1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#include <math.h>
20#include <stdlib.h>
21#include <string.h>
22
23#include <utils/Log.h>
24
25#include <SkMatrix.h>
26
27#include "Matrix.h"
28
29namespace android {
30namespace uirenderer {
31
32///////////////////////////////////////////////////////////////////////////////
33// Defines
34///////////////////////////////////////////////////////////////////////////////
35
36static const float EPSILON = 0.0000001f;
37
38///////////////////////////////////////////////////////////////////////////////
39// Matrix
40///////////////////////////////////////////////////////////////////////////////
41
42const Matrix4& Matrix4::identity() {
43    static Matrix4 sIdentity;
44    return sIdentity;
45}
46
47void Matrix4::loadIdentity() {
48    data[kScaleX]       = 1.0f;
49    data[kSkewY]        = 0.0f;
50    data[2]             = 0.0f;
51    data[kPerspective0] = 0.0f;
52
53    data[kSkewX]        = 0.0f;
54    data[kScaleY]       = 1.0f;
55    data[6]             = 0.0f;
56    data[kPerspective1] = 0.0f;
57
58    data[8]             = 0.0f;
59    data[9]             = 0.0f;
60    data[kScaleZ]       = 1.0f;
61    data[11]            = 0.0f;
62
63    data[kTranslateX]   = 0.0f;
64    data[kTranslateY]   = 0.0f;
65    data[kTranslateZ]   = 0.0f;
66    data[kPerspective2] = 1.0f;
67
68    mType = kTypeIdentity | kTypeRectToRect;
69}
70
71static bool isZero(float f) {
72    return fabs(f) <= EPSILON;
73}
74
75uint8_t Matrix4::getType() const {
76    if (mType & kTypeUnknown) {
77        mType = kTypeIdentity;
78
79        if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
80                data[kPerspective2] != 1.0f) {
81            mType |= kTypePerspective;
82        }
83
84        if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
85            mType |= kTypeTranslate;
86        }
87
88        float m00 = data[kScaleX];
89        float m01 = data[kSkewX];
90        float m10 = data[kSkewY];
91        float m11 = data[kScaleY];
92        float m32 = data[kTranslateZ];
93
94        if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
95            mType |= kTypeAffine;
96        }
97
98        if (m00 != 1.0f || m11 != 1.0f) {
99            mType |= kTypeScale;
100        }
101
102        // The following section determines whether the matrix will preserve
103        // rectangles. For instance, a rectangle transformed by a pure
104        // translation matrix will result in a rectangle. A rectangle
105        // transformed by a 45 degrees rotation matrix is not a rectangle.
106        // If the matrix has a perspective component then we already know
107        // it doesn't preserve rectangles.
108        if (!(mType & kTypePerspective)) {
109            if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
110                    (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
111                mType |= kTypeRectToRect;
112            }
113        }
114    }
115    return mType;
116}
117
118uint8_t Matrix4::getGeometryType() const {
119    return getType() & sGeometryMask;
120}
121
122bool Matrix4::rectToRect() const {
123    return getType() & kTypeRectToRect;
124}
125
126bool Matrix4::positiveScale() const {
127    return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
128}
129
130bool Matrix4::changesBounds() const {
131    return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
132}
133
134bool Matrix4::isPureTranslate() const {
135    // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
136    // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
137    return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
138}
139
140bool Matrix4::isSimple() const {
141    return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
142}
143
144bool Matrix4::isIdentity() const {
145    return getGeometryType() == kTypeIdentity;
146}
147
148bool Matrix4::isPerspective() const {
149    return getType() & kTypePerspective;
150}
151
152void Matrix4::load(const float* v) {
153    memcpy(data, v, sizeof(data));
154    mType = kTypeUnknown;
155}
156
157void Matrix4::load(const Matrix4& v) {
158    memcpy(data, v.data, sizeof(data));
159    mType = v.getType();
160}
161
162void Matrix4::load(const SkMatrix& v) {
163    memset(data, 0, sizeof(data));
164
165    data[kScaleX]     = v[SkMatrix::kMScaleX];
166    data[kSkewX]      = v[SkMatrix::kMSkewX];
167    data[kTranslateX] = v[SkMatrix::kMTransX];
168
169    data[kSkewY]      = v[SkMatrix::kMSkewY];
170    data[kScaleY]     = v[SkMatrix::kMScaleY];
171    data[kTranslateY] = v[SkMatrix::kMTransY];
172
173    data[kPerspective0]  = v[SkMatrix::kMPersp0];
174    data[kPerspective1]  = v[SkMatrix::kMPersp1];
175    data[kPerspective2]  = v[SkMatrix::kMPersp2];
176
177    data[kScaleZ] = 1.0f;
178
179    // NOTE: The flags are compatible between SkMatrix and this class.
180    //       However, SkMatrix::getType() does not return the flag
181    //       kRectStaysRect. The return value is masked with 0xF
182    //       so we need the extra rectStaysRect() check
183    mType = v.getType();
184    if (v.rectStaysRect()) {
185        mType |= kTypeRectToRect;
186    }
187}
188
189void Matrix4::copyTo(SkMatrix& v) const {
190    v.reset();
191
192    v.set(SkMatrix::kMScaleX, data[kScaleX]);
193    v.set(SkMatrix::kMSkewX,  data[kSkewX]);
194    v.set(SkMatrix::kMTransX, data[kTranslateX]);
195
196    v.set(SkMatrix::kMSkewY,  data[kSkewY]);
197    v.set(SkMatrix::kMScaleY, data[kScaleY]);
198    v.set(SkMatrix::kMTransY, data[kTranslateY]);
199
200    v.set(SkMatrix::kMPersp0, data[kPerspective0]);
201    v.set(SkMatrix::kMPersp1, data[kPerspective1]);
202    v.set(SkMatrix::kMPersp2, data[kPerspective2]);
203}
204
205void Matrix4::loadInverse(const Matrix4& v) {
206    double scale = 1.0 /
207            (v.data[kScaleX] * ((double) v.data[kScaleY]  * v.data[kPerspective2] -
208                    (double) v.data[kTranslateY] * v.data[kPerspective1]) +
209             v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
210                     (double) v.data[kSkewY] * v.data[kPerspective2]) +
211             v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
212                     (double) v.data[kScaleY] * v.data[kPerspective0]));
213
214    data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
215            v.data[kTranslateY] * v.data[kPerspective1])  * scale;
216    data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
217            v.data[kSkewX]  * v.data[kPerspective2]) * scale;
218    data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
219            v.data[kTranslateX] * v.data[kScaleY])  * scale;
220
221    data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
222            v.data[kSkewY]  * v.data[kPerspective2]) * scale;
223    data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
224            v.data[kTranslateX] * v.data[kPerspective0])  * scale;
225    data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
226            v.data[kScaleX]  * v.data[kTranslateY]) * scale;
227
228    data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
229            v.data[kScaleY] * v.data[kPerspective0]) * scale;
230    data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
231            v.data[kScaleX] * v.data[kPerspective1]) * scale;
232    data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
233            v.data[kSkewX] * v.data[kSkewY]) * scale;
234
235    mType = kTypeUnknown;
236}
237
238void Matrix4::copyTo(float* v) const {
239    memcpy(v, data, sizeof(data));
240}
241
242float Matrix4::getTranslateX() const {
243    return data[kTranslateX];
244}
245
246float Matrix4::getTranslateY() const {
247    return data[kTranslateY];
248}
249
250void Matrix4::multiply(float v) {
251    for (int i = 0; i < 16; i++) {
252        data[i] *= v;
253    }
254    mType = kTypeUnknown;
255}
256
257void Matrix4::loadTranslate(float x, float y, float z) {
258    loadIdentity();
259
260    data[kTranslateX] = x;
261    data[kTranslateY] = y;
262    data[kTranslateZ] = z;
263
264    mType = kTypeTranslate | kTypeRectToRect;
265}
266
267void Matrix4::loadScale(float sx, float sy, float sz) {
268    loadIdentity();
269
270    data[kScaleX] = sx;
271    data[kScaleY] = sy;
272    data[kScaleZ] = sz;
273
274    mType = kTypeScale | kTypeRectToRect;
275}
276
277void Matrix4::loadSkew(float sx, float sy) {
278    loadIdentity();
279
280    data[kScaleX]       = 1.0f;
281    data[kSkewX]        = sx;
282    data[kTranslateX]   = 0.0f;
283
284    data[kSkewY]        = sy;
285    data[kScaleY]       = 1.0f;
286    data[kTranslateY]   = 0.0f;
287
288    data[kPerspective0] = 0.0f;
289    data[kPerspective1] = 0.0f;
290    data[kPerspective2] = 1.0f;
291
292    mType = kTypeUnknown;
293}
294
295void Matrix4::loadRotate(float angle) {
296    angle *= float(M_PI / 180.0f);
297    float c = cosf(angle);
298    float s = sinf(angle);
299
300    loadIdentity();
301
302    data[kScaleX]     = c;
303    data[kSkewX]      = -s;
304
305    data[kSkewY]      = s;
306    data[kScaleY]     = c;
307
308    mType = kTypeUnknown;
309}
310
311void Matrix4::loadRotate(float angle, float x, float y, float z) {
312    data[kPerspective0]  = 0.0f;
313    data[kPerspective1]  = 0.0f;
314    data[11]             = 0.0f;
315    data[kTranslateX]    = 0.0f;
316    data[kTranslateY]    = 0.0f;
317    data[kTranslateZ]    = 0.0f;
318    data[kPerspective2]  = 1.0f;
319
320    angle *= float(M_PI / 180.0f);
321    float c = cosf(angle);
322    float s = sinf(angle);
323
324    const float length = sqrtf(x * x + y * y + z * z);
325    float recipLen = 1.0f / length;
326    x *= recipLen;
327    y *= recipLen;
328    z *= recipLen;
329
330    const float nc = 1.0f - c;
331    const float xy = x * y;
332    const float yz = y * z;
333    const float zx = z * x;
334    const float xs = x * s;
335    const float ys = y * s;
336    const float zs = z * s;
337
338    data[kScaleX] = x * x * nc +  c;
339    data[kSkewX]  =    xy * nc - zs;
340    data[8]       =    zx * nc + ys;
341    data[kSkewY]  =    xy * nc + zs;
342    data[kScaleY] = y * y * nc +  c;
343    data[9]       =    yz * nc - xs;
344    data[2]       =    zx * nc - ys;
345    data[6]       =    yz * nc + xs;
346    data[kScaleZ] = z * z * nc +  c;
347
348    mType = kTypeUnknown;
349}
350
351void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
352    for (int i = 0 ; i < 4 ; i++) {
353        float x = 0;
354        float y = 0;
355        float z = 0;
356        float w = 0;
357
358        for (int j = 0 ; j < 4 ; j++) {
359            const float e = v.get(i, j);
360            x += u.get(j, 0) * e;
361            y += u.get(j, 1) * e;
362            z += u.get(j, 2) * e;
363            w += u.get(j, 3) * e;
364        }
365
366        set(i, 0, x);
367        set(i, 1, y);
368        set(i, 2, z);
369        set(i, 3, w);
370    }
371
372    mType = kTypeUnknown;
373}
374
375void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
376    loadIdentity();
377
378    data[kScaleX] = 2.0f / (right - left);
379    data[kScaleY] = 2.0f / (top - bottom);
380    data[kScaleZ] = -2.0f / (far - near);
381    data[kTranslateX] = -(right + left) / (right - left);
382    data[kTranslateY] = -(top + bottom) / (top - bottom);
383    data[kTranslateZ] = -(far + near) / (far - near);
384
385    mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
386}
387
388float Matrix4::mapZ(const Vector3& orig) const {
389    // duplicates logic for mapPoint3d's z coordinate
390    return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
391}
392
393void Matrix4::mapPoint3d(Vector3& vec) const {
394    //TODO: optimize simple case
395    const Vector3 orig(vec);
396    vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
397    vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
398    vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
399}
400
401#define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
402
403void Matrix4::mapPoint(float& x, float& y) const {
404    if (isSimple()) {
405        MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
406        MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
407        return;
408    }
409
410    float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
411    float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
412    float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
413    if (dz) dz = 1.0f / dz;
414
415    x = dx * dz;
416    y = dy * dz;
417}
418
419void Matrix4::mapRect(Rect& r) const {
420    if (isIdentity()) return;
421
422    if (isSimple()) {
423        MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
424        MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
425        MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
426        MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
427
428        if (r.left > r.right) {
429            float x = r.left;
430            r.left = r.right;
431            r.right = x;
432        }
433
434        if (r.top > r.bottom) {
435            float y = r.top;
436            r.top = r.bottom;
437            r.bottom = y;
438        }
439
440        return;
441    }
442
443    float vertices[] = {
444        r.left, r.top,
445        r.right, r.top,
446        r.right, r.bottom,
447        r.left, r.bottom
448    };
449
450    float x, y, z;
451
452    for (int i = 0; i < 8; i+= 2) {
453        float px = vertices[i];
454        float py = vertices[i + 1];
455
456        x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
457        y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
458        z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
459        if (z) z = 1.0f / z;
460
461        vertices[i] = x * z;
462        vertices[i + 1] = y * z;
463    }
464
465    r.left = r.right = vertices[0];
466    r.top = r.bottom = vertices[1];
467
468    for (int i = 2; i < 8; i += 2) {
469        x = vertices[i];
470        y = vertices[i + 1];
471
472        if (x < r.left) r.left = x;
473        else if (x > r.right) r.right = x;
474        if (y < r.top) r.top = y;
475        else if (y > r.bottom) r.bottom = y;
476    }
477}
478
479void Matrix4::decomposeScale(float& sx, float& sy) const {
480    float len;
481    len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
482    sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
483    len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
484    sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
485}
486
487void Matrix4::dump(const char* label) const {
488    ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
489    ALOGD("  %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
490    ALOGD("  %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
491    ALOGD("  %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
492    ALOGD("  %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
493    ALOGD("]");
494}
495
496}; // namespace uirenderer
497}; // namespace android
498