SpotShadow.cpp revision 3bd3fa1f1d437e22aee35381a559dcee15a437dd
17b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/*
27b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Copyright (C) 2014 The Android Open Source Project
37b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
47b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Licensed under the Apache License, Version 2.0 (the "License");
57b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * you may not use this file except in compliance with the License.
67b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * You may obtain a copy of the License at
77b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
87b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *      http://www.apache.org/licenses/LICENSE-2.0
97b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Unless required by applicable law or agreed to in writing, software
117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * distributed under the License is distributed on an "AS IS" BASIS,
127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * See the License for the specific language governing permissions and
147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * limitations under the License.
157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#define LOG_TAG "OpenGLRenderer"
187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#define SHADOW_SHRINK_SCALE 0.1f
20c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#define CASTER_Z_CAP_RATIO 0.95f
21c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#define FAKE_UMBRA_SIZE_RATIO 0.01f
22c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include <math.h>
25f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#include <stdlib.h>
267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include <utils/Log.h>
277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2863d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui#include "ShadowTessellator.h"
297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include "SpotShadow.h"
307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include "Vertex.h"
31c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#include "utils/MathUtils.h"
327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
33c50a03d78aaedd0003377e98710e7038bda330e9ztenghui// TODO: After we settle down the new algorithm, we can remove the old one and
34c50a03d78aaedd0003377e98710e7038bda330e9ztenghui// its utility functions.
35c50a03d78aaedd0003377e98710e7038bda330e9ztenghui// Right now, we still need to keep it for comparison purpose and future expansion.
367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuinamespace android {
377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuinamespace uirenderer {
387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
39726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikstatic const double EPSILON = 1e-7;
40726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
41726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik/**
42c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * For each polygon's vertex, the light center will project it to the receiver
43c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * as one of the outline vertex.
44c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * For each outline vertex, we need to store the position and normal.
45c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * Normal here is defined against the edge by the current vertex and the next vertex.
46c50a03d78aaedd0003377e98710e7038bda330e9ztenghui */
47c50a03d78aaedd0003377e98710e7038bda330e9ztenghuistruct OutlineData {
48c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 position;
49c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 normal;
50c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float radius;
51c50a03d78aaedd0003377e98710e7038bda330e9ztenghui};
52c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
53c50a03d78aaedd0003377e98710e7038bda330e9ztenghui/**
54726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Calculate the angle between and x and a y coordinate.
55726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * The atan2 range from -PI to PI.
56726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik */
57b79a3e301a8d89b9e1b1f6f3d7fd6aa56610a6f0Chris Craikstatic float angle(const Vector2& point, const Vector2& center) {
58726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return atan2(point.y - center.y, point.x - center.x);
59726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik}
60726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
62726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Calculate the intersection of a ray with the line segment defined by two points.
637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
64726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Returns a negative value in error conditions.
65726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
66726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param rayOrigin The start of the ray
67726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param dx The x vector of the ray
68726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param dy The y vector of the ray
69726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param p1 The first point defining the line segment
70726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param p2 The second point defining the line segment
71726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @return The distance along the ray if it intersects with the line segment, negative if otherwise
727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
73b79a3e301a8d89b9e1b1f6f3d7fd6aa56610a6f0Chris Craikstatic float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
74726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        const Vector2& p1, const Vector2& p2) {
75726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // The math below is derived from solving this formula, basically the
76726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // intersection point should stay on both the ray and the edge of (p1, p2).
77726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
78726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
79726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
80726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (divisor == 0) return -1.0f; // error, invalid divisor
81726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
82726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik#if DEBUG_SHADOW
83726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
8499af9429cda84ad0af1d7fcecb580295b0046882ztenghui    if (interpVal < 0 || interpVal > 1) {
8599af9429cda84ad0af1d7fcecb580295b0046882ztenghui        ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
8699af9429cda84ad0af1d7fcecb580295b0046882ztenghui    }
87726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik#endif
88726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
89726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
90726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayOrigin.x * (p2.y - p1.y)) / divisor;
91726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
92726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return distance; // may be negative in error cases
937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points by their X coordinates
977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points the points as a Vector2 array.
997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param pointsLength the number of vertices of the polygon.
1007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
1017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::xsort(Vector2* points, int pointsLength) {
1027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    quicksortX(points, 0, pointsLength - 1);
1037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
1067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * compute the convex hull of a collection of Points
1077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points the points as a Vector2 array.
1097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param pointsLength the number of vertices of the polygon.
1107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param retPoly pre allocated array of floats to put the vertices
1117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return the number of points in the polygon 0 if no intersection
1127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
1137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuiint SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
1147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    xsort(points, pointsLength);
1157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int n = pointsLength;
1167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 lUpper[n];
1177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lUpper[0] = points[0];
1187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lUpper[1] = points[1];
1197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int lUpperSize = 2;
1217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 2; i < n; i++) {
1237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lUpper[lUpperSize] = points[i];
1247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lUpperSize++;
1257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
126f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        while (lUpperSize > 2 && !ccw(
127f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
128f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
129f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
1307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            // Remove the middle point of the three last
1317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
1327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
1337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpperSize--;
1347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 lLower[n];
1387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lLower[0] = points[n - 1];
1397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lLower[1] = points[n - 2];
1407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int lLowerSize = 2;
1427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = n - 3; i >= 0; i--) {
1447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lLower[lLowerSize] = points[i];
1457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lLowerSize++;
1467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
147f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        while (lLowerSize > 2 && !ccw(
148f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
149f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
150f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
1517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            // Remove the middle point of the three last
1527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
1537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lLowerSize--;
1547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
157726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // output points in CW ordering
158726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int total = lUpperSize + lLowerSize - 2;
159726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    int outIndex = total - 1;
1607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < lUpperSize; i++) {
161726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        retPoly[outIndex] = lUpper[i];
162726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        outIndex--;
1637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 1; i < lLowerSize - 1; i++) {
166726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        retPoly[outIndex] = lLower[i];
167726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        outIndex--;
1687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // TODO: Add test harness which verify that all the points are inside the hull.
170726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return total;
1717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
174f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether the 3 points form a counter clockwise turn.
1757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if a right hand turn
1777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
178f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuibool SpotShadow::ccw(double ax, double ay, double bx, double by,
1797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double cx, double cy) {
1807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
1817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
1847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Calculates the intersection of poly1 with poly2 and put in poly2.
18550ecf849cb7ccc3482517b74d2214b347927791eztenghui * Note that both poly1 and poly2 must be in CW order already!
1867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly1 The 1st polygon, as a Vector2 array.
1887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly1Length The number of vertices of 1st polygon.
1897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly2 The 2nd and output polygon, as a Vector2 array.
1907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly2Length The number of vertices of 2nd polygon.
1917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return number of vertices in output polygon as poly2.
1927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
19350ecf849cb7ccc3482517b74d2214b347927791eztenghuiint SpotShadow::intersection(const Vector2* poly1, int poly1Length,
1947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        Vector2* poly2, int poly2Length) {
19550ecf849cb7ccc3482517b74d2214b347927791eztenghui#if DEBUG_SHADOW
1962e023f3827dfc0dfc1ed7c3dd54d02b4a993f0b4ztenghui    if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
19750ecf849cb7ccc3482517b74d2214b347927791eztenghui        ALOGW("Poly1 is not clockwise! Intersection is wrong!");
19850ecf849cb7ccc3482517b74d2214b347927791eztenghui    }
1992e023f3827dfc0dfc1ed7c3dd54d02b4a993f0b4ztenghui    if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
20050ecf849cb7ccc3482517b74d2214b347927791eztenghui        ALOGW("Poly2 is not clockwise! Intersection is wrong!");
20150ecf849cb7ccc3482517b74d2214b347927791eztenghui    }
20250ecf849cb7ccc3482517b74d2214b347927791eztenghui#endif
2037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 poly[poly1Length * poly2Length + 2];
2047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int count = 0;
2057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int pcount = 0;
2067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If one vertex from one polygon sits inside another polygon, add it and
2087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // count them.
2097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < poly1Length; i++) {
2107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
2117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            poly[count] = poly1[i];
2127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            count++;
2137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            pcount++;
2147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int insidePoly2 = pcount;
2197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < poly2Length; i++) {
2207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
2217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            poly[count] = poly2[i];
2227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            count++;
2237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int insidePoly1 = count - insidePoly2;
2277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If all vertices from poly1 are inside poly2, then just return poly1.
2287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (insidePoly2 == poly1Length) {
2297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
2307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return poly1Length;
2317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If all vertices from poly2 are inside poly1, then just return poly2.
2347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (insidePoly1 == poly2Length) {
2357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return poly2Length;
2367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Since neither polygon fully contain the other one, we need to add all the
2397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // intersection points.
2401aa5d2d7068147ff781cfe911a93f01593a68c79John Reck    Vector2 intersection = {0, 0};
2417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < poly2Length; i++) {
2427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int j = 0; j < poly1Length; j++) {
2437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly2LineStart = i;
2447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly2LineEnd = ((i + 1) % poly2Length);
2457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly1LineStart = j;
2467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly1LineEnd = ((j + 1) % poly1Length);
2477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            bool found = lineIntersection(
2487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly2[poly2LineStart].x, poly2[poly2LineStart].y,
2497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
2507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly1[poly1LineStart].x, poly1[poly1LineStart].y,
2517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
2527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    intersection);
2537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            if (found) {
2547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                poly[count].x = intersection.x;
2557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                poly[count].y = intersection.y;
2567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                count++;
2577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            } else {
2587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                Vector2 delta = poly2[i] - poly1[j];
259f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                if (delta.lengthSquared() < EPSILON) {
2607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly[count] = poly2[i];
2617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    count++;
2627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                }
2637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
2647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (count == 0) {
2687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return 0;
2697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Sort the result polygon around the center.
2721aa5d2d7068147ff781cfe911a93f01593a68c79John Reck    Vector2 center = {0.0f, 0.0f};
2737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < count; i++) {
2747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        center += poly[i];
2757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    center /= count;
2777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    sort(poly, count, center);
2787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
279f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
280f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Since poly2 is overwritten as the result, we need to save a copy to do
281f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // our verification.
282f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    Vector2 oldPoly2[poly2Length];
283f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    int oldPoly2Length = poly2Length;
284f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
285f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
2867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
287f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Filter the result out from poly and put it into poly2.
2887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    poly2[0] = poly[0];
289f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    int lastOutputIndex = 0;
2907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 1; i < count; i++) {
291f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 delta = poly[i] - poly2[lastOutputIndex];
292f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (delta.lengthSquared() >= EPSILON) {
293f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            poly2[++lastOutputIndex] = poly[i];
294f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        } else {
295f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            // If the vertices are too close, pick the inner one, because the
296f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            // inner one is more likely to be an intersection point.
297f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta1 = poly[i] - center;
298f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta2 = poly2[lastOutputIndex] - center;
299f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (delta1.lengthSquared() < delta2.lengthSquared()) {
300f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                poly2[lastOutputIndex] = poly[i];
301f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
3027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
304f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    int resultLength = lastOutputIndex + 1;
305f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
306f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
307f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testConvex(poly2, resultLength, "intersection");
308f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testConvex(poly1, poly1Length, "input poly1");
309f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testConvex(oldPoly2, oldPoly2Length, "input poly2");
310f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
311f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
312f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
3137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return resultLength;
3157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points about a center point
3197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly The in and out polyogon as a Vector2 array.
3217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polyLength The number of vertices of the polygon.
3227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param center the center ctr[0] = x , ctr[1] = y to sort around.
3237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
3257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    quicksortCirc(poly, 0, polyLength - 1, center);
3267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Swap points pointed to by i and j
3307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::swap(Vector2* points, int i, int j) {
3327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 temp = points[i];
3337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    points[i] = points[j];
3347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    points[j] = temp;
3357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * quick sort implementation about the center.
3397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::quicksortCirc(Vector2* points, int low, int high,
3417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector2& center) {
3427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int i = low, j = high;
3437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int p = low + (high - low) / 2;
3447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float pivot = angle(points[p], center);
3457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    while (i <= j) {
346726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (angle(points[i], center) > pivot) {
3477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
349726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (angle(points[j], center) < pivot) {
3507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (i <= j) {
3547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            swap(points, i, j);
3557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (low < j) quicksortCirc(points, low, j, center);
3607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (i < high) quicksortCirc(points, i, high, center);
3617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points by x axis
3657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points points to sort
3677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param low start index
3687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param high end index
3697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::quicksortX(Vector2* points, int low, int high) {
3717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int i = low, j = high;
3727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int p = low + (high - low) / 2;
3737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float pivot = points[p].x;
3747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    while (i <= j) {
3757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        while (points[i].x < pivot) {
3767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        while (points[j].x > pivot) {
3797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (i <= j) {
3837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            swap(points, i, j);
3847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (low < j) quicksortX(points, low, j);
3897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (i < high) quicksortX(points, i, high);
3907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Test whether a point is inside the polygon.
3947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param testPoint the point to test
3967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly the polygon
3977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if the testPoint is inside the poly.
3987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuibool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
4007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector2* poly, int len) {
4017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    bool c = false;
4027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double testx = testPoint.x;
4037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double testy = testPoint.y;
4047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0, j = len - 1; i < len; j = i++) {
4057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double startX = poly[j].x;
4067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double startY = poly[j].y;
4077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double endX = poly[i].x;
4087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double endY = poly[i].y;
4097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (((endY > testy) != (startY > testy)) &&
4117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            (testx < (startX - endX) * (testy - endY)
4127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui             / (startY - endY) + endX)) {
4137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            c = !c;
4147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
4157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return c;
4177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Make the polygon turn clockwise.
4217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array.
4237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
4247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::makeClockwise(Vector2* polygon, int len) {
4267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (polygon == 0  || len == 0) {
4277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return;
4287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4292e023f3827dfc0dfc1ed7c3dd54d02b4a993f0b4ztenghui    if (!ShadowTessellator::isClockwise(polygon, len)) {
4307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        reverse(polygon, len);
4317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Reverse the polygon
4367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array
4387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
4397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::reverse(Vector2* polygon, int len) {
4417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int n = len / 2;
4427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < n; i++) {
4437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        Vector2 tmp = polygon[i];
4447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        int k = len - 1 - i;
4457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        polygon[i] = polygon[k];
4467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        polygon[k] = tmp;
4477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Intersects two lines in parametric form. This function is called in a tight
4527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * loop, and we need double precision to get things right.
4537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x1 the x coordinate point 1 of line 1
4557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y1 the y coordinate point 1 of line 1
4567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x2 the x coordinate point 2 of line 1
4577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y2 the y coordinate point 2 of line 1
4587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x3 the x coordinate point 1 of line 2
4597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y3 the y coordinate point 1 of line 2
4607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x4 the x coordinate point 2 of line 2
4617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y4 the y coordinate point 2 of line 2
4627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param ret the x,y location of the intersection
4637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if it found an intersection
4647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuiinline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
4667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double x3, double y3, double x4, double y4, Vector2& ret) {
4677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
4687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (d == 0.0) return false;
4697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double dx = (x1 * y2 - y1 * x2);
4717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double dy = (x3 * y4 - y3 * x4);
4727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
4737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
4747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // The intersection should be in the middle of the point 1 and point 2,
4767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // likewise point 3 and point 4.
4777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (((x - x1) * (x - x2) > EPSILON)
4787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        || ((x - x3) * (x - x4) > EPSILON)
4797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        || ((y - y1) * (y - y2) > EPSILON)
4807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        || ((y - y3) * (y - y4) > EPSILON)) {
4817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Not interesected
4827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return false;
4837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    ret.x = x;
4857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    ret.y = y;
4867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return true;
4877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Compute a horizontal circular polygon about point (x , y , height) of radius
4927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * (size)
4937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points number of the points of the output polygon.
4957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightCenter the center of the light.
4967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param size the light size.
4977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param ret result polygon.
4987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
5007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        float size, Vector3* ret) {
5017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // TODO: Caching all the sin / cos values and store them in a look up table.
5027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < points; i++) {
5037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double angle = 2 * i * M_PI / points;
504726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        ret[i].x = cosf(angle) * size + lightCenter.x;
505726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        ret[i].y = sinf(angle) * size + lightCenter.y;
5067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        ret[i].z = lightCenter.z;
5077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
5087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
5097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
5117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* Generate the shadow from a spot light.
5127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*
5137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param poly x,y,z vertexes of a convex polygon that occludes the light source
5147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param polyLength number of vertexes of the occluding polygon
5157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param lightCenter the center of the light
5167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param lightSize the radius of the light source
5177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param lightVertexCount the vertex counter for the light polygon
5187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
5197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*                            empty strip if error.
5207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*
5217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*/
522c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
523c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::createSpotShadow_old(bool isCasterOpaque, const Vector3* poly,
52450ecf849cb7ccc3482517b74d2214b347927791eztenghui        int polyLength, const Vector3& lightCenter, float lightSize,
52550ecf849cb7ccc3482517b74d2214b347927791eztenghui        int lightVertexCount, VertexBuffer& retStrips) {
5267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector3 light[lightVertexCount * 3];
5277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
528c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    computeSpotShadow_old(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
52950ecf849cb7ccc3482517b74d2214b347927791eztenghui            polyLength, retStrips);
5307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
5317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
5337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Generate the shadow spot light of shape lightPoly and a object poly
5347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
5357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightPoly x,y,z vertex of a convex polygon that is the light source
5367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightPolyLength number of vertexes of the light source polygon
5377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly x,y,z vertexes of a convex polygon that occludes the light source
5387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polyLength number of vertexes of the occluding polygon
5397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
5407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *                            empty strip if error.
5417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
542c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::computeSpotShadow_old(bool isCasterOpaque, const Vector3* lightPoly,
543c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, int polyLength,
544c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        VertexBuffer& shadowTriangleStrip) {
5457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Point clouds for all the shadowed vertices
5467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 shadowRegion[lightPolyLength * polyLength];
5477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Shadow polygon from one point light.
5487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 outline[polyLength];
5497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 umbraMem[polyLength * lightPolyLength];
5507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2* umbra = umbraMem;
5517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int umbraLength = 0;
5537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Validate input, receiver is always at z = 0 plane.
5557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    bool inputPolyPositionValid = true;
5567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < polyLength; i++) {
5577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (poly[i].z >= lightPoly[0].z) {
5587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            inputPolyPositionValid = false;
559b79a3e301a8d89b9e1b1f6f3d7fd6aa56610a6f0Chris Craik            ALOGW("polygon above the light");
5607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            break;
5617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
5627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
5637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If the caster's position is invalid, don't draw anything.
5657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (!inputPolyPositionValid) {
5667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return;
5677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
5687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Calculate the umbra polygon based on intersections of all outlines
5707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int k = 0;
5717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int j = 0; j < lightPolyLength; j++) {
5727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        int m = 0;
5737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < polyLength; i++) {
57428c3ea018771562a9150f30c6a088e5bf7502972ztenghui            // After validating the input, deltaZ is guaranteed to be positive.
57550ecf849cb7ccc3482517b74d2214b347927791eztenghui            float deltaZ = lightPoly[j].z - poly[i].z;
57650ecf849cb7ccc3482517b74d2214b347927791eztenghui            float ratioZ = lightPoly[j].z / deltaZ;
57750ecf849cb7ccc3482517b74d2214b347927791eztenghui            float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
57850ecf849cb7ccc3482517b74d2214b347927791eztenghui            float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
5797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5801aa5d2d7068147ff781cfe911a93f01593a68c79John Reck            Vector2 newPoint = {x, y};
5817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            shadowRegion[k] = newPoint;
5827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            outline[m] = newPoint;
5837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            k++;
5857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            m++;
5867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
5877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // For the first light polygon's vertex, use the outline as the umbra.
5897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Later on, use the intersection of the outline and existing umbra.
5907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (umbraLength == 0) {
5917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            for (int i = 0; i < polyLength; i++) {
5927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                umbra[i] = outline[i];
5937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
5947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            umbraLength = polyLength;
5957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        } else {
5967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int col = ((j * 255) / lightPolyLength);
5977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            umbraLength = intersection(outline, polyLength, umbra, umbraLength);
5987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            if (umbraLength == 0) {
5997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                break;
6007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
6017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
6027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
6037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Generate the penumbra area using the hull of all shadow regions.
6057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int shadowRegionLength = k;
6067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 penumbra[k];
6077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
6087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6095176c974f1d9af833b7584e895fcba61e6e7427aztenghui    Vector2 fakeUmbra[polyLength];
6107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (umbraLength < 3) {
6115176c974f1d9af833b7584e895fcba61e6e7427aztenghui        // If there is no real umbra, make a fake one.
6127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < polyLength; i++) {
61350ecf849cb7ccc3482517b74d2214b347927791eztenghui            float deltaZ = lightCenter.z - poly[i].z;
61450ecf849cb7ccc3482517b74d2214b347927791eztenghui            float ratioZ = lightCenter.z / deltaZ;
61550ecf849cb7ccc3482517b74d2214b347927791eztenghui            float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
61650ecf849cb7ccc3482517b74d2214b347927791eztenghui            float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
6177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6185176c974f1d9af833b7584e895fcba61e6e7427aztenghui            fakeUmbra[i].x = x;
6195176c974f1d9af833b7584e895fcba61e6e7427aztenghui            fakeUmbra[i].y = y;
6207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
6217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Shrink the centroid's shadow by 10%.
6237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // TODO: Study the magic number of 10%.
62463d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui        Vector2 shadowCentroid =
62563d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui                ShadowTessellator::centroid2d(fakeUmbra, polyLength);
6267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < polyLength; i++) {
6275176c974f1d9af833b7584e895fcba61e6e7427aztenghui            fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
6285176c974f1d9af833b7584e895fcba61e6e7427aztenghui                    fakeUmbra[i] * SHADOW_SHRINK_SCALE;
6297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
6307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#if DEBUG_SHADOW
6317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        ALOGD("No real umbra make a fake one, centroid2d =  %f , %f",
6327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                shadowCentroid.x, shadowCentroid.y);
6337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#endif
6347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Set the fake umbra, whose size is the same as the original polygon.
6355176c974f1d9af833b7584e895fcba61e6e7427aztenghui        umbra = fakeUmbra;
6367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        umbraLength = polyLength;
6377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
6387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
639c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    generateTriangleStrip(isCasterOpaque, 1.0, penumbra, penumbraLength, umbra,
64050ecf849cb7ccc3482517b74d2214b347927791eztenghui            umbraLength, poly, polyLength, shadowTriangleStrip);
6417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
6427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
643c50a03d78aaedd0003377e98710e7038bda330e9ztenghuifloat SpotShadow::projectCasterToOutline(Vector2& outline,
644c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        const Vector3& lightCenter, const Vector3& polyVertex) {
645c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float lightToPolyZ = lightCenter.z - polyVertex.z;
646c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float ratioZ = CASTER_Z_CAP_RATIO;
647c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    if (lightToPolyZ != 0) {
648c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // If any caster's vertex is almost above the light, we just keep it as 95%
649c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // of the height of the light.
6503bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
651c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
652c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
653c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
654c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
655c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    return ratioZ;
656c50a03d78aaedd0003377e98710e7038bda330e9ztenghui}
657c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
658c50a03d78aaedd0003377e98710e7038bda330e9ztenghui/**
659c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * Generate the shadow spot light of shape lightPoly and a object poly
660c50a03d78aaedd0003377e98710e7038bda330e9ztenghui *
661c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param isCasterOpaque whether the caster is opaque
662c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param lightCenter the center of the light
663c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param lightSize the radius of the light
664c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param poly x,y,z vertexes of a convex polygon that occludes the light source
665c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param polyLength number of vertexes of the occluding polygon
666c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
667c50a03d78aaedd0003377e98710e7038bda330e9ztenghui *                            empty strip if error.
668c50a03d78aaedd0003377e98710e7038bda330e9ztenghui */
669c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
670c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
671c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        VertexBuffer& shadowTriangleStrip) {
6723bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui    if (CC_UNLIKELY(lightCenter.z <= 0)) {
6733bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        ALOGW("Relative Light Z is not positive. No spot shadow!");
6743bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        return;
6753bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui    }
676c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    OutlineData outlineData[polyLength];
677c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 outlineCentroid;
678c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Calculate the projected outline for each polygon's vertices from the light center.
679c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //
680c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                       O     Light
681c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                      /
682c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                    /
683c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                   .     Polygon vertex
684c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                 /
685c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //               /
686c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //              O     Outline vertices
687c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //
688c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Ratio = (Poly - Outline) / (Light - Poly)
689c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
690c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Outline's radius / Light's radius = Ratio
691c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
692c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Compute the last outline vertex to make sure we can get the normal and outline
693c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // in one single loop.
694c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
695c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            poly[polyLength - 1]);
696c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
697c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Take the outline's polygon, calculate the normal for each outline edge.
698c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int currentNormalIndex = polyLength - 1;
699c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int nextNormalIndex = 0;
700c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
701c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    for (int i = 0; i < polyLength; i++) {
702c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        float ratioZ = projectCasterToOutline(outlineData[i].position,
703c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                lightCenter, poly[i]);
704c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        outlineData[i].radius = ratioZ * lightSize;
705c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
706c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
707c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                outlineData[currentNormalIndex].position,
708c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                outlineData[nextNormalIndex].position);
709c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        currentNormalIndex = (currentNormalIndex + 1) % polyLength;
710c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        nextNormalIndex++;
711c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
712c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
713c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
714c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
715c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int penumbraIndex = 0;
716c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int penumbraLength = polyLength * 3;
717c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 penumbra[penumbraLength];
718c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
719c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 umbra[polyLength];
720c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float distOutline = 0;
721c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float ratioVI = 0;
722c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
723c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    bool hasValidUmbra = true;
724c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // We need the maxRatioVI to decrease the spot shadow strength accordingly.
725c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float maxRaitoVI = 1.0;
726c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
727c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    for (int i = 0; i < polyLength; i++) {
728c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
729c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // There is no guarantee that the penumbra is still convex, but for
730c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // each outline vertex, it will connect to all its corresponding penumbra vertices as
731c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
732c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
733c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Penumbra Vertices marked as Pi
734c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Outline Vertices marked as Vi
735c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //                                            (P3)
736c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //          (P2)                               |     ' (P4)
737c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //   (P1)'   |                                 |   '
738c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //         ' |                                 | '
739c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // (P0)  ------------------------------------------------(P5)
740c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           | (V0)                            |(V1)
741c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
742c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
743c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
744c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
745c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
746c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
747c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
748c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
749c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //       (V3)-----------------------------------(V2)
750c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        int preNormalIndex = (i + polyLength - 1) % polyLength;
751c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        penumbra[penumbraIndex++] = outlineData[i].position +
752c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            outlineData[preNormalIndex].normal * outlineData[i].radius;
753c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
754c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        int currentNormalIndex = i;
755c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // (TODO) Depending on how roundness we want for each corner, we can subdivide
756c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // further here and/or introduce some heuristic to decide how much the
757c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // subdivision should be.
758c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        Vector2 avgNormal =
759c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            (outlineData[preNormalIndex].normal + outlineData[currentNormalIndex].normal) / 2;
760c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
761c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        penumbra[penumbraIndex++] = outlineData[i].position +
762c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            avgNormal * outlineData[i].radius;
763c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
764c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        penumbra[penumbraIndex++] = outlineData[i].position +
765c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            outlineData[currentNormalIndex].normal * outlineData[i].radius;
766c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
767c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Compute the umbra by the intersection from the outline's centroid!
768c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
769c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //       (V) ------------------------------------
770c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |          '                       |
771c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |         '                        |
772c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |       ' (I)                      |
773c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |    '                             |
774c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           | '             (C)                |
775c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
776c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
777c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
778c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
779c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           ------------------------------------
780c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
781c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Connect a line b/t the outline vertex (V) and the centroid (C), it will
782c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // intersect with the outline vertex's circle at point (I).
783c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Now, ratioVI = VI / VC, ratioIC = IC / VC
784c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
785c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
786c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // When one of the outline circle cover the the outline centroid, (like I is
787c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // on the other side of C), there is no real umbra any more, so we just fake
788c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // a small area around the centroid as the umbra, and tune down the spot
789c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // shadow's umbra strength to simulate the effect the whole shadow will
790c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // become lighter in this case.
791c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // The ratio can be simulated by using the inverse of maximum of ratioVI for
792c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // all (V).
793c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        distOutline = (outlineData[i].position - outlineCentroid).length();
7943bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        if (CC_UNLIKELY(distOutline == 0)) {
795c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            // If the outline has 0 area, then there is no spot shadow anyway.
796c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            ALOGW("Outline has 0 area, no spot shadow!");
797c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            return;
798c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
799c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        ratioVI = outlineData[i].radius / distOutline;
800c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        if (ratioVI >= 1.0) {
801c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            maxRaitoVI = ratioVI;
802c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            hasValidUmbra = false;
803c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
804c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // When we know we don't have valid umbra, don't bother to compute the
805c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // values below. But we can't skip the loop yet since we want to know the
806c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // maximum ratio.
807c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        if (hasValidUmbra) {
808c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            float ratioIC = (distOutline - outlineData[i].radius) / distOutline;
809c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
810c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
811c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
812c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
813c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float shadowStrengthScale = 1.0;
814c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    if (!hasValidUmbra) {
815c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        ALOGW("The object is too close to the light or too small, no real umbra!");
816c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        for (int i = 0; i < polyLength; i++) {
817c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
818c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
819c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
820c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        shadowStrengthScale = 1.0 / maxRaitoVI;
821c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
822c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
823c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#if DEBUG_SHADOW
824c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    dumpPolygon(poly, polyLength, "input poly");
825c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    dumpPolygon(outline, polyLength, "outline");
826c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    dumpPolygon(penumbra, penumbraLength, "penumbra");
827c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    dumpPolygon(umbra, polyLength, "umbra");
828c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
829c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#endif
830c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
831c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    generateTriangleStrip(isCasterOpaque, shadowStrengthScale, penumbra,
832c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            penumbraLength, umbra, polyLength, poly, polyLength, shadowTriangleStrip);
833c50a03d78aaedd0003377e98710e7038bda330e9ztenghui}
834c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
8357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
836726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
837726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik *
838726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Returns false in error conditions
839726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik *
840726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param poly Array of vertices. Note that these *must* be CW.
841726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param polyLength The number of vertices in the polygon.
842726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param polyCentroid The centroid of the polygon, from which rays will be cast
843726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
844726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik */
845726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikbool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
846726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float* rayDist) {
847726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int rays = SHADOW_RAY_COUNT;
848726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const float step = M_PI * 2 / rays;
849726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
850726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const Vector2* lastVertex = &(poly[polyLength - 1]);
851726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    float startAngle = angle(*lastVertex, polyCentroid);
852726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
853726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // Start with the ray that's closest to and less than startAngle
854726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    int rayIndex = floor((startAngle - EPSILON) / step);
855726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    rayIndex = (rayIndex + rays) % rays; // ensure positive
856726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
857726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
858726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        /*
859726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
860726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * intersect these will be those that are between the two angles from the centroid that the
861726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * vertices define.
862726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         *
863726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * Because the polygon vertices are stored clockwise, the closest ray with an angle
864726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
865726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * not intersect with poly[i-1], poly[i].
866726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         */
867726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float currentAngle = angle(poly[polyIndex], polyCentroid);
868726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
869726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // find first ray that will not intersect the line segment poly[i-1] & poly[i]
870726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
871726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
872726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
873726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
874726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // This may be 0 rays.
875726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (rayIndex != firstRayIndexOnNextSegment) {
876726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            float distanceToIntersect = rayIntersectPoints(polyCentroid,
877726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    cos(rayIndex * step),
878726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    sin(rayIndex * step),
879726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    *lastVertex, poly[polyIndex]);
88050ecf849cb7ccc3482517b74d2214b347927791eztenghui            if (distanceToIntersect < 0) {
88150ecf849cb7ccc3482517b74d2214b347927791eztenghui#if DEBUG_SHADOW
88250ecf849cb7ccc3482517b74d2214b347927791eztenghui                ALOGW("ERROR: convertPolyToRayDist failed");
88350ecf849cb7ccc3482517b74d2214b347927791eztenghui#endif
88450ecf849cb7ccc3482517b74d2214b347927791eztenghui                return false; // error case, abort
88550ecf849cb7ccc3482517b74d2214b347927791eztenghui            }
886726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
887726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayDist[rayIndex] = distanceToIntersect;
888726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
889726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayIndex = (rayIndex - 1 + rays) % rays;
890726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        }
891726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        lastVertex = &poly[polyIndex];
892726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    }
893726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
894726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik   return true;
895726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik}
896726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
89750ecf849cb7ccc3482517b74d2214b347927791eztenghuiint SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
89850ecf849cb7ccc3482517b74d2214b347927791eztenghui        const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
89950ecf849cb7ccc3482517b74d2214b347927791eztenghui    // Occluded umbra area is computed as the intersection of the projected 2D
90050ecf849cb7ccc3482517b74d2214b347927791eztenghui    // poly and umbra.
90150ecf849cb7ccc3482517b74d2214b347927791eztenghui    for (int i = 0; i < polyLength; i++) {
90250ecf849cb7ccc3482517b74d2214b347927791eztenghui        occludedUmbra[i].x = poly[i].x;
90350ecf849cb7ccc3482517b74d2214b347927791eztenghui        occludedUmbra[i].y = poly[i].y;
90450ecf849cb7ccc3482517b74d2214b347927791eztenghui    }
90550ecf849cb7ccc3482517b74d2214b347927791eztenghui
90650ecf849cb7ccc3482517b74d2214b347927791eztenghui    // Both umbra and incoming polygon are guaranteed to be CW, so we can call
90750ecf849cb7ccc3482517b74d2214b347927791eztenghui    // intersection() directly.
90850ecf849cb7ccc3482517b74d2214b347927791eztenghui    return intersection(umbra, umbraLength,
90950ecf849cb7ccc3482517b74d2214b347927791eztenghui            occludedUmbra, polyLength);
91050ecf849cb7ccc3482517b74d2214b347927791eztenghui}
91150ecf849cb7ccc3482517b74d2214b347927791eztenghui
912726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik/**
9137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Generate a triangle strip given two convex polygons
9147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
9157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param penumbra The outer polygon x,y vertexes
9167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param penumbraLength The number of vertexes in the outer polygon
9177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param umbra The inner outer polygon x,y vertexes
9187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param umbraLength The number of vertexes in the inner polygon
9197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
9207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *                            empty strip if error.
9217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui**/
922c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
923c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength,
92450ecf849cb7ccc3482517b74d2214b347927791eztenghui        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
92563d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    const int rays = SHADOW_RAY_COUNT;
926726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int size = 2 * rays;
927726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const float step = M_PI * 2 / rays;
9287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Centroid of the umbra.
92963d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
9307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#if DEBUG_SHADOW
9317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    ALOGD("centroid2d =  %f , %f", centroid.x, centroid.y);
9327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#endif
9337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Intersection to the penumbra.
9347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float penumbraDistPerRay[rays];
9357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Intersection to the umbra.
9367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float umbraDistPerRay[rays];
93750ecf849cb7ccc3482517b74d2214b347927791eztenghui    // Intersection to the occluded umbra area.
93850ecf849cb7ccc3482517b74d2214b347927791eztenghui    float occludedUmbraDistPerRay[rays];
9397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
940726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // convert CW polygons to ray distance encoding, aborting on conversion failure
941726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
942726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
9437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
94450ecf849cb7ccc3482517b74d2214b347927791eztenghui    bool hasOccludedUmbraArea = false;
94550ecf849cb7ccc3482517b74d2214b347927791eztenghui    if (isCasterOpaque) {
94650ecf849cb7ccc3482517b74d2214b347927791eztenghui        Vector2 occludedUmbra[polyLength + umbraLength];
94750ecf849cb7ccc3482517b74d2214b347927791eztenghui        int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
94850ecf849cb7ccc3482517b74d2214b347927791eztenghui                occludedUmbra);
94950ecf849cb7ccc3482517b74d2214b347927791eztenghui        // Make sure the centroid is inside the umbra, otherwise, fall back to the
95050ecf849cb7ccc3482517b74d2214b347927791eztenghui        // approach as if there is no occluded umbra area.
95150ecf849cb7ccc3482517b74d2214b347927791eztenghui        if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
95250ecf849cb7ccc3482517b74d2214b347927791eztenghui            hasOccludedUmbraArea = true;
95350ecf849cb7ccc3482517b74d2214b347927791eztenghui            // Shrink the occluded umbra area to avoid pixel level artifacts.
95450ecf849cb7ccc3482517b74d2214b347927791eztenghui            for (int i = 0; i < occludedUmbraLength; i ++) {
95550ecf849cb7ccc3482517b74d2214b347927791eztenghui                occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
95650ecf849cb7ccc3482517b74d2214b347927791eztenghui                        OCLLUDED_UMBRA_SHRINK_FACTOR;
95750ecf849cb7ccc3482517b74d2214b347927791eztenghui            }
95850ecf849cb7ccc3482517b74d2214b347927791eztenghui            if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
95950ecf849cb7ccc3482517b74d2214b347927791eztenghui                    occludedUmbraDistPerRay)) {
96050ecf849cb7ccc3482517b74d2214b347927791eztenghui                return;
96150ecf849cb7ccc3482517b74d2214b347927791eztenghui            }
96250ecf849cb7ccc3482517b74d2214b347927791eztenghui        }
96350ecf849cb7ccc3482517b74d2214b347927791eztenghui    }
96450ecf849cb7ccc3482517b74d2214b347927791eztenghui    AlphaVertex* shadowVertices =
96550ecf849cb7ccc3482517b74d2214b347927791eztenghui            shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
9667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
96791a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik    // NOTE: Shadow alpha values are transformed when stored in alphavertices,
96891a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik    // so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp
969c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float transformedMaxAlpha = M_PI * shadowStrengthScale;
97091a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik
97163d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    // Calculate the vertices (x, y, alpha) in the shadow area.
97250ecf849cb7ccc3482517b74d2214b347927791eztenghui    AlphaVertex centroidXYA;
97391a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik    AlphaVertex::set(&centroidXYA, centroid.x, centroid.y, transformedMaxAlpha);
974726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
975726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float dx = cosf(step * rayIndex);
976726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float dy = sinf(step * rayIndex);
977726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
97850ecf849cb7ccc3482517b74d2214b347927791eztenghui        // penumbra ring
97950ecf849cb7ccc3482517b74d2214b347927791eztenghui        float penumbraDistance = penumbraDistPerRay[rayIndex];
980726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        AlphaVertex::set(&shadowVertices[rayIndex],
98150ecf849cb7ccc3482517b74d2214b347927791eztenghui                dx * penumbraDistance + centroid.x,
98250ecf849cb7ccc3482517b74d2214b347927791eztenghui                dy * penumbraDistance + centroid.y, 0.0f);
983726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
98450ecf849cb7ccc3482517b74d2214b347927791eztenghui        // umbra ring
98550ecf849cb7ccc3482517b74d2214b347927791eztenghui        float umbraDistance = umbraDistPerRay[rayIndex];
986726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        AlphaVertex::set(&shadowVertices[rays + rayIndex],
98791a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik                dx * umbraDistance + centroid.x,
98891a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik                dy * umbraDistance + centroid.y,
98991a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik                transformedMaxAlpha);
99050ecf849cb7ccc3482517b74d2214b347927791eztenghui
99150ecf849cb7ccc3482517b74d2214b347927791eztenghui        // occluded umbra ring
99250ecf849cb7ccc3482517b74d2214b347927791eztenghui        if (hasOccludedUmbraArea) {
99350ecf849cb7ccc3482517b74d2214b347927791eztenghui            float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
99450ecf849cb7ccc3482517b74d2214b347927791eztenghui            AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
99550ecf849cb7ccc3482517b74d2214b347927791eztenghui                    dx * occludedUmbraDistance + centroid.x,
99691a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0Chris Craik                    dy * occludedUmbraDistance + centroid.y, transformedMaxAlpha);
99750ecf849cb7ccc3482517b74d2214b347927791eztenghui        } else {
99850ecf849cb7ccc3482517b74d2214b347927791eztenghui            // Put all vertices of the occluded umbra ring at the centroid.
99950ecf849cb7ccc3482517b74d2214b347927791eztenghui            shadowVertices[2 * rays + rayIndex] = centroidXYA;
100050ecf849cb7ccc3482517b74d2214b347927791eztenghui        }
10017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
10029a89bc6524620c87c7a321433470c668e2b95d69Chris Craik    shadowTriangleStrip.setMode(VertexBuffer::kTwoPolyRingShadow);
10039a89bc6524620c87c7a321433470c668e2b95d69Chris Craik    shadowTriangleStrip.computeBounds<AlphaVertex>();
10047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
10057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
10067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
10077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * This is only for experimental purpose.
10087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * After intersections are calculated, we could smooth the polygon if needed.
10097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * So far, we don't think it is more appealing yet.
10107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
10117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param level The level of smoothness.
10127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param rays The total number of rays.
10137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param rayDist (In and Out) The distance for each ray.
10147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
10157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
10167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
10177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int k = 0; k < level; k++) {
10187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < rays; i++) {
10197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float p1 = rayDist[(rays - 1 + i) % rays];
10207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float p2 = rayDist[i];
10217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float p3 = rayDist[(i + 1) % rays];
10227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            rayDist[i] = (p1 + p2 * 2 + p3) / 4;
10237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
10247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
10257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
10267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1027f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
1028f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1029f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#define TEST_POINT_NUMBER 128
1030f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1031f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1032f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Calculate the bounds for generating random test points.
1033f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1034f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuivoid SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1035f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2& upperBound ) {
1036f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.x < lowerBound.x) {
1037f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        lowerBound.x = inVector.x;
1038f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1039f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1040f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.y < lowerBound.y) {
1041f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        lowerBound.y = inVector.y;
1042f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1043f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1044f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.x > upperBound.x) {
1045f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        upperBound.x = inVector.x;
1046f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1047f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1048f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.y > upperBound.y) {
1049f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        upperBound.y = inVector.y;
1050f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1051f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1052f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1053f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1054f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * For debug purpose, when things go wrong, dump the whole polygon data.
1055f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1056c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1057c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    for (int i = 0; i < polyLength; i++) {
1058c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1059c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
1060c50a03d78aaedd0003377e98710e7038bda330e9ztenghui}
1061c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
1062c50a03d78aaedd0003377e98710e7038bda330e9ztenghui/**
1063c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * For debug purpose, when things go wrong, dump the whole polygon data.
1064c50a03d78aaedd0003377e98710e7038bda330e9ztenghui */
1065c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1066f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < polyLength; i++) {
1067f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1068f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1069f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1070f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1071f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1072f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether the polygon is convex.
1073f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1074f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuibool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1075f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const char* name) {
1076f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    bool isConvex = true;
1077f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < polygonLength; i++) {
1078f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 start = polygon[i];
1079f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 middle = polygon[(i + 1) % polygonLength];
1080f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 end = polygon[(i + 2) % polygonLength];
1081f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1082f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
1083f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                (double(middle.y) - start.y) * (double(end.x) - start.x);
1084f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        bool isCCWOrCoLinear = (delta >= EPSILON);
1085f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1086f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (isCCWOrCoLinear) {
108750ecf849cb7ccc3482517b74d2214b347927791eztenghui            ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1088f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                    "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1089f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                    name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1090f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            isConvex = false;
1091f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            break;
1092f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
1093f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1094f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    return isConvex;
1095f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1096f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1097f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1098f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether or not the polygon (intersection) is within the 2 input polygons.
1099f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Using Marte Carlo method, we generate a random point, and if it is inside the
1100f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * intersection, then it must be inside both source polygons.
1101f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1102f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuivoid SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1103f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const Vector2* poly2, int poly2Length,
1104f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const Vector2* intersection, int intersectionLength) {
1105f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Find the min and max of x and y.
1106c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1107c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1108f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < poly1Length; i++) {
1109f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        updateBound(poly1[i], lowerBound, upperBound);
1110f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1111f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < poly2Length; i++) {
1112f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        updateBound(poly2[i], lowerBound, upperBound);
1113f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1114f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1115f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    bool dumpPoly = false;
1116f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1117f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        // Generate a random point between minX, minY and maxX, maxY.
1118f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        double randomX = rand() / double(RAND_MAX);
1119f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        double randomY = rand() / double(RAND_MAX);
1120f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1121f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 testPoint;
1122f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1123f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1124f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1125f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        // If the random point is in both poly 1 and 2, then it must be intersection.
1126f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1127f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1128f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                dumpPoly = true;
112950ecf849cb7ccc3482517b74d2214b347927791eztenghui                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1130f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                      " not in the poly1",
1131f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                        testPoint.x, testPoint.y);
1132f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
1133f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1134f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1135f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                dumpPoly = true;
113650ecf849cb7ccc3482517b74d2214b347927791eztenghui                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1137f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                      " not in the poly2",
1138f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                        testPoint.x, testPoint.y);
1139f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
1140f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
1141f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1142f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1143f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (dumpPoly) {
1144f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(intersection, intersectionLength, "intersection");
1145f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        for (int i = 1; i < intersectionLength; i++) {
1146f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta = intersection[i] - intersection[i - 1];
1147f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1148f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
1149f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1150f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(poly1, poly1Length, "poly 1");
1151f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(poly2, poly2Length, "poly 2");
1152f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1153f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1154f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
1155f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
11567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}; // namespace uirenderer
11577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}; // namespace android
1158