AmbientShadow.cpp revision 05f3d6e5111fd08df5cd9aae2c3d28399dc0e7f5
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <utils/Log.h>
21#include <utils/Vector.h>
22
23#include "AmbientShadow.h"
24#include "ShadowTessellator.h"
25#include "Vertex.h"
26
27namespace android {
28namespace uirenderer {
29
30/**
31 * Calculate the shadows as a triangle strips while alpha value as the
32 * shadow values.
33 *
34 * @param isCasterOpaque Whether the caster is opaque.
35 * @param vertices The shadow caster's polygon, which is represented in a Vector3
36 *                  array.
37 * @param vertexCount The length of caster's polygon in terms of number of
38 *                    vertices.
39 * @param centroid3d The centroid of the shadow caster.
40 * @param heightFactor The factor showing the higher the object, the lighter the
41 *                     shadow.
42 * @param geomFactor The factor scaling the geometry expansion along the normal.
43 *
44 * @param shadowVertexBuffer Return an floating point array of (x, y, a)
45 *               triangle strips mode.
46 */
47void AmbientShadow::createAmbientShadow(bool isCasterOpaque,
48        const Vector3* vertices, int vertexCount, const Vector3& centroid3d,
49        float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) {
50    const int rays = SHADOW_RAY_COUNT;
51    VertexBuffer::Mode mode = VertexBuffer::kOnePolyRingShadow;
52    // Validate the inputs.
53    if (vertexCount < 3 || heightFactor <= 0 || rays <= 0
54        || geomFactor <= 0) {
55#if DEBUG_SHADOW
56        ALOGW("Invalid input for createAmbientShadow(), early return!");
57#endif
58        return;
59    }
60
61    Vector<Vector2> dir; // TODO: use C++11 unique_ptr
62    dir.setCapacity(rays);
63    float rayDist[rays];
64    float rayHeight[rays];
65    calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray());
66
67    // Calculate the length and height of the points along the edge.
68    //
69    // The math here is:
70    // Intersect each ray (starting from the centroid) with the polygon.
71    for (int i = 0; i < rays; i++) {
72        int edgeIndex;
73        float edgeFraction;
74        float rayDistance;
75        calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex,
76                edgeFraction, rayDistance);
77        rayDist[i] = rayDistance;
78        if (edgeIndex < 0 || edgeIndex >= vertexCount) {
79#if DEBUG_SHADOW
80            ALOGW("Invalid edgeIndex!");
81#endif
82            edgeIndex = 0;
83        }
84        float h1 = vertices[edgeIndex].z;
85        float h2 = vertices[((edgeIndex + 1) % vertexCount)].z;
86        rayHeight[i] = h1 + edgeFraction * (h2 - h1);
87    }
88
89    // The output buffer length basically is roughly rays * layers, but since we
90    // need triangle strips, so we need to duplicate vertices to accomplish that.
91    AlphaVertex* shadowVertices =
92            shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
93
94    // Calculate the vertex of the shadows.
95    //
96    // The math here is:
97    // Along the edges of the polygon, for each intersection point P (generated above),
98    // calculate the normal N, which should be perpendicular to the edge of the
99    // polygon (represented by the neighbor intersection points) .
100    // Shadow's vertices will be generated as : P + N * scale.
101    const Vector2 centroid2d = Vector2(centroid3d.x, centroid3d.y);
102    for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
103        Vector2 normal(1.0f, 0.0f);
104        calculateNormal(rays, rayIndex, dir.array(), rayDist, normal);
105
106        // The vertex should be start from rayDist[i] then scale the
107        // normalizeNormal!
108        Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] +
109                centroid2d;
110
111        // outer ring of points, expanded based upon height of each ray intersection
112        float expansionDist = rayHeight[rayIndex] * heightFactor *
113                geomFactor;
114        AlphaVertex::set(&shadowVertices[rayIndex],
115                intersection.x + normal.x * expansionDist,
116                intersection.y + normal.y * expansionDist,
117                0.0f);
118
119        // inner ring of points
120        float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor);
121        AlphaVertex::set(&shadowVertices[rays + rayIndex],
122                intersection.x,
123                intersection.y,
124                opacity);
125    }
126
127    // If caster isn't opaque, we need to to fill the umbra by storing the umbra's
128    // centroid in the innermost ring of vertices.
129    if (!isCasterOpaque) {
130        mode = VertexBuffer::kTwoPolyRingShadow;
131        float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor);
132        AlphaVertex centroidXYA;
133        AlphaVertex::set(&centroidXYA, centroid2d.x, centroid2d.y, centroidAlpha);
134        for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
135            shadowVertices[2 * rays + rayIndex] = centroidXYA;
136        }
137    }
138    shadowVertexBuffer.setMode(mode);
139
140#if DEBUG_SHADOW
141    for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) {
142        ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
143                shadowVertices[i].y, shadowVertices[i].alpha);
144    }
145#endif
146}
147
148/**
149 * Generate an array of rays' direction vectors.
150 * To make sure the vertices generated are clockwise, the directions are from PI
151 * to -PI.
152 *
153 * @param rays The number of rays shooting out from the centroid.
154 * @param vertices Vertices of the polygon.
155 * @param vertexCount The number of vertices.
156 * @param centroid3d The centroid of the polygon.
157 * @param dir Return the array of ray vectors.
158 */
159void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices,
160        const int vertexCount, const Vector3& centroid3d, Vector2* dir) {
161    // If we don't have enough rays, then fall back to the uniform distribution.
162    if (vertexCount * 2 > rays) {
163        float deltaAngle = 2 * M_PI / rays;
164        for (int i = 0; i < rays; i++) {
165            dir[i].x = cosf(M_PI - deltaAngle * i);
166            dir[i].y = sinf(M_PI - deltaAngle * i);
167        }
168        return;
169    }
170
171    // If we have enough rays, then we assign each vertices a ray, and distribute
172    // the rest uniformly.
173    float rayThetas[rays];
174
175    const int uniformRayCount = rays - vertexCount;
176    const float deltaAngle = 2 * M_PI / uniformRayCount;
177
178    // We have to generate all the vertices' theta anyway and we also need to
179    // find the minimal, so let's precompute it first.
180    // Since the incoming polygon is clockwise, we can find the dip to identify
181    // the minimal theta.
182    float polyThetas[vertexCount];
183    int maxPolyThetaIndex = 0;
184    for (int i = 0; i < vertexCount; i++) {
185        polyThetas[i] = atan2(vertices[i].y - centroid3d.y,
186                vertices[i].x - centroid3d.x);
187        if (i > 0 && polyThetas[i] > polyThetas[i - 1]) {
188            maxPolyThetaIndex = i;
189        }
190    }
191
192    // Both poly's thetas and uniform thetas are in decrease order(clockwise)
193    // from PI to -PI.
194    int polyThetaIndex = maxPolyThetaIndex;
195    float polyTheta = polyThetas[maxPolyThetaIndex];
196    int uniformThetaIndex = 0;
197    float uniformTheta = M_PI;
198    for (int i = 0; i < rays; i++) {
199        // Compare both thetas and pick the smaller one and move on.
200        bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA;
201        if (polyTheta > uniformTheta || hasThetaCollision) {
202            if (hasThetaCollision) {
203                // Shift the uniformTheta to middle way between current polyTheta
204                // and next uniform theta. The next uniform theta can wrap around
205                // to exactly PI safely here.
206                // Note that neither polyTheta nor uniformTheta can be FLT_MAX
207                // due to the hasThetaCollision is true.
208                uniformTheta = (polyTheta +  M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2;
209#if DEBUG_SHADOW
210                ALOGD("Shifted uniformTheta to %f", uniformTheta);
211#endif
212            }
213            rayThetas[i] = polyTheta;
214            polyThetaIndex = (polyThetaIndex + 1) % vertexCount;
215            if (polyThetaIndex != maxPolyThetaIndex) {
216                polyTheta = polyThetas[polyThetaIndex];
217            } else {
218                // out of poly points.
219                polyTheta = - FLT_MAX;
220            }
221        } else {
222            rayThetas[i] = uniformTheta;
223            uniformThetaIndex++;
224            if (uniformThetaIndex < uniformRayCount) {
225                uniformTheta = M_PI - deltaAngle * uniformThetaIndex;
226            } else {
227                // out of uniform points.
228                uniformTheta = - FLT_MAX;
229            }
230        }
231    }
232
233    for (int i = 0; i < rays; i++) {
234#if DEBUG_SHADOW
235        ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI);
236#endif
237        // TODO: Fix the intersection precision problem and remvoe the delta added
238        // here.
239        dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA);
240        dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA);
241    }
242}
243
244/**
245 * Calculate the intersection of a ray hitting the polygon.
246 *
247 * @param vertices The shadow caster's polygon, which is represented in a
248 *                 Vector3 array.
249 * @param vertexCount The length of caster's polygon in terms of number of vertices.
250 * @param start The starting point of the ray.
251 * @param dir The direction vector of the ray.
252 *
253 * @param outEdgeIndex Return the index of the segment (or index of the starting
254 *                     vertex) that ray intersect with.
255 * @param outEdgeFraction Return the fraction offset from the segment starting
256 *                        index.
257 * @param outRayDist Return the ray distance from centroid to the intersection.
258 */
259void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount,
260        const Vector3& start, const Vector2& dir, int& outEdgeIndex,
261        float& outEdgeFraction, float& outRayDist) {
262    float startX = start.x;
263    float startY = start.y;
264    float dirX = dir.x;
265    float dirY = dir.y;
266    // Start the search from the last edge from poly[len-1] to poly[0].
267    int p1 = vertexCount - 1;
268
269    for (int p2 = 0; p2 < vertexCount; p2++) {
270        float p1x = vertices[p1].x;
271        float p1y = vertices[p1].y;
272        float p2x = vertices[p2].x;
273        float p2y = vertices[p2].y;
274
275        // The math here is derived from:
276        // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0;
277        // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0;
278        float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x);
279        if (div != 0) {
280            float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div);
281            if (t > 0 && t <= 1) {
282                float t2 = (p1x * (startY - p2y)
283                            + p2x * (p1y - startY)
284                            + startX * (p2y - p1y)) / div;
285                if (t2 > 0) {
286                    outEdgeIndex = p1;
287                    outRayDist = t2;
288                    outEdgeFraction = t;
289                    return;
290                }
291            }
292        }
293        p1 = p2;
294    }
295    return;
296};
297
298/**
299 * Calculate the normal at the intersection point between a ray and the polygon.
300 *
301 * @param rays The total number of rays.
302 * @param currentRayIndex The index of the ray which the normal is based on.
303 * @param dir The array of the all the rays directions.
304 * @param rayDist The pre-computed ray distances array.
305 *
306 * @param normal Return the normal.
307 */
308void AmbientShadow::calculateNormal(int rays, int currentRayIndex,
309        const Vector2* dir, const float* rayDist, Vector2& normal) {
310    int preIndex = (currentRayIndex - 1 + rays) % rays;
311    int postIndex = (currentRayIndex + 1) % rays;
312    Vector2 p1 = dir[preIndex] * rayDist[preIndex];
313    Vector2 p2 = dir[postIndex] * rayDist[postIndex];
314
315    // Now the rays are going CW around the poly.
316    Vector2 delta = p2 - p1;
317    if (delta.length() != 0) {
318        delta.normalize();
319        // Calculate the normal , which is CCW 90 rotate to the delta.
320        normal.x = - delta.y;
321        normal.y = delta.x;
322    }
323}
324
325}; // namespace uirenderer
326}; // namespace android
327