SpotShadow.cpp revision 726118b35240957710d4d85fb5747e2ba8b934f7
17b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/*
27b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Copyright (C) 2014 The Android Open Source Project
37b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
47b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Licensed under the Apache License, Version 2.0 (the "License");
57b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * you may not use this file except in compliance with the License.
67b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * You may obtain a copy of the License at
77b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
87b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *      http://www.apache.org/licenses/LICENSE-2.0
97b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Unless required by applicable law or agreed to in writing, software
117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * distributed under the License is distributed on an "AS IS" BASIS,
127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * See the License for the specific language governing permissions and
147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * limitations under the License.
157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#define LOG_TAG "OpenGLRenderer"
187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#define SHADOW_SHRINK_SCALE 0.1f
207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include <math.h>
22f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#include <stdlib.h>
237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include <utils/Log.h>
247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2563d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui#include "ShadowTessellator.h"
267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include "SpotShadow.h"
277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include "Vertex.h"
287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuinamespace android {
307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuinamespace uirenderer {
317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
32726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikstatic const double EPSILON = 1e-7;
33726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
34726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik/**
35726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Calculate the angle between and x and a y coordinate.
36726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * The atan2 range from -PI to PI.
37726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik */
38726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikfloat angle(const Vector2& point, const Vector2& center) {
39726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return atan2(point.y - center.y, point.x - center.x);
40726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik}
41726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
43726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Calculate the intersection of a ray with the line segment defined by two points.
447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
45726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Returns a negative value in error conditions.
46726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
47726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param rayOrigin The start of the ray
48726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param dx The x vector of the ray
49726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param dy The y vector of the ray
50726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param p1 The first point defining the line segment
51726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param p2 The second point defining the line segment
52726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @return The distance along the ray if it intersects with the line segment, negative if otherwise
537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
54726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikfloat rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
55726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        const Vector2& p1, const Vector2& p2) {
56726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // The math below is derived from solving this formula, basically the
57726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // intersection point should stay on both the ray and the edge of (p1, p2).
58726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
59726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
60726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
61726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (divisor == 0) return -1.0f; // error, invalid divisor
62726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
63726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik#if DEBUG_SHADOW
64726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
65726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (interpVal < 0 || interpVal > 1) return -1.0f; // error, doesn't intersect between points
66726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik#endif
67726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
68726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
69726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayOrigin.x * (p2.y - p1.y)) / divisor;
70726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
71726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return distance; // may be negative in error cases
727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points by their X coordinates
767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points the points as a Vector2 array.
787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param pointsLength the number of vertices of the polygon.
797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::xsort(Vector2* points, int pointsLength) {
817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    quicksortX(points, 0, pointsLength - 1);
827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * compute the convex hull of a collection of Points
867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points the points as a Vector2 array.
887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param pointsLength the number of vertices of the polygon.
897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param retPoly pre allocated array of floats to put the vertices
907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return the number of points in the polygon 0 if no intersection
917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuiint SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    xsort(points, pointsLength);
947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int n = pointsLength;
957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 lUpper[n];
967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lUpper[0] = points[0];
977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lUpper[1] = points[1];
987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int lUpperSize = 2;
1007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 2; i < n; i++) {
1027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lUpper[lUpperSize] = points[i];
1037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lUpperSize++;
1047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
105f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        while (lUpperSize > 2 && !ccw(
106f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
107f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
108f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
1097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            // Remove the middle point of the three last
1107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
1117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
1127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpperSize--;
1137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 lLower[n];
1177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lLower[0] = points[n - 1];
1187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lLower[1] = points[n - 2];
1197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int lLowerSize = 2;
1217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = n - 3; i >= 0; i--) {
1237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lLower[lLowerSize] = points[i];
1247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lLowerSize++;
1257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
126f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        while (lLowerSize > 2 && !ccw(
127f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
128f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
129f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
1307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            // Remove the middle point of the three last
1317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
1327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lLowerSize--;
1337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
136726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // output points in CW ordering
137726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int total = lUpperSize + lLowerSize - 2;
138726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    int outIndex = total - 1;
1397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < lUpperSize; i++) {
140726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        retPoly[outIndex] = lUpper[i];
141726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        outIndex--;
1427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 1; i < lLowerSize - 1; i++) {
145726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        retPoly[outIndex] = lLower[i];
146726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        outIndex--;
1477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // TODO: Add test harness which verify that all the points are inside the hull.
149726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return total;
1507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
153f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether the 3 points form a counter clockwise turn.
1547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if a right hand turn
1567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
157f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuibool SpotShadow::ccw(double ax, double ay, double bx, double by,
1587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double cx, double cy) {
1597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
1607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
1637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Calculates the intersection of poly1 with poly2 and put in poly2.
1647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly1 The 1st polygon, as a Vector2 array.
1677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly1Length The number of vertices of 1st polygon.
1687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly2 The 2nd and output polygon, as a Vector2 array.
1697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly2Length The number of vertices of 2nd polygon.
1707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return number of vertices in output polygon as poly2.
1717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
1727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuiint SpotShadow::intersection(Vector2* poly1, int poly1Length,
1737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        Vector2* poly2, int poly2Length) {
1747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    makeClockwise(poly1, poly1Length);
1757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    makeClockwise(poly2, poly2Length);
176f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 poly[poly1Length * poly2Length + 2];
1787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int count = 0;
1797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int pcount = 0;
1807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If one vertex from one polygon sits inside another polygon, add it and
1827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // count them.
1837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < poly1Length; i++) {
1847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
1857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            poly[count] = poly1[i];
1867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            count++;
1877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            pcount++;
1887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int insidePoly2 = pcount;
1937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < poly2Length; i++) {
1947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
1957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            poly[count] = poly2[i];
1967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            count++;
1977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int insidePoly1 = count - insidePoly2;
2017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If all vertices from poly1 are inside poly2, then just return poly1.
2027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (insidePoly2 == poly1Length) {
2037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
2047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return poly1Length;
2057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If all vertices from poly2 are inside poly1, then just return poly2.
2087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (insidePoly1 == poly2Length) {
2097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return poly2Length;
2107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Since neither polygon fully contain the other one, we need to add all the
2137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // intersection points.
2147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 intersection;
2157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < poly2Length; i++) {
2167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int j = 0; j < poly1Length; j++) {
2177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly2LineStart = i;
2187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly2LineEnd = ((i + 1) % poly2Length);
2197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly1LineStart = j;
2207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int poly1LineEnd = ((j + 1) % poly1Length);
2217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            bool found = lineIntersection(
2227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly2[poly2LineStart].x, poly2[poly2LineStart].y,
2237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
2247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly1[poly1LineStart].x, poly1[poly1LineStart].y,
2257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
2267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    intersection);
2277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            if (found) {
2287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                poly[count].x = intersection.x;
2297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                poly[count].y = intersection.y;
2307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                count++;
2317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            } else {
2327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                Vector2 delta = poly2[i] - poly1[j];
233f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                if (delta.lengthSquared() < EPSILON) {
2347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    poly[count] = poly2[i];
2357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                    count++;
2367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                }
2377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
2387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (count == 0) {
2427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return 0;
2437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Sort the result polygon around the center.
2467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 center(0.0f, 0.0f);
2477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < count; i++) {
2487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        center += poly[i];
2497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    center /= count;
2517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    sort(poly, count, center);
2527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
253f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
254f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Since poly2 is overwritten as the result, we need to save a copy to do
255f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // our verification.
256f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    Vector2 oldPoly2[poly2Length];
257f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    int oldPoly2Length = poly2Length;
258f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
259f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
2607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
261f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Filter the result out from poly and put it into poly2.
2627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    poly2[0] = poly[0];
263f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    int lastOutputIndex = 0;
2647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 1; i < count; i++) {
265f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 delta = poly[i] - poly2[lastOutputIndex];
266f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (delta.lengthSquared() >= EPSILON) {
267f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            poly2[++lastOutputIndex] = poly[i];
268f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        } else {
269f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            // If the vertices are too close, pick the inner one, because the
270f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            // inner one is more likely to be an intersection point.
271f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta1 = poly[i] - center;
272f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta2 = poly2[lastOutputIndex] - center;
273f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (delta1.lengthSquared() < delta2.lengthSquared()) {
274f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                poly2[lastOutputIndex] = poly[i];
275f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
2767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
278f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    int resultLength = lastOutputIndex + 1;
279f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
280f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
281f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testConvex(poly2, resultLength, "intersection");
282f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testConvex(poly1, poly1Length, "input poly1");
283f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testConvex(oldPoly2, oldPoly2Length, "input poly2");
284f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
285f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
286f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
2877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return resultLength;
2897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
2927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points about a center point
2937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
2947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly The in and out polyogon as a Vector2 array.
2957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polyLength The number of vertices of the polygon.
2967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param center the center ctr[0] = x , ctr[1] = y to sort around.
2977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
2987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
2997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    quicksortCirc(poly, 0, polyLength - 1, center);
3007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Swap points pointed to by i and j
3047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::swap(Vector2* points, int i, int j) {
3067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 temp = points[i];
3077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    points[i] = points[j];
3087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    points[j] = temp;
3097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * quick sort implementation about the center.
3137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::quicksortCirc(Vector2* points, int low, int high,
3157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector2& center) {
3167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int i = low, j = high;
3177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int p = low + (high - low) / 2;
3187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float pivot = angle(points[p], center);
3197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    while (i <= j) {
320726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (angle(points[i], center) > pivot) {
3217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
323726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (angle(points[j], center) < pivot) {
3247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (i <= j) {
3287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            swap(points, i, j);
3297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (low < j) quicksortCirc(points, low, j, center);
3347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (i < high) quicksortCirc(points, i, high, center);
3357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points by x axis
3397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points points to sort
3417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param low start index
3427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param high end index
3437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::quicksortX(Vector2* points, int low, int high) {
3457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int i = low, j = high;
3467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int p = low + (high - low) / 2;
3477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float pivot = points[p].x;
3487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    while (i <= j) {
3497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        while (points[i].x < pivot) {
3507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        while (points[j].x > pivot) {
3537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (i <= j) {
3577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            swap(points, i, j);
3587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
3597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
3607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (low < j) quicksortX(points, low, j);
3637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (i < high) quicksortX(points, i, high);
3647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Test whether a point is inside the polygon.
3687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param testPoint the point to test
3707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly the polygon
3717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if the testPoint is inside the poly.
3727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuibool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
3747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector2* poly, int len) {
3757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    bool c = false;
3767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double testx = testPoint.x;
3777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double testy = testPoint.y;
3787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0, j = len - 1; i < len; j = i++) {
3797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double startX = poly[j].x;
3807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double startY = poly[j].y;
3817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double endX = poly[i].x;
3827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double endY = poly[i].y;
3837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (((endY > testy) != (startY > testy)) &&
3857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            (testx < (startX - endX) * (testy - endY)
3867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui             / (startY - endY) + endX)) {
3877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            c = !c;
3887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return c;
3917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Make the polygon turn clockwise.
3957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array.
3977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
3987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::makeClockwise(Vector2* polygon, int len) {
4007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (polygon == 0  || len == 0) {
4017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return;
4027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (!isClockwise(polygon, len)) {
4047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        reverse(polygon, len);
4057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Test whether the polygon is order in clockwise.
4107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array
4127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
4137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuibool SpotShadow::isClockwise(Vector2* polygon, int len) {
4157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double sum = 0;
4167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double p1x = polygon[len - 1].x;
4177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double p1y = polygon[len - 1].y;
4187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < len; i++) {
4197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double p2x = polygon[i].x;
4217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double p2y = polygon[i].y;
4227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        sum += p1x * p2y - p2x * p1y;
4237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        p1x = p2x;
4247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        p1y = p2y;
4257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return sum < 0;
4277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Reverse the polygon
4317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array
4337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
4347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::reverse(Vector2* polygon, int len) {
4367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int n = len / 2;
4377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < n; i++) {
4387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        Vector2 tmp = polygon[i];
4397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        int k = len - 1 - i;
4407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        polygon[i] = polygon[k];
4417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        polygon[k] = tmp;
4427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Intersects two lines in parametric form. This function is called in a tight
4477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * loop, and we need double precision to get things right.
4487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x1 the x coordinate point 1 of line 1
4507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y1 the y coordinate point 1 of line 1
4517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x2 the x coordinate point 2 of line 1
4527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y2 the y coordinate point 2 of line 1
4537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x3 the x coordinate point 1 of line 2
4547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y3 the y coordinate point 1 of line 2
4557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param x4 the x coordinate point 2 of line 2
4567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param y4 the y coordinate point 2 of line 2
4577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param ret the x,y location of the intersection
4587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if it found an intersection
4597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuiinline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
4617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double x3, double y3, double x4, double y4, Vector2& ret) {
4627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
4637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (d == 0.0) return false;
4647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double dx = (x1 * y2 - y1 * x2);
4667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double dy = (x3 * y4 - y3 * x4);
4677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
4687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
4697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // The intersection should be in the middle of the point 1 and point 2,
4717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // likewise point 3 and point 4.
4727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (((x - x1) * (x - x2) > EPSILON)
4737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        || ((x - x3) * (x - x4) > EPSILON)
4747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        || ((y - y1) * (y - y2) > EPSILON)
4757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        || ((y - y3) * (y - y4) > EPSILON)) {
4767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Not interesected
4777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return false;
4787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
4797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    ret.x = x;
4807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    ret.y = y;
4817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return true;
4827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
4847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
4857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
4867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Compute a horizontal circular polygon about point (x , y , height) of radius
4877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * (size)
4887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
4897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points number of the points of the output polygon.
4907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightCenter the center of the light.
4917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param size the light size.
4927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param ret result polygon.
4937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
4947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
4957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        float size, Vector3* ret) {
4967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // TODO: Caching all the sin / cos values and store them in a look up table.
4977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < points; i++) {
4987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        double angle = 2 * i * M_PI / points;
499726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        ret[i].x = cosf(angle) * size + lightCenter.x;
500726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        ret[i].y = sinf(angle) * size + lightCenter.y;
5017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        ret[i].z = lightCenter.z;
5027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
5037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
5047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
5067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* Generate the shadow from a spot light.
5077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*
5087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param poly x,y,z vertexes of a convex polygon that occludes the light source
5097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param polyLength number of vertexes of the occluding polygon
5107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param lightCenter the center of the light
5117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param lightSize the radius of the light source
5127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param lightVertexCount the vertex counter for the light polygon
5137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
5147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*                            empty strip if error.
5157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*
5167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui*/
5177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::createSpotShadow(const Vector3* poly, int polyLength,
5187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector3& lightCenter, float lightSize, int lightVertexCount,
51963d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui        VertexBuffer& retStrips) {
5207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector3 light[lightVertexCount * 3];
5217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
52263d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    computeSpotShadow(light, lightVertexCount, lightCenter, poly, polyLength,
52363d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui            retStrips);
5247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
5257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
5277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Generate the shadow spot light of shape lightPoly and a object poly
5287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
5297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightPoly x,y,z vertex of a convex polygon that is the light source
5307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightPolyLength number of vertexes of the light source polygon
5317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly x,y,z vertexes of a convex polygon that occludes the light source
5327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polyLength number of vertexes of the occluding polygon
5337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
5347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *                            empty strip if error.
5357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
5367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength,
5377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector3& lightCenter, const Vector3* poly, int polyLength,
53863d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui        VertexBuffer& shadowTriangleStrip) {
5397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Point clouds for all the shadowed vertices
5407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 shadowRegion[lightPolyLength * polyLength];
5417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Shadow polygon from one point light.
5427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 outline[polyLength];
5437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 umbraMem[polyLength * lightPolyLength];
5447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2* umbra = umbraMem;
5457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int umbraLength = 0;
5477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Validate input, receiver is always at z = 0 plane.
5497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    bool inputPolyPositionValid = true;
5507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < polyLength; i++) {
5517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (poly[i].z <= 0.00001) {
5527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            inputPolyPositionValid = false;
5537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            ALOGE("polygon below the surface");
5547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            break;
5557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
5567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (poly[i].z >= lightPoly[0].z) {
5577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            inputPolyPositionValid = false;
5587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            ALOGE("polygon above the light");
5597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            break;
5607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
5617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
5627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // If the caster's position is invalid, don't draw anything.
5647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (!inputPolyPositionValid) {
5657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return;
5667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
5677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Calculate the umbra polygon based on intersections of all outlines
5697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int k = 0;
5707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int j = 0; j < lightPolyLength; j++) {
5717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        int m = 0;
5727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < polyLength; i++) {
5737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float t = lightPoly[j].z - poly[i].z;
5747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            if (t == 0) {
5757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                return;
5767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
5777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            t = lightPoly[j].z / t;
5787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float x = lightPoly[j].x - t * (lightPoly[j].x - poly[i].x);
5797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float y = lightPoly[j].y - t * (lightPoly[j].y - poly[i].y);
5807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            Vector2 newPoint = Vector2(x, y);
5827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            shadowRegion[k] = newPoint;
5837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            outline[m] = newPoint;
5847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            k++;
5867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            m++;
5877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
5887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // For the first light polygon's vertex, use the outline as the umbra.
5907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Later on, use the intersection of the outline and existing umbra.
5917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (umbraLength == 0) {
5927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            for (int i = 0; i < polyLength; i++) {
5937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                umbra[i] = outline[i];
5947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
5957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            umbraLength = polyLength;
5967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        } else {
5977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            int col = ((j * 255) / lightPolyLength);
5987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            umbraLength = intersection(outline, polyLength, umbra, umbraLength);
5997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            if (umbraLength == 0) {
6007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                break;
6017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
6027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
6037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
6047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Generate the penumbra area using the hull of all shadow regions.
6067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int shadowRegionLength = k;
6077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 penumbra[k];
6087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
6097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6105176c974f1d9af833b7584e895fcba61e6e7427aztenghui    Vector2 fakeUmbra[polyLength];
6117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (umbraLength < 3) {
6125176c974f1d9af833b7584e895fcba61e6e7427aztenghui        // If there is no real umbra, make a fake one.
6137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < polyLength; i++) {
6147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float t = lightCenter.z - poly[i].z;
6157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            if (t == 0) {
6167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                return;
6177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            }
6187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            t = lightCenter.z / t;
6197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float x = lightCenter.x - t * (lightCenter.x - poly[i].x);
6207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float y = lightCenter.y - t * (lightCenter.y - poly[i].y);
6217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6225176c974f1d9af833b7584e895fcba61e6e7427aztenghui            fakeUmbra[i].x = x;
6235176c974f1d9af833b7584e895fcba61e6e7427aztenghui            fakeUmbra[i].y = y;
6247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
6257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Shrink the centroid's shadow by 10%.
6277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // TODO: Study the magic number of 10%.
62863d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui        Vector2 shadowCentroid =
62963d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui                ShadowTessellator::centroid2d(fakeUmbra, polyLength);
6307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < polyLength; i++) {
6315176c974f1d9af833b7584e895fcba61e6e7427aztenghui            fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
6325176c974f1d9af833b7584e895fcba61e6e7427aztenghui                    fakeUmbra[i] * SHADOW_SHRINK_SCALE;
6337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
6347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#if DEBUG_SHADOW
6357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        ALOGD("No real umbra make a fake one, centroid2d =  %f , %f",
6367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                shadowCentroid.x, shadowCentroid.y);
6377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#endif
6387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        // Set the fake umbra, whose size is the same as the original polygon.
6395176c974f1d9af833b7584e895fcba61e6e7427aztenghui        umbra = fakeUmbra;
6407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        umbraLength = polyLength;
6417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
6427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    generateTriangleStrip(penumbra, penumbraLength, umbra, umbraLength,
64463d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui            shadowTriangleStrip);
6457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
6467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
6477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
648726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
649726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik *
650726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Returns false in error conditions
651726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik *
652726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param poly Array of vertices. Note that these *must* be CW.
653726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param polyLength The number of vertices in the polygon.
654726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param polyCentroid The centroid of the polygon, from which rays will be cast
655726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
656726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik */
657726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikbool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
658726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float* rayDist) {
659726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int rays = SHADOW_RAY_COUNT;
660726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const float step = M_PI * 2 / rays;
661726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
662726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const Vector2* lastVertex = &(poly[polyLength - 1]);
663726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    float startAngle = angle(*lastVertex, polyCentroid);
664726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
665726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // Start with the ray that's closest to and less than startAngle
666726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    int rayIndex = floor((startAngle - EPSILON) / step);
667726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    rayIndex = (rayIndex + rays) % rays; // ensure positive
668726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
669726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
670726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        /*
671726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
672726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * intersect these will be those that are between the two angles from the centroid that the
673726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * vertices define.
674726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         *
675726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * Because the polygon vertices are stored clockwise, the closest ray with an angle
676726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
677726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * not intersect with poly[i-1], poly[i].
678726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         */
679726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float currentAngle = angle(poly[polyIndex], polyCentroid);
680726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
681726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // find first ray that will not intersect the line segment poly[i-1] & poly[i]
682726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
683726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
684726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
685726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
686726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // This may be 0 rays.
687726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (rayIndex != firstRayIndexOnNextSegment) {
688726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            float distanceToIntersect = rayIntersectPoints(polyCentroid,
689726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    cos(rayIndex * step),
690726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    sin(rayIndex * step),
691726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    *lastVertex, poly[polyIndex]);
692726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            if (distanceToIntersect < 0) return false; // error case, abort
693726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
694726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayDist[rayIndex] = distanceToIntersect;
695726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
696726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayIndex = (rayIndex - 1 + rays) % rays;
697726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        }
698726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        lastVertex = &poly[polyIndex];
699726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    }
700726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
701726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik   return true;
702726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik}
703726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
704726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik/**
7057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Generate a triangle strip given two convex polygons
7067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
7077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param penumbra The outer polygon x,y vertexes
7087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param penumbraLength The number of vertexes in the outer polygon
7097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param umbra The inner outer polygon x,y vertexes
7107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param umbraLength The number of vertexes in the inner polygon
7117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
7127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *                            empty strip if error.
7137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui**/
7147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength,
71563d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui        const Vector2* umbra, int umbraLength, VertexBuffer& shadowTriangleStrip) {
71663d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    const int rays = SHADOW_RAY_COUNT;
7177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
718726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int size = 2 * rays;
719726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const float step = M_PI * 2 / rays;
7207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Centroid of the umbra.
72163d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
7227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#if DEBUG_SHADOW
7237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    ALOGD("centroid2d =  %f , %f", centroid.x, centroid.y);
7247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#endif
7257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Intersection to the penumbra.
7267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float penumbraDistPerRay[rays];
7277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // Intersection to the umbra.
7287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float umbraDistPerRay[rays];
7297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
730726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // convert CW polygons to ray distance encoding, aborting on conversion failure
731726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
732726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
7337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
734726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(getStripSize(rays));
7357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
73663d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    // Calculate the vertices (x, y, alpha) in the shadow area.
737726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
738726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float dx = cosf(step * rayIndex);
739726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float dy = sinf(step * rayIndex);
740726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
741726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // outer ring
742726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float currentDist = penumbraDistPerRay[rayIndex];
743726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        AlphaVertex::set(&shadowVertices[rayIndex],
744726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                dx * currentDist + centroid.x, dy * currentDist + centroid.y, 0.0f);
745726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
746726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // inner ring
747726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float deltaDist = umbraDistPerRay[rayIndex] - penumbraDistPerRay[rayIndex];
748726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        currentDist += deltaDist;
749726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        AlphaVertex::set(&shadowVertices[rays + rayIndex],
750726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                dx * currentDist + centroid.x, dy * currentDist + centroid.y, 1.0f);
7517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
75263d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui    // The centroid is in the umbra area, so the opacity is considered as 1.0.
753726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    AlphaVertex::set(&shadowVertices[SHADOW_VERTEX_COUNT - 1], centroid.x, centroid.y, 1.0f);
7547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#if DEBUG_SHADOW
7557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < currentIndex; i++) {
75663d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui        ALOGD("spot shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x,
7577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui                shadowVertices[i].y, shadowVertices[i].alpha);
7587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
7597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#endif
7607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
7617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
7627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
7637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * This is only for experimental purpose.
7647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * After intersections are calculated, we could smooth the polygon if needed.
7657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * So far, we don't think it is more appealing yet.
7667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
7677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param level The level of smoothness.
7687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param rays The total number of rays.
7697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param rayDist (In and Out) The distance for each ray.
7707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
7717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
7727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
7737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int k = 0; k < level; k++) {
7747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        for (int i = 0; i < rays; i++) {
7757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float p1 = rayDist[(rays - 1 + i) % rays];
7767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float p2 = rayDist[i];
7777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            float p3 = rayDist[(i + 1) % rays];
7787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            rayDist[i] = (p1 + p2 * 2 + p3) / 4;
7797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
7807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
7817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
7827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
7837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
7847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Calculate the number of vertex we will create given a number of rays and layers
7857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
7867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param rays number of points around the polygons you want
7877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param layers number of layers of triangle strips you need
7887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return number of vertex (multiply by 3 for number of floats)
7897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
790726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikint SpotShadow::getStripSize(int rays) {
791726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return  (2 + rays + (2 * (rays + 1)));
7927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
7937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
794f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
795f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
796f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#define TEST_POINT_NUMBER 128
797f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
798f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
799f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Calculate the bounds for generating random test points.
800f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
801f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuivoid SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
802f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2& upperBound ) {
803f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.x < lowerBound.x) {
804f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        lowerBound.x = inVector.x;
805f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
806f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
807f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.y < lowerBound.y) {
808f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        lowerBound.y = inVector.y;
809f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
810f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
811f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.x > upperBound.x) {
812f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        upperBound.x = inVector.x;
813f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
814f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
815f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.y > upperBound.y) {
816f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        upperBound.y = inVector.y;
817f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
818f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
819f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
820f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
821f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * For debug purpose, when things go wrong, dump the whole polygon data.
822f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
823f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuistatic void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
824f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < polyLength; i++) {
825f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
826f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
827f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
828f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
829f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
830f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether the polygon is convex.
831f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
832f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuibool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
833f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const char* name) {
834f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    bool isConvex = true;
835f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < polygonLength; i++) {
836f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 start = polygon[i];
837f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 middle = polygon[(i + 1) % polygonLength];
838f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 end = polygon[(i + 2) % polygonLength];
839f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
840f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
841f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                (double(middle.y) - start.y) * (double(end.x) - start.x);
842f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        bool isCCWOrCoLinear = (delta >= EPSILON);
843f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
844f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (isCCWOrCoLinear) {
845f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            ALOGE("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
846f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                    "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
847f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                    name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
848f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            isConvex = false;
849f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            break;
850f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
851f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
852f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    return isConvex;
853f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
854f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
855f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
856f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether or not the polygon (intersection) is within the 2 input polygons.
857f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Using Marte Carlo method, we generate a random point, and if it is inside the
858f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * intersection, then it must be inside both source polygons.
859f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
860f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuivoid SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
861f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const Vector2* poly2, int poly2Length,
862f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const Vector2* intersection, int intersectionLength) {
863f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Find the min and max of x and y.
864f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    Vector2 lowerBound(FLT_MAX, FLT_MAX);
865f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    Vector2 upperBound(-FLT_MAX, -FLT_MAX);
866f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < poly1Length; i++) {
867f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        updateBound(poly1[i], lowerBound, upperBound);
868f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
869f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < poly2Length; i++) {
870f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        updateBound(poly2[i], lowerBound, upperBound);
871f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
872f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
873f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    bool dumpPoly = false;
874f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int k = 0; k < TEST_POINT_NUMBER; k++) {
875f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        // Generate a random point between minX, minY and maxX, maxY.
876f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        double randomX = rand() / double(RAND_MAX);
877f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        double randomY = rand() / double(RAND_MAX);
878f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
879f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 testPoint;
880f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
881f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
882f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
883f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        // If the random point is in both poly 1 and 2, then it must be intersection.
884f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
885f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
886f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                dumpPoly = true;
887f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                ALOGE("(Error Type 1): one point (%f, %f) in the intersection is"
888f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                      " not in the poly1",
889f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                        testPoint.x, testPoint.y);
890f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
891f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
892f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
893f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                dumpPoly = true;
894f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                ALOGE("(Error Type 1): one point (%f, %f) in the intersection is"
895f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                      " not in the poly2",
896f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                        testPoint.x, testPoint.y);
897f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
898f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
899f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
900f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
901f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (dumpPoly) {
902f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(intersection, intersectionLength, "intersection");
903f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        for (int i = 1; i < intersectionLength; i++) {
904f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta = intersection[i] - intersection[i - 1];
905f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
906f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
907f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
908f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(poly1, poly1Length, "poly 1");
909f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(poly2, poly2Length, "poly 2");
910f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
911f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
912f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
913f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
9147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}; // namespace uirenderer
9157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}; // namespace android
916