        sensor listener object
529     *
530     * @param sensors
531     *        a bit masks of the sensors to register to
532     *
533     * @param rate
534     *        rate of events. This is only a hint to the system. events may be
535     *        received faster or slower than the specified rate. Usually events
536     *        are received faster. The value must be one of
537     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
538     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
539     *
540     * @return <code>true</code> if the sensor is supported and successfully
541     *         enabled
542     */
543    @Deprecated
544    public boolean registerListener(SensorListener listener, int sensors, int rate) {
545        return getLegacySensorManager().registerListener(listener, sensors, rate);
546    }
547
548    /**
549     * Unregisters a listener for all sensors.
550     *
551     * @deprecated This method is deprecated, use
552     *             {@link SensorManager#unregisterListener(SensorEventListener)}
553     *             instead.
554     *
555     * @param listener
556     *        a SensorListener object
557     */
558    @Deprecated
559    public void unregisterListener(SensorListener listener) {
560        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
561    }
562
563    /**
564     * Unregisters a listener for the sensors with which it is registered.
565     *
566     * @deprecated This method is deprecated, use
567     *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
568     *             instead.
569     *
570     * @param listener
571     *        a SensorListener object
572     *
573     * @param sensors
574     *        a bit masks of the sensors to unregister from
575     */
576    @Deprecated
577    public void unregisterListener(SensorListener listener, int sensors) {
578        getLegacySensorManager().unregisterListener(listener, sensors);
579    }
580
581    /**
582     * Unregisters a listener for the sensors with which it is registered.
583     *
584     * <p class="note"></p>
585     * Note: Don't use this method with a one shot trigger sensor such as
586     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}.
587     * Use {@link #cancelTriggerSensor(TriggerEventListener, Sensor)} instead.
588     * </p>
589     *
590     * @param listener
591     *        a SensorEventListener object
592     *
593     * @param sensor
594     *        the sensor to unregister from
595     *
596     * @see #unregisterListener(SensorEventListener)
597     * @see #registerListener(SensorEventListener, Sensor, int)
598     */
599    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
600        if (listener == null || sensor == null) {
601            return;
602        }
603
604        unregisterListenerImpl(listener, sensor);
605    }
606
607    /**
608     * Unregisters a listener for all sensors.
609     *
610     * @param listener
611     *        a SensorListener object
612     *
613     * @see #unregisterListener(SensorEventListener, Sensor)
614     * @see #registerListener(SensorEventListener, Sensor, int)
615     *
616     */
617    public void unregisterListener(SensorEventListener listener) {
618        if (listener == null) {
619            return;
620        }
621
622        unregisterListenerImpl(listener, null);
623    }
624
625    /** @hide */
626    protected abstract void unregisterListenerImpl(SensorEventListener listener, Sensor sensor);
627
628    /**
629     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
630     * sensor at the given sampling frequency.
631     * <p>
632     * The events will be delivered to the provided {@code SensorEventListener} as soon as they are
633     * available. To reduce the power consumption, applications can use
634     * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
635     * positive non-zero maximum reporting latency.
636     * </p>
637     * <p>
638     * In the case of non-wake-up sensors, the events are only delivered while the Application
639     * Processor (AP) is not in suspend mode. See {@link Sensor#isWakeUpSensor()} for more details.
640     * To ensure delivery of events from non-wake-up sensors even when the screen is OFF, the
641     * application registering to the sensor must hold a partial wake-lock to keep the AP awake,
642     * otherwise some events might be lost while the AP is asleep. Note that although events might
643     * be lost while the AP is asleep, the sensor will still consume power if it is not explicitly
644     * deactivated by the application. Applications must unregister their {@code
645     * SensorEventListener}s in their activity's {@code onPause()} method to avoid consuming power
646     * while the device is inactive.  See {@link #registerListener(SensorEventListener, Sensor, int,
647     * int)} for more details on hardware FIFO (queueing) capabilities and when some sensor events
648     * might be lost.
649     * </p>
650     * <p>
651     * In the case of wake-up sensors, each event generated by the sensor will cause the AP to
652     * wake-up, ensuring that each event can be delivered. Because of this, registering to a wake-up
653     * sensor has very significant power implications. Call {@link Sensor#isWakeUpSensor()} to check
654     * whether a sensor is a wake-up sensor. See
655     * {@link #registerListener(SensorEventListener, Sensor, int, int)} for information on how to
656     * reduce the power impact of registering to wake-up sensors.
657     * </p>
658     * <p class="note">
659     * Note: Don't use this method with one-shot trigger sensors such as
660     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
661     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. Use
662     * {@link Sensor#getReportingMode()} to obtain the reporting mode of a given sensor.
663     * </p>
664     *
665     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
666     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
667     * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
668     *            delivered at. This is only a hint to the system. Events may be received faster or
669     *            slower than the specified rate. Usually events are received faster. The value must
670     *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
671     *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired delay
672     *            between events in microseconds. Specifying the delay in microseconds only works
673     *            from Android 2.3 (API level 9) onwards. For earlier releases, you must use one of
674     *            the {@code SENSOR_DELAY_*} constants.
675     * @return <code>true</code> if the sensor is supported and successfully enabled.
676     * @see #registerListener(SensorEventListener, Sensor, int, Handler)
677     * @see #unregisterListener(SensorEventListener)
678     * @see #unregisterListener(SensorEventListener, Sensor)
679     */
680    public boolean registerListener(SensorEventListener listener, Sensor sensor,
681            int samplingPeriodUs) {
682        return registerListener(listener, sensor, samplingPeriodUs, null);
683    }
684
685    /**
686     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
687     * sensor at the given sampling frequency and the given maximum reporting latency.
688     * <p>
689     * This function is similar to {@link #registerListener(SensorEventListener, Sensor, int)} but
690     * it allows events to stay temporarily in the hardware FIFO (queue) before being delivered. The
691     * events can be stored in the hardware FIFO up to {@code maxReportLatencyUs} microseconds. Once
692     * one of the events in the FIFO needs to be reported, all of the events in the FIFO are
693     * reported sequentially. This means that some events will be reported before the maximum
694     * reporting latency has elapsed.
695     * </p><p>
696     * When {@code maxReportLatencyUs} is 0, the call is equivalent to a call to
697     * {@link #registerListener(SensorEventListener, Sensor, int)}, as it requires the events to be
698     * delivered as soon as possible.
699     * </p><p>
700     * When {@code sensor.maxFifoEventCount()} is 0, the sensor does not use a FIFO, so the call
701     * will also be equivalent to {@link #registerListener(SensorEventListener, Sensor, int)}.
702     * </p><p>
703     * Setting {@code maxReportLatencyUs} to a positive value allows to reduce the number of
704     * interrupts the AP (Application Processor) receives, hence reducing power consumption, as the
705     * AP can switch to a lower power state while the sensor is capturing the data. This is
706     * especially important when registering to wake-up sensors, for which each interrupt causes the
707     * AP to wake up if it was in suspend mode. See {@link Sensor#isWakeUpSensor()} for more
708     * information on wake-up sensors.
709     * </p>
710     * <p class="note">
711     * </p>
712     * Note: Don't use this method with one-shot trigger sensors such as
713     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
714     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
715     *
716     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
717     *            that will receive the sensor events. If the application is interested in receiving
718     *            flush complete notifications, it should register with
719     *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
720     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
721     * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
722     *            This is only a hint to the system. Events may be received faster or slower than
723     *            the specified rate. Usually events are received faster. Can be one of
724     *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
725     *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
726     *            microseconds.
727     * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
728     *            being reported to the application. A large value allows reducing the power
729     *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
730     *            events are delivered as soon as they are available, which is equivalent to calling
731     *            {@link #registerListener(SensorEventListener, Sensor, int)}.
732     * @return <code>true</code> if the sensor is supported and successfully enabled.
733     * @see #registerListener(SensorEventListener, Sensor, int)
734     * @see #unregisterListener(SensorEventListener)
735     * @see #flush(SensorEventListener)
736     */
737    public boolean registerListener(SensorEventListener listener, Sensor sensor,
738            int samplingPeriodUs, int maxReportLatencyUs) {
739        int delay = getDelay(samplingPeriodUs);
740        return registerListenerImpl(listener, sensor, delay, null, maxReportLatencyUs, 0);
741    }
742
743    /**
744     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
745     * sensor. Events are delivered in continuous mode as soon as they are available. To reduce the
746     * power consumption, applications can use
747     * {@link #registerListener(SensorEventListener, Sensor, int, int)} instead and specify a
748     * positive non-zero maximum reporting latency.
749     * <p class="note">
750     * </p>
751     * Note: Don't use this method with a one shot trigger sensor such as
752     * {@link Sensor#TYPE_SIGNIFICANT_MOTION}. Use
753     * {@link #requestTriggerSensor(TriggerEventListener, Sensor)} instead. </p>
754     *
755     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object.
756     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
757     * @param samplingPeriodUs The rate {@link android.hardware.SensorEvent sensor events} are
758     *            delivered at. This is only a hint to the system. Events may be received faster or
759     *            slower than the specified rate. Usually events are received faster. The value must
760     *            be one of {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
761     *            {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST} or, the desired
762     *            delay between events in microseconds. Specifying the delay in microseconds only
763     *            works from Android 2.3 (API level 9) onwards. For earlier releases, you must use
764     *            one of the {@code SENSOR_DELAY_*} constants.
765     * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
766     *            sensor events} will be delivered to.
767     * @return <code>true</code> if the sensor is supported and successfully enabled.
768     * @see #registerListener(SensorEventListener, Sensor, int)
769     * @see #unregisterListener(SensorEventListener)
770     * @see #unregisterListener(SensorEventListener, Sensor)
771     */
772    public boolean registerListener(SensorEventListener listener, Sensor sensor,
773            int samplingPeriodUs, Handler handler) {
774        int delay = getDelay(samplingPeriodUs);
775        return registerListenerImpl(listener, sensor, delay, handler, 0, 0);
776    }
777
778    /**
779     * Registers a {@link android.hardware.SensorEventListener SensorEventListener} for the given
780     * sensor at the given sampling frequency and the given maximum reporting latency.
781     *
782     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
783     *            that will receive the sensor events. If the application is interested in receiving
784     *            flush complete notifications, it should register with
785     *            {@link android.hardware.SensorEventListener SensorEventListener2} instead.
786     * @param sensor The {@link android.hardware.Sensor Sensor} to register to.
787     * @param samplingPeriodUs The desired delay between two consecutive events in microseconds.
788     *            This is only a hint to the system. Events may be received faster or slower than
789     *            the specified rate. Usually events are received faster. Can be one of
790     *            {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
791     *            {@link #SENSOR_DELAY_GAME}, {@link #SENSOR_DELAY_FASTEST} or the delay in
792     *            microseconds.
793     * @param maxReportLatencyUs Maximum time in microseconds that events can be delayed before
794     *            being reported to the application. A large value allows reducing the power
795     *            consumption associated with the sensor. If maxReportLatencyUs is set to zero,
796     *            events are delivered as soon as they are available, which is equivalent to calling
797     *            {@link #registerListener(SensorEventListener, Sensor, int)}.
798     * @param handler The {@link android.os.Handler Handler} the {@link android.hardware.SensorEvent
799     *            sensor events} will be delivered to.
800     * @return <code>true</code> if the sensor is supported and successfully enabled.
801     * @see #registerListener(SensorEventListener, Sensor, int, int)
802     */
803    public boolean registerListener(SensorEventListener listener, Sensor sensor, int samplingPeriodUs,
804            int maxReportLatencyUs, Handler handler) {
805        int delayUs = getDelay(samplingPeriodUs);
806        return registerListenerImpl(listener, sensor, delayUs, handler, maxReportLatencyUs, 0);
807    }
808
809    /** @hide */
810    protected abstract boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
811            int delayUs, Handler handler, int maxReportLatencyUs, int reservedFlags);
812
813
814    /**
815     * Flushes the FIFO of all the sensors registered for this listener. If there are events
816     * in the FIFO of the sensor, they are returned as if the maxReportLantecy of the FIFO has
817     * expired. Events are returned in the usual way through the SensorEventListener.
818     * This call doesn't affect the maxReportLantecy for this sensor. This call is asynchronous and
819     * returns immediately.
820     * {@link android.hardware.SensorEventListener2#onFlushCompleted onFlushCompleted} is called
821     * after all the events in the batch at the time of calling this method have been delivered
822     * successfully. If the hardware doesn't support flush, it still returns true and a trivial
823     * flush complete event is sent after the current event for all the clients registered for this
824     * sensor.
825     *
826     * @param listener A {@link android.hardware.SensorEventListener SensorEventListener} object
827     *        which was previously used in a registerListener call.
828     * @return <code>true</code> if the flush is initiated successfully on all the sensors
829     *         registered for this listener, false if no sensor is previously registered for this
830     *         listener or flush on one of the sensors fails.
831     * @see #registerListener(SensorEventListener, Sensor, int, int)
832     * @throws IllegalArgumentException when listener is null.
833     */
834    public boolean flush(SensorEventListener listener) {
835        return flushImpl(listener);
836    }
837
838    /** @hide */
839    protected abstract boolean flushImpl(SensorEventListener listener);
840
841    /**
842     * <p>
843     * Computes the inclination matrix <b>I</b> as well as the rotation matrix
844     * <b>R</b> transforming a vector from the device coordinate system to the
845     * world's coordinate system which is defined as a direct orthonormal basis,
846     * where:
847     * </p>
848     *
849     * <ul>
850     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
851     * the ground at the device's current location and roughly points East).</li>
852     * <li>Y is tangential to the ground at the device's current location and
853     * points towards the magnetic North Pole.</li>
854     * <li>Z points towards the sky and is perpendicular to the ground.</li>
855     * </ul>
856     *
857     * <p>
858     * <center><img src="../../../images/axis_globe.png"
859     * alt="World coordinate-system diagram." border="0" /></center>
860     * </p>
861     *
862     * <p>
863     * <hr>
864     * <p>
865     * By definition:
866     * <p>
867     * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
868     * <p>
869     * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
870     * geomagnetic field)
871     * <p>
872     * <b>R</b> is the identity matrix when the device is aligned with the
873     * world's coordinate system, that is, when the device's X axis points
874     * toward East, the Y axis points to the North Pole and the device is facing
875     * the sky.
876     *
877     * <p>
878     * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
879     * the same coordinate space as gravity (the world's coordinate space).
880     * <b>I</b> is a simple rotation around the X axis. The inclination angle in
881     * radians can be computed with {@link #getInclination}.
882     * <hr>
883     *
884     * <p>
885     * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
886     * on the length of the passed array:
887     * <p>
888     * <u>If the array length is 16:</u>
889     *
890     * <pre>
891     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
892     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
893     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
894     *   \  M[12]   M[13]   M[14]   M[15]  /
895     *</pre>
896     *
897     * This matrix is ready to be used by OpenGL ES's
898     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
899     * glLoadMatrixf(float[], int)}.
900     * <p>
901     * Note that because OpenGL matrices are column-major matrices you must
902     * transpose the matrix before using it. However, since the matrix is a
903     * rotation matrix, its transpose is also its inverse, conveniently, it is
904     * often the inverse of the rotation that is needed for rendering; it can
905     * therefore be used with OpenGL ES directly.
906     * <p>
907     * Also note that the returned matrices always have this form:
908     *
909     * <pre>
910     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
911     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
912     *   |  M[ 8]   M[ 9]   M[10]   0  |
913     *   \      0       0       0   1  /
914     *</pre>
915     *
916     * <p>
917     * <u>If the array length is 9:</u>
918     *
919     * <pre>
920     *   /  M[ 0]   M[ 1]   M[ 2]  \
921     *   |  M[ 3]   M[ 4]   M[ 5]  |
922     *   \  M[ 6]   M[ 7]   M[ 8]  /
923     *</pre>
924     *
925     * <hr>
926     * <p>
927     * The inverse of each matrix can be computed easily by taking its
928     * transpose.
929     *
930     * <p>
931     * The matrices returned by this function are meaningful only when the
932     * device is not free-falling and it is not close to the magnetic north. If
933     * the device is accelerating, or placed into a strong magnetic field, the
934     * returned matrices may be inaccurate.
935     *
936     * @param R
937     *        is an array of 9 floats holding the rotation matrix <b>R</b> when
938     *        this function returns. R can be null.
939     *        <p>
940     *
941     * @param I
942     *        is an array of 9 floats holding the rotation matrix <b>I</b> when
943     *        this function returns. I can be null.
944     *        <p>
945     *
946     * @param gravity
947     *        is an array of 3 floats containing the gravity vector expressed in
948     *        the device's coordinate. You can simply use the
949     *        {@link android.hardware.SensorEvent#values values} returned by a
950     *        {@link android.hardware.SensorEvent SensorEvent} of a
951     *        {@link android.hardware.Sensor Sensor} of type
952     *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
953     *        TYPE_ACCELEROMETER}.
954     *        <p>
955     *
956     * @param geomagnetic
957     *        is an array of 3 floats containing the geomagnetic vector
958     *        expressed in the device's coordinate. You can simply use the
959     *        {@link android.hardware.SensorEvent#values values} returned by a
960     *        {@link android.hardware.SensorEvent SensorEvent} of a
961     *        {@link android.hardware.Sensor Sensor} of type
962     *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
963     *        TYPE_MAGNETIC_FIELD}.
964     *
965     * @return <code>true</code> on success, <code>false</code> on failure (for
966     *         instance, if the device is in free fall). On failure the output
967     *         matrices are not modified.
968     *
969     * @see #getInclination(float[])
970     * @see #getOrientation(float[], float[])
971     * @see #remapCoordinateSystem(float[], int, int, float[])
972     */
973
974    public static boolean getRotationMatrix(float[] R, float[] I,
975            float[] gravity, float[] geomagnetic) {
976        // TODO: move this to native code for efficiency
977        float Ax = gravity[0];
978        float Ay = gravity[1];
979        float Az = gravity[2];
980        final float Ex = geomagnetic[0];
981        final float Ey = geomagnetic[1];
982        final float Ez = geomagnetic[2];
983        float Hx = Ey*Az - Ez*Ay;
984        float Hy = Ez*Ax - Ex*Az;
985        float Hz = Ex*Ay - Ey*Ax;
986        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
987        if (normH < 0.1f) {
988            // device is close to free fall (or in space?), or close to
989            // magnetic north pole. Typical values are  > 100.
990            return false;
991        }
992        final float invH = 1.0f / normH;
993        Hx *= invH;
994        Hy *= invH;
995        Hz *= invH;
996        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
997        Ax *= invA;
998        Ay *= invA;
999        Az *= invA;
1000        final float Mx = Ay*Hz - Az*Hy;
1001        final float My = Az*Hx - Ax*Hz;
1002        final float Mz = Ax*Hy - Ay*Hx;
1003        if (R != null) {
1004            if (R.length == 9) {
1005                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1006                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1007                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1008            } else if (R.length == 16) {
1009                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1010                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1011                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1012                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1013            }
1014        }
1015        if (I != null) {
1016            // compute the inclination matrix by projecting the geomagnetic
1017            // vector onto the Z (gravity) and X (horizontal component
1018            // of geomagnetic vector) axes.
1019            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1020            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1021            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1022            if (I.length == 9) {
1023                I[0] = 1;     I[1] = 0;     I[2] = 0;
1024                I[3] = 0;     I[4] = c;     I[5] = s;
1025                I[6] = 0;     I[7] =-s;     I[8] = c;
1026            } else if (I.length == 16) {
1027                I[0] = 1;     I[1] = 0;     I[2] = 0;
1028                I[4] = 0;     I[5] = c;     I[6] = s;
1029                I[8] = 0;     I[9] =-s;     I[10]= c;
1030                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1031                I[15] = 1;
1032            }
1033        }
1034        return true;
1035    }
1036
1037    /**
1038     * Computes the geomagnetic inclination angle in radians from the
1039     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1040     *
1041     * @param I
1042     *        inclination matrix see {@link #getRotationMatrix}.
1043     *
1044     * @return The geomagnetic inclination angle in radians.
1045     *
1046     * @see #getRotationMatrix(float[], float[], float[], float[])
1047     * @see #getOrientation(float[], float[])
1048     * @see GeomagneticField
1049     *
1050     */
1051    public static float getInclination(float[] I) {
1052        if (I.length == 9) {
1053            return (float)Math.atan2(I[5], I[4]);
1054        } else {
1055            return (float)Math.atan2(I[6], I[5]);
1056        }
1057    }
1058
1059    /**
1060     * <p>
1061     * Rotates the supplied rotation matrix so it is expressed in a different
1062     * coordinate system. This is typically used when an application needs to
1063     * compute the three orientation angles of the device (see
1064     * {@link #getOrientation}) in a different coordinate system.
1065     * </p>
1066     *
1067     * <p>
1068     * When the rotation matrix is used for drawing (for instance with OpenGL
1069     * ES), it usually <b>doesn't need</b> to be transformed by this function,
1070     * unless the screen is physically rotated, in which case you can use
1071     * {@link android.view.Display#getRotation() Display.getRotation()} to
1072     * retrieve the current rotation of the screen. Note that because the user
1073     * is generally free to rotate their screen, you often should consider the
1074     * rotation in deciding the parameters to use here.
1075     * </p>
1076     *
1077     * <p>
1078     * <u>Examples:</u>
1079     * <p>
1080     *
1081     * <ul>
1082     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1083     * reality application where the rotation angles are needed:</li>
1084     *
1085     * <p>
1086     * <ul>
1087     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1088     * </ul>
1089     * </p>
1090     *
1091     * <li>Using the device as a mechanical compass when rotation is
1092     * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1093     *
1094     * <p>
1095     * <ul>
1096     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1097     * </ul>
1098     * </p>
1099     *
1100     * Beware of the above example. This call is needed only to account for a
1101     * rotation from its natural orientation when calculating the rotation
1102     * angles (see {@link #getOrientation}). If the rotation matrix is also used
1103     * for rendering, it may not need to be transformed, for instance if your
1104     * {@link android.app.Activity Activity} is running in landscape mode.
1105     * </ul>
1106     *
1107     * <p>
1108     * Since the resulting coordinate system is orthonormal, only two axes need
1109     * to be specified.
1110     *
1111     * @param inR
1112     *        the rotation matrix to be transformed. Usually it is the matrix
1113     *        returned by {@link #getRotationMatrix}.
1114     *
1115     * @param X
1116     *        defines on which world axis and direction the X axis of the device
1117     *        is mapped.
1118     *
1119     * @param Y
1120     *        defines on which world axis and direction the Y axis of the device
1121     *        is mapped.
1122     *
1123     * @param outR
1124     *        the transformed rotation matrix. inR and outR should not be the same
1125     *        array.
1126     *
1127     * @return <code>true</code> on success. <code>false</code> if the input
1128     *         parameters are incorrect, for instance if X and Y define the same
1129     *         axis. Or if inR and outR don't have the same length.
1130     *
1131     * @see #getRotationMatrix(float[], float[], float[], float[])
1132     */
1133
1134    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1135            float[] outR)
1136    {
1137        if (inR == outR) {
1138            final float[] temp = mTempMatrix;
1139            synchronized(temp) {
1140                // we don't expect to have a lot of contention
1141                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1142                    final int size = outR.length;
1143                    for (int i=0 ; i<size ; i++)
1144                        outR[i] = temp[i];
1145                    return true;
1146                }
1147            }
1148        }
1149        return remapCoordinateSystemImpl(inR, X, Y, outR);
1150    }
1151
1152    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1153            float[] outR)
1154    {
1155        /*
1156         * X and Y define a rotation matrix 'r':
1157         *
1158         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1159         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1160         *                              r[0] ^ r[1]
1161         *
1162         * where the 3rd line is the vector product of the first 2 lines
1163         *
1164         */
1165
1166        final int length = outR.length;
1167        if (inR.length != length)
1168            return false;   // invalid parameter
1169        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1170            return false;   // invalid parameter
1171        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1172            return false;   // no axis specified
1173        if ((X & 0x3) == (Y & 0x3))
1174            return false;   // same axis specified
1175
1176        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1177        // this can be calculated by exclusive-or'ing X and Y; except for
1178        // the sign inversion (+/-) which is calculated below.
1179        int Z = X ^ Y;
1180
1181        // extract the axis (remove the sign), offset in the range 0 to 2.
1182        final int x = (X & 0x3)-1;
1183        final int y = (Y & 0x3)-1;
1184        final int z = (Z & 0x3)-1;
1185
1186        // compute the sign of Z (whether it needs to be inverted)
1187        final int axis_y = (z+1)%3;
1188        final int axis_z = (z+2)%3;
1189        if (((x^axis_y)|(y^axis_z)) != 0)
1190            Z ^= 0x80;
1191
1192        final boolean sx = (X>=0x80);
1193        final boolean sy = (Y>=0x80);
1194        final boolean sz = (Z>=0x80);
1195
1196        // Perform R * r, in avoiding actual muls and adds.
1197        final int rowLength = ((length==16)?4:3);
1198        for (int j=0 ; j<3 ; j++) {
1199            final int offset = j*rowLength;
1200            for (int i=0 ; i<3 ; i++) {
1201                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1202                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1203                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1204            }
1205        }
1206        if (length == 16) {
1207            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1208            outR[15] = 1;
1209        }
1210        return true;
1211    }
1212
1213    /**
1214     * Computes the device's orientation based on the rotation matrix.
1215     * <p>
1216     * When it returns, the array values is filled with the result:
1217     * <ul>
1218     * <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
1219     * <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
1220     * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
1221     * </ul>
1222     * <p>The reference coordinate-system used is different from the world
1223     * coordinate-system defined for the rotation matrix:</p>
1224     * <ul>
1225     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
1226     * the ground at the device's current location and roughly points West).</li>
1227     * <li>Y is tangential to the ground at the device's current location and
1228     * points towards the magnetic North Pole.</li>
1229     * <li>Z points towards the center of the Earth and is perpendicular to the ground.</li>
1230     * </ul>
1231     *
1232     * <p>
1233     * <center><img src="../../../images/axis_globe_inverted.png"
1234     * alt="Inverted world coordinate-system diagram." border="0" /></center>
1235     * </p>
1236     * <p>
1237     * All three angles above are in <b>radians</b> and <b>positive</b> in the
1238     * <b>counter-clockwise</b> direction.
1239     *
1240     * @param R
1241     *        rotation matrix see {@link #getRotationMatrix}.
1242     *
1243     * @param values
1244     *        an array of 3 floats to hold the result.
1245     *
1246     * @return The array values passed as argument.
1247     *
1248     * @see #getRotationMatrix(float[], float[], float[], float[])
1249     * @see GeomagneticField
1250     */
1251    public static float[] getOrientation(float[] R, float values[]) {
1252        /*
1253         * 4x4 (length=16) case:
1254         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1255         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1256         *   |  R[ 8]   R[ 9]   R[10]   0  |
1257         *   \      0       0       0   1  /
1258         *
1259         * 3x3 (length=9) case:
1260         *   /  R[ 0]   R[ 1]   R[ 2]  \
1261         *   |  R[ 3]   R[ 4]   R[ 5]  |
1262         *   \  R[ 6]   R[ 7]   R[ 8]  /
1263         *
1264         */
1265        if (R.length == 9) {
1266            values[0] = (float)Math.atan2(R[1], R[4]);
1267            values[1] = (float)Math.asin(-R[7]);
1268            values[2] = (float)Math.atan2(-R[6], R[8]);
1269        } else {
1270            values[0] = (float)Math.atan2(R[1], R[5]);
1271            values[1] = (float)Math.asin(-R[9]);
1272            values[2] = (float)Math.atan2(-R[8], R[10]);
1273        }
1274        return values;
1275    }
1276
1277    /**
1278     * Computes the Altitude in meters from the atmospheric pressure and the
1279     * pressure at sea level.
1280     * <p>
1281     * Typically the atmospheric pressure is read from a
1282     * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1283     * known, usually it can be retrieved from airport databases in the
1284     * vicinity. If unknown, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE}
1285     * as an approximation, but absolute altitudes won't be accurate.
1286     * </p>
1287     * <p>
1288     * To calculate altitude differences, you must calculate the difference
1289     * between the altitudes at both points. If you don't know the altitude
1290     * as sea level, you can use {@link #PRESSURE_STANDARD_ATMOSPHERE} instead,
1291     * which will give good results considering the range of pressure typically
1292     * involved.
1293     * </p>
1294     * <p>
1295     * <code><ul>
1296     *  float altitude_difference =
1297     *      getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point2)
1298     *      - getAltitude(SensorManager.PRESSURE_STANDARD_ATMOSPHERE, pressure_at_point1);
1299     * </ul></code>
1300     * </p>
1301     *
1302     * @param p0 pressure at sea level
1303     * @param p atmospheric pressure
1304     * @return Altitude in meters
1305     */
1306    public static float getAltitude(float p0, float p) {
1307        final float coef = 1.0f / 5.255f;
1308        return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef));
1309    }
1310
1311    /** Helper function to compute the angle change between two rotation matrices.
1312     *  Given a current rotation matrix (R) and a previous rotation matrix
1313     *  (prevR) computes the rotation around the z,x, and y axes which
1314     *  transforms prevR to R.
1315     *  outputs a 3 element vector containing the z,x, and y angle
1316     *  change at indexes 0, 1, and 2 respectively.
1317     * <p> Each input matrix is either as a 3x3 or 4x4 row-major matrix
1318     * depending on the length of the passed array:
1319     * <p>If the array length is 9, then the array elements represent this matrix
1320     * <pre>
1321     *   /  R[ 0]   R[ 1]   R[ 2]   \
1322     *   |  R[ 3]   R[ 4]   R[ 5]   |
1323     *   \  R[ 6]   R[ 7]   R[ 8]   /
1324     *</pre>
1325     * <p>If the array length is 16, then the array elements represent this matrix
1326     * <pre>
1327     *   /  R[ 0]   R[ 1]   R[ 2]   R[ 3]  \
1328     *   |  R[ 4]   R[ 5]   R[ 6]   R[ 7]  |
1329     *   |  R[ 8]   R[ 9]   R[10]   R[11]  |
1330     *   \  R[12]   R[13]   R[14]   R[15]  /
1331     *</pre>
1332     * @param R current rotation matrix
1333     * @param prevR previous rotation matrix
1334     * @param angleChange an an array of floats (z, x, and y) in which the angle change is stored
1335     */
1336
1337    public static void getAngleChange( float[] angleChange, float[] R, float[] prevR) {
1338        float rd1=0,rd4=0, rd6=0,rd7=0, rd8=0;
1339        float ri0=0,ri1=0,ri2=0,ri3=0,ri4=0,ri5=0,ri6=0,ri7=0,ri8=0;
1340        float pri0=0, pri1=0, pri2=0, pri3=0, pri4=0, pri5=0, pri6=0, pri7=0, pri8=0;
1341
1342        if(R.length == 9) {
1343            ri0 = R[0];
1344            ri1 = R[1];
1345            ri2 = R[2];
1346            ri3 = R[3];
1347            ri4 = R[4];
1348            ri5 = R[5];
1349            ri6 = R[6];
1350            ri7 = R[7];
1351            ri8 = R[8];
1352        } else if(R.length == 16) {
1353            ri0 = R[0];
1354            ri1 = R[1];
1355            ri2 = R[2];
1356            ri3 = R[4];
1357            ri4 = R[5];
1358            ri5 = R[6];
1359            ri6 = R[8];
1360            ri7 = R[9];
1361            ri8 = R[10];
1362        }
1363
1364        if(prevR.length == 9) {
1365            pri0 = prevR[0];
1366            pri1 = prevR[1];
1367            pri2 = prevR[2];
1368            pri3 = prevR[3];
1369            pri4 = prevR[4];
1370            pri5 = prevR[5];
1371            pri6 = prevR[6];
1372            pri7 = prevR[7];
1373            pri8 = prevR[8];
1374        } else if(prevR.length == 16) {
1375            pri0 = prevR[0];
1376            pri1 = prevR[1];
1377            pri2 = prevR[2];
1378            pri3 = prevR[4];
1379            pri4 = prevR[5];
1380            pri5 = prevR[6];
1381            pri6 = prevR[8];
1382            pri7 = prevR[9];
1383            pri8 = prevR[10];
1384        }
1385
1386        // calculate the parts of the rotation difference matrix we need
1387        // rd[i][j] = pri[0][i] * ri[0][j] + pri[1][i] * ri[1][j] + pri[2][i] * ri[2][j];
1388
1389        rd1 = pri0 * ri1 + pri3 * ri4 + pri6 * ri7; //rd[0][1]
1390        rd4 = pri1 * ri1 + pri4 * ri4 + pri7 * ri7; //rd[1][1]
1391        rd6 = pri2 * ri0 + pri5 * ri3 + pri8 * ri6; //rd[2][0]
1392        rd7 = pri2 * ri1 + pri5 * ri4 + pri8 * ri7; //rd[2][1]
1393        rd8 = pri2 * ri2 + pri5 * ri5 + pri8 * ri8; //rd[2][2]
1394
1395        angleChange[0] = (float)Math.atan2(rd1, rd4);
1396        angleChange[1] = (float)Math.asin(-rd7);
1397        angleChange[2] = (float)Math.atan2(-rd6, rd8);
1398
1399    }
1400
1401    /** Helper function to convert a rotation vector to a rotation matrix.
1402     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a
1403     *  9  or 16 element rotation matrix in the array R.  R must have length 9 or 16.
1404     *  If R.length == 9, the following matrix is returned:
1405     * <pre>
1406     *   /  R[ 0]   R[ 1]   R[ 2]   \
1407     *   |  R[ 3]   R[ 4]   R[ 5]   |
1408     *   \  R[ 6]   R[ 7]   R[ 8]   /
1409     *</pre>
1410     * If R.length == 16, the following matrix is returned:
1411     * <pre>
1412     *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1413     *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1414     *   |  R[ 8]   R[ 9]   R[10]   0  |
1415     *   \  0       0       0       1  /
1416     *</pre>
1417     *  @param rotationVector the rotation vector to convert
1418     *  @param R an array of floats in which to store the rotation matrix
1419     */
1420    public static void getRotationMatrixFromVector(float[] R, float[] rotationVector) {
1421
1422        float q0;
1423        float q1 = rotationVector[0];
1424        float q2 = rotationVector[1];
1425        float q3 = rotationVector[2];
1426
1427        if (rotationVector.length >= 4) {
1428            q0 = rotationVector[3];
1429        } else {
1430            q0 = 1 - q1*q1 - q2*q2 - q3*q3;
1431            q0 = (q0 > 0) ? (float)Math.sqrt(q0) : 0;
1432        }
1433
1434        float sq_q1 = 2 * q1 * q1;
1435        float sq_q2 = 2 * q2 * q2;
1436        float sq_q3 = 2 * q3 * q3;
1437        float q1_q2 = 2 * q1 * q2;
1438        float q3_q0 = 2 * q3 * q0;
1439        float q1_q3 = 2 * q1 * q3;
1440        float q2_q0 = 2 * q2 * q0;
1441        float q2_q3 = 2 * q2 * q3;
1442        float q1_q0 = 2 * q1 * q0;
1443
1444        if(R.length == 9) {
1445            R[0] = 1 - sq_q2 - sq_q3;
1446            R[1] = q1_q2 - q3_q0;
1447            R[2] = q1_q3 + q2_q0;
1448
1449            R[3] = q1_q2 + q3_q0;
1450            R[4] = 1 - sq_q1 - sq_q3;
1451            R[5] = q2_q3 - q1_q0;
1452
1453            R[6] = q1_q3 - q2_q0;
1454            R[7] = q2_q3 + q1_q0;
1455            R[8] = 1 - sq_q1 - sq_q2;
1456        } else if (R.length == 16) {
1457            R[0] = 1 - sq_q2 - sq_q3;
1458            R[1] = q1_q2 - q3_q0;
1459            R[2] = q1_q3 + q2_q0;
1460            R[3] = 0.0f;
1461
1462            R[4] = q1_q2 + q3_q0;
1463            R[5] = 1 - sq_q1 - sq_q3;
1464            R[6] = q2_q3 - q1_q0;
1465            R[7] = 0.0f;
1466
1467            R[8] = q1_q3 - q2_q0;
1468            R[9] = q2_q3 + q1_q0;
1469            R[10] = 1 - sq_q1 - sq_q2;
1470            R[11] = 0.0f;
1471
1472            R[12] = R[13] = R[14] = 0.0f;
1473            R[15] = 1.0f;
1474        }
1475    }
1476
1477    /** Helper function to convert a rotation vector to a normalized quaternion.
1478     *  Given a rotation vector (presumably from a ROTATION_VECTOR sensor), returns a normalized
1479     *  quaternion in the array Q.  The quaternion is stored as [w, x, y, z]
1480     *  @param rv the rotation vector to convert
1481     *  @param Q an array of floats in which to store the computed quaternion
1482     */
1483    public static void getQuaternionFromVector(float[] Q, float[] rv) {
1484        if (rv.length >= 4) {
1485            Q[0] = rv[3];
1486        } else {
1487            Q[0] = 1 - rv[0]*rv[0] - rv[1]*rv[1] - rv[2]*rv[2];
1488            Q[0] = (Q[0] > 0) ? (float)Math.sqrt(Q[0]) : 0;
1489        }
1490        Q[1] = rv[0];
1491        Q[2] = rv[1];
1492        Q[3] = rv[2];
1493    }
1494
1495    /**
1496     * Requests receiving trigger events for a trigger sensor.
1497     *
1498     * <p>
1499     * When the sensor detects a trigger event condition, such as significant motion in
1500     * the case of the {@link Sensor#TYPE_SIGNIFICANT_MOTION}, the provided trigger listener
1501     * will be invoked once and then its request to receive trigger events will be canceled.
1502     * To continue receiving trigger events, the application must request to receive trigger
1503     * events again.
1504     * </p>
1505     *
1506     * @param listener The listener on which the
1507     *        {@link TriggerEventListener#onTrigger(TriggerEvent)} will be delivered.
1508     * @param sensor The sensor to be enabled.
1509     *
1510     * @return true if the sensor was successfully enabled.
1511     *
1512     * @throws IllegalArgumentException when sensor is null or not a trigger sensor.
1513     */
1514    public boolean requestTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1515        return requestTriggerSensorImpl(listener, sensor);
1516    }
1517
1518    /**
1519     * @hide
1520     */
1521    protected abstract boolean requestTriggerSensorImpl(TriggerEventListener listener,
1522            Sensor sensor);
1523
1524    /**
1525     * Cancels receiving trigger events for a trigger sensor.
1526     *
1527     * <p>
1528     * Note that a Trigger sensor will be auto disabled if
1529     * {@link TriggerEventListener#onTrigger(TriggerEvent)} has triggered.
1530     * This method is provided in case the user wants to explicitly cancel the request
1531     * to receive trigger events.
1532     * </p>
1533     *
1534     * @param listener The listener on which the
1535     *        {@link TriggerEventListener#onTrigger(TriggerEvent)}
1536     *        is delivered.It should be the same as the one used
1537     *        in {@link #requestTriggerSensor(TriggerEventListener, Sensor)}
1538     * @param sensor The sensor for which the trigger request should be canceled.
1539     *        If null, it cancels receiving trigger for all sensors associated
1540     *        with the listener.
1541     *
1542     * @return true if successfully canceled.
1543     *
1544     * @throws IllegalArgumentException when sensor is a trigger sensor.
1545     */
1546    public boolean cancelTriggerSensor(TriggerEventListener listener, Sensor sensor) {
1547        return cancelTriggerSensorImpl(listener, sensor, true);
1548    }
1549
1550    /**
1551     * @hide
1552     */
1553    protected abstract boolean cancelTriggerSensorImpl(TriggerEventListener listener,
1554            Sensor sensor, boolean disable);
1555
1556
1557    private LegacySensorManager getLegacySensorManager() {
1558        synchronized (mSensorListByType) {
1559            if (mLegacySensorManager == null) {
1560                Log.i(TAG, "This application is using deprecated SensorManager API which will "
1561                        + "be removed someday.  Please consider switching to the new API.");
1562                mLegacySensorManager = new LegacySensorManager(this);
1563            }
1564            return mLegacySensorManager;
1565        }
1566    }
1567
1568    private static int getDelay(int rate) {
1569        int delay = -1;
1570        switch (rate) {
1571            case SENSOR_DELAY_FASTEST:
1572                delay = 0;
1573                break;
1574            case SENSOR_DELAY_GAME:
1575                delay = 20000;
1576                break;
1577            case SENSOR_DELAY_UI:
1578                delay = 66667;
1579                break;
1580            case SENSOR_DELAY_NORMAL:
1581                delay = 200000;
1582                break;
1583            default:
1584                delay = rate;
1585                break;
1586        }
1587        return delay;
1588    }
1589}
1590