SpotShadow.cpp revision 9122b1b168d2a74d51517ed7282f4d6a8adea367
17b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/*
27b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Copyright (C) 2014 The Android Open Source Project
37b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
47b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Licensed under the Apache License, Version 2.0 (the "License");
57b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * you may not use this file except in compliance with the License.
67b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * You may obtain a copy of the License at
77b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
87b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *      http://www.apache.org/licenses/LICENSE-2.0
97b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Unless required by applicable law or agreed to in writing, software
117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * distributed under the License is distributed on an "AS IS" BASIS,
127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * See the License for the specific language governing permissions and
147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * limitations under the License.
157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
167b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#define LOG_TAG "OpenGLRenderer"
187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
19512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#define CASTER_Z_CAP_RATIO 0.95f
21512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
22512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// When there is no umbra, then just fake the umbra using
23512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#define FAKE_UMBRA_SIZE_RATIO 0.05f
25512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
26512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// That is consider pretty fine tessllated polygon so far.
28512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// This is just to prevent using too much some memory when edge slicing is not
29512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// needed any more.
30512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
32512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Extra vertices for the corner for smoother corner.
33512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Only for outer loop.
34512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Note that we use such extra memory to avoid an extra loop.
35512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
36512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// Set to 1 if we don't want to have any.
38512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
40512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// therefore, the maximum number of extra vertices will be twice bigger.
42512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
44512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include <math.h>
49f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#include <stdlib.h>
507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include <utils/Log.h>
517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
5263d41abb40b3ce40d8b9bccb1cf186e8158a3687ztenghui#include "ShadowTessellator.h"
537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include "SpotShadow.h"
547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#include "Vertex.h"
55c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#include "utils/MathUtils.h"
567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
57c50a03d78aaedd0003377e98710e7038bda330e9ztenghui// TODO: After we settle down the new algorithm, we can remove the old one and
58c50a03d78aaedd0003377e98710e7038bda330e9ztenghui// its utility functions.
59c50a03d78aaedd0003377e98710e7038bda330e9ztenghui// Right now, we still need to keep it for comparison purpose and future expansion.
607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuinamespace android {
617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuinamespace uirenderer {
627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
639122b1b168d2a74d51517ed7282f4d6a8adea367ztenghuistatic const float EPSILON = 1e-7;
64726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
65726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik/**
66c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * For each polygon's vertex, the light center will project it to the receiver
67c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * as one of the outline vertex.
68c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * For each outline vertex, we need to store the position and normal.
69c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * Normal here is defined against the edge by the current vertex and the next vertex.
70c50a03d78aaedd0003377e98710e7038bda330e9ztenghui */
71c50a03d78aaedd0003377e98710e7038bda330e9ztenghuistruct OutlineData {
72c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 position;
73c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 normal;
74c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float radius;
75c50a03d78aaedd0003377e98710e7038bda330e9ztenghui};
76c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
77c50a03d78aaedd0003377e98710e7038bda330e9ztenghui/**
78512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * For each vertex, we need to keep track of its angle, whether it is penumbra or
79512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * umbra, and its corresponding vertex index.
80512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
81512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuistruct SpotShadow::VertexAngleData {
82512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // The angle to the vertex from the centroid.
83512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float mAngle;
84512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // True is the vertex comes from penumbra, otherwise it comes from umbra.
85512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool mIsPenumbra;
86512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // The index of the vertex described by this data.
87512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int mVertexIndex;
88512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    void set(float angle, bool isPenumbra, int index) {
89512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        mAngle = angle;
90512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        mIsPenumbra = isPenumbra;
91512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        mVertexIndex = index;
92512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
93512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui};
94512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
95512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
96726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Calculate the angle between and x and a y coordinate.
97726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * The atan2 range from -PI to PI.
98726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik */
99b79a3e301a8d89b9e1b1f6f3d7fd6aa56610a6f0Chris Craikstatic float angle(const Vector2& point, const Vector2& center) {
100726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return atan2(point.y - center.y, point.x - center.x);
101726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik}
102726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
1037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
104726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Calculate the intersection of a ray with the line segment defined by two points.
1057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
106726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Returns a negative value in error conditions.
107726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
108726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param rayOrigin The start of the ray
109726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param dx The x vector of the ray
110726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param dy The y vector of the ray
111726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param p1 The first point defining the line segment
112726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param p2 The second point defining the line segment
113726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @return The distance along the ray if it intersects with the line segment, negative if otherwise
1147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
115b79a3e301a8d89b9e1b1f6f3d7fd6aa56610a6f0Chris Craikstatic float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
116726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        const Vector2& p1, const Vector2& p2) {
117726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // The math below is derived from solving this formula, basically the
118726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // intersection point should stay on both the ray and the edge of (p1, p2).
119726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
1219122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui    float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
122726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    if (divisor == 0) return -1.0f; // error, invalid divisor
123726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
124726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik#if DEBUG_SHADOW
1259122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui    float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
12699af9429cda84ad0af1d7fcecb580295b0046882ztenghui    if (interpVal < 0 || interpVal > 1) {
12799af9429cda84ad0af1d7fcecb580295b0046882ztenghui        ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
12899af9429cda84ad0af1d7fcecb580295b0046882ztenghui    }
129726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik#endif
130726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
1319122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui    float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
132726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayOrigin.x * (p2.y - p1.y)) / divisor;
133726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
134726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return distance; // may be negative in error cases
1357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
1387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points by their X coordinates
1397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points the points as a Vector2 array.
1417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param pointsLength the number of vertices of the polygon.
1427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
1437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::xsort(Vector2* points, int pointsLength) {
1447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    quicksortX(points, 0, pointsLength - 1);
1457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
1467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
1487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * compute the convex hull of a collection of Points
1497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
1507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points the points as a Vector2 array.
1517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param pointsLength the number of vertices of the polygon.
1527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param retPoly pre allocated array of floats to put the vertices
1537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return the number of points in the polygon 0 if no intersection
1547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
1557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuiint SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
1567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    xsort(points, pointsLength);
1577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int n = pointsLength;
1587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 lUpper[n];
1597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lUpper[0] = points[0];
1607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lUpper[1] = points[1];
1617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int lUpperSize = 2;
1637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 2; i < n; i++) {
1657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lUpper[lUpperSize] = points[i];
1667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lUpperSize++;
1677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
168f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        while (lUpperSize > 2 && !ccw(
169f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
1727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            // Remove the middle point of the three last
1737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
1747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
1757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lUpperSize--;
1767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 lLower[n];
1807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lLower[0] = points[n - 1];
1817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    lLower[1] = points[n - 2];
1827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int lLowerSize = 2;
1847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = n - 3; i >= 0; i--) {
1867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lLower[lLowerSize] = points[i];
1877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        lLowerSize++;
1887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
189f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        while (lLowerSize > 2 && !ccw(
190f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
1937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            // Remove the middle point of the three last
1947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
1957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            lLowerSize--;
1967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
1977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
199726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // output points in CW ordering
200726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int total = lUpperSize + lLowerSize - 2;
201726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    int outIndex = total - 1;
2027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < lUpperSize; i++) {
203726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        retPoly[outIndex] = lUpper[i];
204726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        outIndex--;
2057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 1; i < lLowerSize - 1; i++) {
208726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        retPoly[outIndex] = lLower[i];
209726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        outIndex--;
2107b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2117b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // TODO: Add test harness which verify that all the points are inside the hull.
212726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    return total;
2137b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2147b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2157b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
216f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether the 3 points form a counter clockwise turn.
2177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
2187b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if a right hand turn
2197b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
2209122b1b168d2a74d51517ed7282f4d6a8adea367ztenghuibool SpotShadow::ccw(float ax, float ay, float bx, float by,
2219122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float cx, float cy) {
2227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
2237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
2267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points about a center point
2277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
2287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly The in and out polyogon as a Vector2 array.
2297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polyLength The number of vertices of the polygon.
2307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param center the center ctr[0] = x , ctr[1] = y to sort around.
2317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
2327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
2337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    quicksortCirc(poly, 0, polyLength - 1, center);
2347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
2377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Swap points pointed to by i and j
2387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
2397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::swap(Vector2* points, int i, int j) {
2407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    Vector2 temp = points[i];
2417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    points[i] = points[j];
2427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    points[j] = temp;
2437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
2467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * quick sort implementation about the center.
2477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
2487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::quicksortCirc(Vector2* points, int low, int high,
2497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector2& center) {
2507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int i = low, j = high;
2517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int p = low + (high - low) / 2;
2527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float pivot = angle(points[p], center);
2537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    while (i <= j) {
254726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (angle(points[i], center) > pivot) {
2557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
2567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
257726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (angle(points[j], center) < pivot) {
2587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
2597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (i <= j) {
2627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            swap(points, i, j);
2637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
2647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
2657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (low < j) quicksortCirc(points, low, j, center);
2687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (i < high) quicksortCirc(points, i, high, center);
2697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2717b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
2727b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Sort points by x axis
2737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
2747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points points to sort
2757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param low start index
2767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param high end index
2777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
2787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::quicksortX(Vector2* points, int low, int high) {
2797b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int i = low, j = high;
2807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int p = low + (high - low) / 2;
2817b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    float pivot = points[p].x;
2827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    while (i <= j) {
2837b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        while (points[i].x < pivot) {
2847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
2857b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        while (points[j].x > pivot) {
2877b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
2887b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2897b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
2907b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        if (i <= j) {
2917b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            swap(points, i, j);
2927b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            i++;
2937b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            j--;
2947b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
2957b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
2967b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (low < j) quicksortX(points, low, j);
2977b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (i < high) quicksortX(points, i, high);
2987b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
2997b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3007b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3017b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Test whether a point is inside the polygon.
3027b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3037b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param testPoint the point to test
3047b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param poly the polygon
3057b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @return true if the testPoint is inside the poly.
3067b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3077b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuibool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
3087b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        const Vector2* poly, int len) {
3097b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    bool c = false;
3109122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui    float testx = testPoint.x;
3119122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui    float testy = testPoint.y;
3127b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0, j = len - 1; i < len; j = i++) {
3139122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float startX = poly[j].x;
3149122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float startY = poly[j].y;
3159122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float endX = poly[i].x;
3169122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float endY = poly[i].y;
3177b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
318512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (((endY > testy) != (startY > testy))
319512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            && (testx < (startX - endX) * (testy - endY)
3207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui             / (startY - endY) + endX)) {
3217b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui            c = !c;
3227b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
3237b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    return c;
3257b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3277b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3287b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Make the polygon turn clockwise.
3297b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array.
3317b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
3327b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3337b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::makeClockwise(Vector2* polygon, int len) {
3347b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    if (polygon == 0  || len == 0) {
3357b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        return;
3367b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3372e023f3827dfc0dfc1ed7c3dd54d02b4a993f0b4ztenghui    if (!ShadowTessellator::isClockwise(polygon, len)) {
3387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        reverse(polygon, len);
3397b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3407b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3417b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3427b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3437b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Reverse the polygon
3447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param polygon the polygon as a Vector2 array
3467b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param len the number of points of the polygon
3477b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3487b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::reverse(Vector2* polygon, int len) {
3497b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    int n = len / 2;
3507b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < n; i++) {
3517b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        Vector2 tmp = polygon[i];
3527b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        int k = len - 1 - i;
3537b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        polygon[i] = polygon[k];
3547b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        polygon[k] = tmp;
3557b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3567b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3577b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3587b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
3597b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * Compute a horizontal circular polygon about point (x , y , height) of radius
3607b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * (size)
3617b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
3627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param points number of the points of the output polygon.
3637b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param lightCenter the center of the light.
3647b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param size the light size.
3657b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui * @param ret result polygon.
3667b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
3677b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghuivoid SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
3687b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        float size, Vector3* ret) {
3697b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    // TODO: Caching all the sin / cos values and store them in a look up table.
3707b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    for (int i = 0; i < points; i++) {
3719122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float angle = 2 * i * M_PI / points;
372726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        ret[i].x = cosf(angle) * size + lightCenter.x;
373726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        ret[i].y = sinf(angle) * size + lightCenter.y;
3747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        ret[i].z = lightCenter.z;
3757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
3767b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
3777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
3787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
379512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * From light center, project one vertex to the z=0 surface and get the outline.
3807b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
381512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param outline The result which is the outline position.
382512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param lightCenter The center of light.
383512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param polyVertex The input polygon's vertex.
384512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
385512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return float The ratio of (polygon.z / light.z - polygon.z)
3867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
387c50a03d78aaedd0003377e98710e7038bda330e9ztenghuifloat SpotShadow::projectCasterToOutline(Vector2& outline,
388c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        const Vector3& lightCenter, const Vector3& polyVertex) {
389c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float lightToPolyZ = lightCenter.z - polyVertex.z;
390c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float ratioZ = CASTER_Z_CAP_RATIO;
391c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    if (lightToPolyZ != 0) {
392c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // If any caster's vertex is almost above the light, we just keep it as 95%
393c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // of the height of the light.
3943bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
395c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
396c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
397c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
398c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
399c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    return ratioZ;
400c50a03d78aaedd0003377e98710e7038bda330e9ztenghui}
401c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
402c50a03d78aaedd0003377e98710e7038bda330e9ztenghui/**
403c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * Generate the shadow spot light of shape lightPoly and a object poly
404c50a03d78aaedd0003377e98710e7038bda330e9ztenghui *
405c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param isCasterOpaque whether the caster is opaque
406c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param lightCenter the center of the light
407c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param lightSize the radius of the light
408c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param poly x,y,z vertexes of a convex polygon that occludes the light source
409c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param polyLength number of vertexes of the occluding polygon
410c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
411c50a03d78aaedd0003377e98710e7038bda330e9ztenghui *                            empty strip if error.
412c50a03d78aaedd0003377e98710e7038bda330e9ztenghui */
413c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
414c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
415c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        VertexBuffer& shadowTriangleStrip) {
4163bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui    if (CC_UNLIKELY(lightCenter.z <= 0)) {
4173bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        ALOGW("Relative Light Z is not positive. No spot shadow!");
4183bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        return;
4193bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui    }
420512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (CC_UNLIKELY(polyLength < 3)) {
421512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
422512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGW("Invalid polygon length. No spot shadow!");
423512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
424512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        return;
425512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
426c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    OutlineData outlineData[polyLength];
427c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 outlineCentroid;
428c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Calculate the projected outline for each polygon's vertices from the light center.
429c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //
430c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                       O     Light
431c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                      /
432c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                    /
433c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                   .     Polygon vertex
434c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //                 /
435c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //               /
436c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //              O     Outline vertices
437c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    //
438c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Ratio = (Poly - Outline) / (Light - Poly)
439c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
440c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Outline's radius / Light's radius = Ratio
441c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
442c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Compute the last outline vertex to make sure we can get the normal and outline
443c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // in one single loop.
444c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
445c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            poly[polyLength - 1]);
446c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
447c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    // Take the outline's polygon, calculate the normal for each outline edge.
448c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int currentNormalIndex = polyLength - 1;
449c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int nextNormalIndex = 0;
450c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
451c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    for (int i = 0; i < polyLength; i++) {
452c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        float ratioZ = projectCasterToOutline(outlineData[i].position,
453c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                lightCenter, poly[i]);
454c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        outlineData[i].radius = ratioZ * lightSize;
455c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
456c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
457c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                outlineData[currentNormalIndex].position,
458c50a03d78aaedd0003377e98710e7038bda330e9ztenghui                outlineData[nextNormalIndex].position);
459c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        currentNormalIndex = (currentNormalIndex + 1) % polyLength;
460c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        nextNormalIndex++;
461c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
462c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
463c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
464c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
465c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    int penumbraIndex = 0;
466512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Then each polygon's vertex produce at minmal 2 penumbra vertices.
467512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Since the size can be dynamic here, we keep track of the size and update
468512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // the real size at the end.
469512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
470512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 penumbra[allocatedPenumbraLength];
471512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int totalExtraCornerSliceNumber = 0;
472c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
473c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 umbra[polyLength];
474c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
475512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // When centroid is covered by all circles from outline, then we consider
476512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // the umbra is invalid, and we will tune down the shadow strength.
477c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    bool hasValidUmbra = true;
478512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
479512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float minRaitoVI = FLT_MAX;
480c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
481c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    for (int i = 0; i < polyLength; i++) {
482c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
483c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // There is no guarantee that the penumbra is still convex, but for
484c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // each outline vertex, it will connect to all its corresponding penumbra vertices as
485c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
486c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
487c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Penumbra Vertices marked as Pi
488c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Outline Vertices marked as Vi
489c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //                                            (P3)
490c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //          (P2)                               |     ' (P4)
491c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //   (P1)'   |                                 |   '
492c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //         ' |                                 | '
493c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // (P0)  ------------------------------------------------(P5)
494c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           | (V0)                            |(V1)
495c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
496c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
497c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
498c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
499c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
500c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
501c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
502c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                 |
503c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //       (V3)-----------------------------------(V2)
504c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        int preNormalIndex = (i + polyLength - 1) % polyLength;
505c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
506512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const Vector2& previousNormal = outlineData[preNormalIndex].normal;
507512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const Vector2& currentNormal = outlineData[i].normal;
508512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
509512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // Depending on how roundness we want for each corner, we can subdivide
510c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // further here and/or introduce some heuristic to decide how much the
511c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // subdivision should be.
512512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
513512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
514c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
515512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
516512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        totalExtraCornerSliceNumber += currentExtraSliceNumber;
517512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
518512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
519512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
520512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
521512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
522512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
523512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            currentCornerSliceNumber = 1;
524512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
525512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int k = 0; k <= currentCornerSliceNumber; k++) {
526512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            Vector2 avgNormal =
527512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
528512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    currentCornerSliceNumber;
529512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            avgNormal.normalize();
530512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbra[penumbraIndex++] = outlineData[i].position +
531512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    avgNormal * outlineData[i].radius;
532512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
533c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
534c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
535c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Compute the umbra by the intersection from the outline's centroid!
536c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
537c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //       (V) ------------------------------------
538c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |          '                       |
539c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |         '                        |
540c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |       ' (I)                      |
541c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |    '                             |
542c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           | '             (C)                |
543c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
544c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
545c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
546c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           |                                  |
547c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //           ------------------------------------
548c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
549c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Connect a line b/t the outline vertex (V) and the centroid (C), it will
550c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // intersect with the outline vertex's circle at point (I).
551c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Now, ratioVI = VI / VC, ratioIC = IC / VC
552c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
553c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        //
554512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // When all of the outline circles cover the the outline centroid, (like I is
555c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // on the other side of C), there is no real umbra any more, so we just fake
556c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // a small area around the centroid as the umbra, and tune down the spot
557c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // shadow's umbra strength to simulate the effect the whole shadow will
558c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // become lighter in this case.
559c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // The ratio can be simulated by using the inverse of maximum of ratioVI for
560c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // all (V).
561512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float distOutline = (outlineData[i].position - outlineCentroid).length();
5623bd3fa1f1d437e22aee35381a559dcee15a437ddztenghui        if (CC_UNLIKELY(distOutline == 0)) {
563c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            // If the outline has 0 area, then there is no spot shadow anyway.
564c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            ALOGW("Outline has 0 area, no spot shadow!");
565c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            return;
566c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
567512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
568512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float ratioVI = outlineData[i].radius / distOutline;
569512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
570512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
571512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
572c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
573c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // When we know we don't have valid umbra, don't bother to compute the
574c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // values below. But we can't skip the loop yet since we want to know the
575c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        // maximum ratio.
576512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float ratioIC = 1 - ratioVI;
577512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
578c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
579c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
580512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    hasValidUmbra = (minRaitoVI <= 1.0);
581c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    float shadowStrengthScale = 1.0;
582c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    if (!hasValidUmbra) {
583512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
584c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        ALOGW("The object is too close to the light or too small, no real umbra!");
585512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
586c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        for (int i = 0; i < polyLength; i++) {
587c50a03d78aaedd0003377e98710e7038bda330e9ztenghui            umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
588512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
589c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        }
590512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        shadowStrengthScale = 1.0 / minRaitoVI;
591c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
592c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
593512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int penumbraLength = penumbraIndex;
594512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int umbraLength = polyLength;
595512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
596c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#if DEBUG_SHADOW
597512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
598c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    dumpPolygon(poly, polyLength, "input poly");
599c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    dumpPolygon(penumbra, penumbraLength, "penumbra");
600512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    dumpPolygon(umbra, umbraLength, "umbra");
601c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
602c50a03d78aaedd0003377e98710e7038bda330e9ztenghui#endif
603c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
604512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // The penumbra and umbra needs to be in convex shape to keep consistency
605512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // and quality.
606512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Since we are still shooting rays to penumbra, it needs to be convex.
607512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Umbra can be represented as a fan from the centroid, but visually umbra
608512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // looks nicer when it is convex.
609512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 finalUmbra[umbraLength];
610512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 finalPenumbra[penumbraLength];
611512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
612512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
613512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
614512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
615512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
616512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            shadowTriangleStrip, outlineCentroid);
617512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
618c50a03d78aaedd0003377e98710e7038bda330e9ztenghui}
619c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
6207b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
621726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
622726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik *
623726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * Returns false in error conditions
624726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik *
625726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param poly Array of vertices. Note that these *must* be CW.
626726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param polyLength The number of vertices in the polygon.
627726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param polyCentroid The centroid of the polygon, from which rays will be cast
628726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
629726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik */
630726118b35240957710d4d85fb5747e2ba8b934f7Chris Craikbool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
631726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float* rayDist) {
632726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const int rays = SHADOW_RAY_COUNT;
633726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const float step = M_PI * 2 / rays;
634726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
635726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    const Vector2* lastVertex = &(poly[polyLength - 1]);
636726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    float startAngle = angle(*lastVertex, polyCentroid);
637726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
638726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    // Start with the ray that's closest to and less than startAngle
639726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    int rayIndex = floor((startAngle - EPSILON) / step);
640726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    rayIndex = (rayIndex + rays) % rays; // ensure positive
641726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
642726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
643726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        /*
644726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
645726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * intersect these will be those that are between the two angles from the centroid that the
646726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * vertices define.
647726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         *
648726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * Because the polygon vertices are stored clockwise, the closest ray with an angle
649726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
650726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         * not intersect with poly[i-1], poly[i].
651726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik         */
652726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        float currentAngle = angle(poly[polyIndex], polyCentroid);
653726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
654726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // find first ray that will not intersect the line segment poly[i-1] & poly[i]
655726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
656726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
657726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
658726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
659726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        // This may be 0 rays.
660726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        while (rayIndex != firstRayIndexOnNextSegment) {
661726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            float distanceToIntersect = rayIntersectPoints(polyCentroid,
662726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    cos(rayIndex * step),
663726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    sin(rayIndex * step),
664726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik                    *lastVertex, poly[polyIndex]);
66550ecf849cb7ccc3482517b74d2214b347927791eztenghui            if (distanceToIntersect < 0) {
66650ecf849cb7ccc3482517b74d2214b347927791eztenghui#if DEBUG_SHADOW
66750ecf849cb7ccc3482517b74d2214b347927791eztenghui                ALOGW("ERROR: convertPolyToRayDist failed");
66850ecf849cb7ccc3482517b74d2214b347927791eztenghui#endif
66950ecf849cb7ccc3482517b74d2214b347927791eztenghui                return false; // error case, abort
67050ecf849cb7ccc3482517b74d2214b347927791eztenghui            }
671726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
672726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayDist[rayIndex] = distanceToIntersect;
673726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
674726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik            rayIndex = (rayIndex - 1 + rays) % rays;
675726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        }
676726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik        lastVertex = &poly[polyIndex];
677726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik    }
678726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
679512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return true;
680726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik}
681726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik
682726118b35240957710d4d85fb5747e2ba8b934f7Chris Craik/**
683512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * This is only for experimental purpose.
684512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * After intersections are calculated, we could smooth the polygon if needed.
685512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * So far, we don't think it is more appealing yet.
6867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
687512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param level The level of smoothness.
688512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param rays The total number of rays.
689512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param rayDist (In and Out) The distance for each ray.
690512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
691512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
692512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuivoid SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
693512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int k = 0; k < level; k++) {
694512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int i = 0; i < rays; i++) {
695512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            float p1 = rayDist[(rays - 1 + i) % rays];
696512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            float p2 = rayDist[i];
697512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            float p3 = rayDist[(i + 1) % rays];
698512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            rayDist[i] = (p1 + p2 * 2 + p3) / 4;
699512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
700512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
701512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
702512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
703512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
704512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Generate a array of the angleData for either umbra or penumbra vertices.
705512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
706512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * This array will be merged and used to guide where to shoot the rays, in clockwise order.
707512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
708512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param angleDataList The result array of angle data.
709512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
710512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return int The maximum angle's index in the array.
711512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
712512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuiint SpotShadow::setupAngleList(VertexAngleData* angleDataList,
713512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int polyLength, const Vector2* polygon, const Vector2& centroid,
714512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        bool isPenumbra, const char* name) {
715512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float maxAngle = FLT_MIN;
716512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int maxAngleIndex = 0;
717512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < polyLength; i++) {
718512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float currentAngle = angle(polygon[i], centroid);
719512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (currentAngle > maxAngle) {
720512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            maxAngle = currentAngle;
721512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            maxAngleIndex = i;
722512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
723512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        angleDataList[i].set(currentAngle, isPenumbra, i);
7247b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#if DEBUG_SHADOW
725512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("%s AngleList i %d %f", name, i, currentAngle);
7267b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui#endif
727512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
728512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return maxAngleIndex;
729512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
7307b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
731512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
732512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Make sure the polygons are indeed in clockwise order.
733512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
734512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
735512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * algorithm is not able to generate it properly.
736512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
737512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
738512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * situation is found, we need to detect it and early return without corrupting the memory.
739512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
740512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return bool True if the angle list is actually from big to small.
741512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
742512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuibool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
743512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const char* name) {
744512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int currentIndex = indexOfMaxAngle;
745512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
746512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ALOGD("max index %d", currentIndex);
747512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
748512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < listLength - 1; i++) {
749512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // TODO: Cache the last angle.
750512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float currentAngle = angleList[currentIndex].mAngle;
751512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
752512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (currentAngle < nextAngle) {
753512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
754512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            ALOGE("%s, is not CW, at index %d", name, currentIndex);
755512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
756512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            return false;
757512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
758512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        currentIndex = (currentIndex + 1) % listLength;
759512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
760512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return true;
761512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
7627b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
763512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
764512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Check the polygon is clockwise.
765512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
766512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return bool True is the polygon is clockwise.
767512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
768512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuibool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
769512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const float* polyAngleList) {
770512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool isPolyCW = true;
771512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
772512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < polyAngleLength - 1; i++) {
773512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
774512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
775512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (currentAngle < nextAngle) {
776512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            isPolyCW = false;
777512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
778512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
779512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return isPolyCW;
780512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
781512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
782512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
783512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Given the sorted array of all the vertices angle data, calculate for each
784512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * vertices, the offset value to array element which represent the start edge
785512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * of the polygon we need to shoot the ray at.
786512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
787512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * TODO: Calculate this for umbra and penumbra in one loop using one single array.
788512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
789512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param distances The result of the array distance counter.
790512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
791512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuivoid SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
792512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const VertexAngleData* allVerticesAngleData, int* distances) {
793512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
794512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
795512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // If we want distance to inner, then we just set to 0 when we see inner.
796512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
797512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int distanceCounter = 0;
798512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (needsSearch) {
799512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int foundIndex = -1;
800512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int i = (angleLength - 1); i >= 0; i--) {
801512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
802512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // If we need distance to inner, then we need to find a inner vertex.
803512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (currentIsOuter != firstVertexIsPenumbra) {
804512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                foundIndex = i;
805512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                break;
806512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
807512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
808512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
809512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                " umbra or penumbra's length is 0");
810512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        distanceCounter = angleLength - foundIndex;
811512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
812512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
813512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ALOGD("distances[0] is %d", distanceCounter);
814512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
815512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
816512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    distances[0] = distanceCounter; // means never see a target poly
817512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
818512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 1; i < angleLength; i++) {
819512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
820512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // When we needs for distance for each outer vertex to inner, then we
821512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // increase the distance when seeing outer vertices. Otherwise, we clear
822512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // to 0.
823512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
824512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // If counter is not -1, that means we have seen an other polygon's vertex.
825512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (needsIncrement && distanceCounter != -1) {
826512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            distanceCounter++;
827512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        } else {
828512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            distanceCounter = 0;
829512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
830512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        distances[i] = distanceCounter;
831512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
832512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
833512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
834512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
835512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Given umbra and penumbra angle data list, merge them by sorting the angle
836512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * from the biggest to smallest.
837512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
838512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param allVerticesAngleData The result array of merged angle data.
839512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
840512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuivoid SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
841512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const VertexAngleData* umbraAngleList, int umbraLength,
842512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const VertexAngleData* penumbraAngleList, int penumbraLength,
843512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        VertexAngleData* allVerticesAngleData) {
844512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
845512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int totalRayNumber = umbraLength + penumbraLength;
846512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int umbraIndex = maxUmbraAngleIndex;
847512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int penumbraIndex = maxPenumbraAngleIndex;
848512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
849512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
850512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
851512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
852512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // TODO: Clean this up using a while loop with 2 iterators.
853512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNumber; i++) {
854512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (currentUmbraAngle > currentPenumbraAngle) {
855512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            allVerticesAngleData[i] = umbraAngleList[umbraIndex];
856512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraIndex = (umbraIndex + 1) % umbraLength;
857512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
858512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // If umbraIndex round back, that means we are running out of
859512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // umbra vertices to merge, so just copy all the penumbra leftover.
860512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // Otherwise, we update the currentUmbraAngle.
861512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (umbraIndex != maxUmbraAngleIndex) {
862512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
863512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            } else {
864512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                for (int j = i + 1; j < totalRayNumber; j++) {
865512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
866512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    penumbraIndex = (penumbraIndex + 1) % penumbraLength;
867512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                }
868512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                break;
86950ecf849cb7ccc3482517b74d2214b347927791eztenghui            }
870512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        } else {
871512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
872512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraIndex = (penumbraIndex + 1) % penumbraLength;
873512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // If penumbraIndex round back, that means we are running out of
874512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // penumbra vertices to merge, so just copy all the umbra leftover.
875512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // Otherwise, we update the currentPenumbraAngle.
876512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (penumbraIndex != maxPenumbraAngleIndex) {
877512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
878512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            } else {
879512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                for (int j = i + 1; j < totalRayNumber; j++) {
880512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    allVerticesAngleData[j] = umbraAngleList[umbraIndex];
881512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    umbraIndex = (umbraIndex + 1) % umbraLength;
882512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                }
883512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                break;
88450ecf849cb7ccc3482517b74d2214b347927791eztenghui            }
88550ecf849cb7ccc3482517b74d2214b347927791eztenghui        }
88650ecf849cb7ccc3482517b74d2214b347927791eztenghui    }
887512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
888512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
889512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
890512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
891512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
892512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * each vertex and its neighbor.
893512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
894512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuistatic void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
895512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const int* distances, int angleLength, const char* name) {
896512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int currentDistance = distances[0];
897512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 1; i < angleLength; i++) {
898512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (distances[i] != INT_MIN) {
899512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (!((currentDistance + 1) == distances[i]
900512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                || distances[i] == 0)) {
901512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                ALOGE("Wrong distance found at i %d name %s", i, name);
902512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
903512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            currentDistance = distances[i];
904512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (currentDistance != 0) {
905512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
906512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                for (int j = 1; j <= (currentDistance - 1); j++) {
907512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    bool neigborOuter =
908512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                            allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
909512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    if (neigborOuter != currentOuter) {
910512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        ALOGE("Wrong distance found at i %d name %s", i, name);
911512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    }
912512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                }
913512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                bool oppositeOuter =
914512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
915512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                if (oppositeOuter == currentOuter) {
916512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    ALOGE("Wrong distance found at i %d name %s", i, name);
917512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                }
918512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
919512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
920512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
921512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
922512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
923512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
924512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * DEBUG ONLY: Verify all the angle data compuated are  is correctly done
925512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
926512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuistatic void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
927512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const int* distancesToInner, const int* distancesToOuter,
928512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
929512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
930512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int penumbraLength) {
931512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNumber; i++) {
932512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
933512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui              " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
934512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                !allVerticesAngleData[i].mIsPenumbra,
935512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
936512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
937512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
938512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
939512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
940512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
941512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNumber; i++) {
942512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
943512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
944512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
945512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
946512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
947512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int currentUmbraVertexIndex =
948512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
949512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int currentPenumbraVertexIndex =
950512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
951512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNumber; i++) {
952512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (allVerticesAngleData[i].mIsPenumbra == true) {
953512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
954512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
955512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        "currentpenumbraVertexIndex %d", i,
956512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
957512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
958512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
95950ecf849cb7ccc3482517b74d2214b347927791eztenghui        } else {
960512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
961512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
962512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        "currentUmbraVertexIndex %d", i,
963512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
964512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
965512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
966512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
967512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
968512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNumber - 1; i++) {
969512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float currentAngle = allVerticesAngleData[i].mAngle;
970512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
971512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (currentAngle < nextAngle) {
972512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
97350ecf849cb7ccc3482517b74d2214b347927791eztenghui        }
9747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
9757b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
976512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
9777b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
9787b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui/**
979512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * In order to compute the occluded umbra, we need to setup the angle data list
980512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * for the polygon data. Since we only store one poly vertex per polygon vertex,
981512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * this array only needs to be a float array which are the angles for each vertex.
9827b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
983512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @param polyAngleList The result list
9847b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui *
985512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return int The index for the maximum angle in this array.
9867b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui */
987512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuiint SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
988512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const Vector2* poly2d, const Vector2& centroid) {
989512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int maxPolyAngleIndex = -1;
990512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float maxPolyAngle = -FLT_MAX;
991512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < polyAngleLength; i++) {
992512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        polyAngleList[i] = angle(poly2d[i], centroid);
993512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (polyAngleList[i] > maxPolyAngle) {
994512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            maxPolyAngle = polyAngleList[i];
995512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            maxPolyAngleIndex = i;
996512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
997512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
998512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return maxPolyAngleIndex;
999512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
1000512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1001512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
1002512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * For umbra and penumbra, given the offset info and the current ray number,
1003512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * find the right edge index (the (starting vertex) for the ray to shoot at.
1004512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
1005512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return int The index of the starting vertex of the edge.
1006512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
1007512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuiinline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
1008512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const VertexAngleData* allVerticesAngleData) {
1009512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int tempOffset = offsets[rayIndex];
1010512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
1011512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return allVerticesAngleData[targetRayIndex].mVertexIndex;
1012512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
1013512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1014512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
1015512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * For the occluded umbra, given the array of angles, find the index of the
1016512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * starting vertex of the edge, for the ray to shoo at.
1017512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
1018512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * TODO: Save the last result to shorten the search distance.
1019512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
1020512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * @return int The index of the starting vertex of the edge.
1021512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
1022512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuiinline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
1023512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const float* polyAngleList, float rayAngle) {
1024512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int minPolyAngleIndex  = (maxPolyAngleIndex + polyLength - 1) % polyLength;
1025512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int resultIndex = -1;
1026512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (rayAngle > polyAngleList[maxPolyAngleIndex]
1027512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        || rayAngle <= polyAngleList[minPolyAngleIndex]) {
1028512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        resultIndex = minPolyAngleIndex;
1029512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    } else {
1030512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int i = 0; i < polyLength - 1; i++) {
1031512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int currentIndex = (maxPolyAngleIndex + i) % polyLength;
1032512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
1033512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (rayAngle <= polyAngleList[currentIndex]
1034512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                && rayAngle > polyAngleList[nextIndex]) {
1035512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                resultIndex = currentIndex;
1036512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
10377b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui        }
10387b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui    }
1039512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (CC_UNLIKELY(resultIndex == -1)) {
1040512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // TODO: Add more error handling here.
1041512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
1042512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1043512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return resultIndex;
10447b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}
10457b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui
1046512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
1047512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Convert the incoming polygons into arrays of vertices, for each ray.
1048512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Ray only shoots when there is one vertex either on penumbra on umbra.
1049512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
1050512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Finally, it will generate vertices per ray for umbra, penumbra and optionally
1051512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * occludedUmbra.
1052512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui *
1053512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Return true (success) when all vertices are generated
1054512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui */
1055512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuiint SpotShadow::convertPolysToVerticesPerRay(
1056512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
1057512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const Vector2* umbra, int umbraLength, const Vector2* penumbra,
1058512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int penumbraLength, const Vector2& centroid,
1059512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
1060512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2* occludedUmbraVerticesPerRay) {
1061512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int totalRayNumber = umbraLength + penumbraLength;
1062512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1063512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // For incoming umbra / penumbra polygons, we will build an intermediate data
1064512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // structure to help us sort all the vertices according to the vertices.
1065512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Using this data structure, we can tell where (the angle) to shoot the ray,
1066512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
1067512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    //
1068512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // We first parse each vertices and generate a table of VertexAngleData.
1069512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Based on that, we create 2 arrays telling us which edge to shoot at.
1070512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    VertexAngleData allVerticesAngleData[totalRayNumber];
1071512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    VertexAngleData umbraAngleList[umbraLength];
1072512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    VertexAngleData penumbraAngleList[penumbraLength];
1073512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1074512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
1075512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float polyAngleList[polyAngleLength];
1076512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1077512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    const int maxUmbraAngleIndex =
1078512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
1079512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    const int maxPenumbraAngleIndex =
1080512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
1081512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
1082512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1083512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Check all the polygons here are CW.
1084512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
1085512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
1086512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraAngleList, "umbra");
1087512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
1088512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraAngleList, "penumbra");
1089512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1090512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
1091f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#if DEBUG_SHADOW
1092512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
1093512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                isUmbraCW, isPenumbraCW, isPolyCW);
1094512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
1095512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        return false;
1096512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1097f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1098512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
1099512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
1100512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            allVerticesAngleData);
1101512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1102512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Calculate the offset to the left most Inner vertex for each outerVertex.
1103512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Then the offset to the left most Outer vertex for each innerVertex.
1104512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int offsetToInner[totalRayNumber];
1105512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int offsetToOuter[totalRayNumber];
1106512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
1107512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
1108512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1109512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
1110512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNumber; i++) {
1111512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float rayAngle = allVerticesAngleData[i].mAngle;
1112512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
1113512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1114512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float dx = cosf(rayAngle);
1115512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float dy = sinf(rayAngle);
1116512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        float distanceToIntersectUmbra = -1;
1117512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1118512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (isUmbraVertex) {
1119512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // We can just copy umbra easily, and calculate the distance for the
1120512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // occluded umbra computation.
1121512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
1122512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraVerticesPerRay[i] = umbra[startUmbraIndex];
1123512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (hasOccludedUmbraArea) {
1124512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
1125512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
1126512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1127512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            //shoot ray to penumbra only
1128512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
1129512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    allVerticesAngleData);
1130512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
1131512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    penumbra[startPenumbraIndex],
1132512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    penumbra[(startPenumbraIndex + 1) % penumbraLength]);
1133512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (distanceToIntersectPenumbra < 0) {
1134512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
1135512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
1136512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        rayAngle, dx, dy);
1137512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
1138512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                distanceToIntersectPenumbra = 0;
1139512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
1140512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
1141512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
1142512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        } else {
1143512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // We can just copy the penumbra
1144512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
1145512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
1146512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1147512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // And shoot ray to umbra only
1148512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
1149512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    allVerticesAngleData);
1150512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1151512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
1152512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
1153512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (distanceToIntersectUmbra < 0) {
1154512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
1155512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
1156512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        rayAngle, dx, dy);
1157512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
1158512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                distanceToIntersectUmbra = 0;
1159512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
1160512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
1161512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
1162512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1163512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1164512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (hasOccludedUmbraArea) {
1165512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // Shoot the same ray to the poly2d, and get the distance.
1166512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
1167512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    polyAngleList, rayAngle);
1168512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1169512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
1170512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
1171512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (distanceToIntersectPoly < 0) {
1172512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                distanceToIntersectPoly = 0;
1173512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
1174512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
1175512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
1176512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
1177512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1178512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1179512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1180512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
1181512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
1182512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            offsetToOuter,  umbraAngleList, maxUmbraAngleIndex,  umbraLength,
1183512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            penumbraAngleList,  maxPenumbraAngleIndex, penumbraLength);
1184512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
1185512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    return true; // success
1186512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1187512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
1188512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1189512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui/**
1190512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui * Generate a triangle strip given two convex polygon
1191512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui**/
1192512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghuivoid SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
1193512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
1194512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
1195512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        const Vector2& centroid) {
1196512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1197512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool hasOccludedUmbraArea = false;
1198512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 poly2d[polyLength];
1199f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1200512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (isCasterOpaque) {
1201512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int i = 0; i < polyLength; i++) {
1202512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            poly2d[i].x = poly[i].x;
1203512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            poly2d[i].y = poly[i].y;
1204512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1205512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // Make sure the centroid is inside the umbra, otherwise, fall back to the
1206512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // approach as if there is no occluded umbra area.
1207512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
1208512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            hasOccludedUmbraArea = true;
1209512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1210512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1211512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1212512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int totalRayNum = umbraLength + penumbraLength;
1213512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 umbraVertices[totalRayNum];
1214512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 penumbraVertices[totalRayNum];
1215512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    Vector2 occludedUmbraVertices[totalRayNum];
1216512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
1217512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            polyLength, umbra, umbraLength, penumbra, penumbraLength,
1218512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
1219512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (!convertSuccess) {
1220512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        return;
1221512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1222512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1223512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Minimal value is 1, for each vertex show up once.
1224512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // The bigger this value is , the smoother the look is, but more memory
1225512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // is consumed.
1226512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // When the ray number is high, that means the polygon has been fine
1227512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // tessellated, we don't need this extra slice, just keep it as 1.
1228512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
1229512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1230512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
1231512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
1232512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
1233512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
1234512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    AlphaVertex* shadowVertices =
1235512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
1236512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    uint16_t* indexBuffer =
1237512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
1238512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1239512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int indexBufferIndex = 0;
1240512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int vertexBufferIndex = 0;
1241512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1242512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
1243512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // Should be something like 0 0 0  1 1 1 2 3 3 3...
1244512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
1245512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    int realUmbraVertexCount = 0;
1246512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < totalRayNum; i++) {
1247512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2 currentPenumbra = penumbraVertices[i];
1248512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2 currentUmbra = umbraVertices[i];
1249512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1250512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
1251512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
1252512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // NextUmbra/Penumbra will be done in the next loop!!
1253512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
1254512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
1255512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                + nextPenumbra * weight) / sliceNumberPerEdge;
1256512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1257512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
1258512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                + nextUmbra * weight) / sliceNumberPerEdge;
1259512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1260512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // In the vertex buffer, we fill the Penumbra first, then umbra.
1261512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1262512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
1263512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    slicedPenumbra.y, 0.0f);
1264512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1265512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // When we add umbra vertex, we need to remember its current ray number.
1266512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // And its own vertexBufferIndex. This is for occluded umbra usage.
1267512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1268512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
1269512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
1270512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            realUmbraVertexCount++;
1271512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
1272512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    slicedUmbra.y, M_PI);
1273512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1274512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1275512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1276512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    indexBuffer[indexBufferIndex++] = 0;
1277512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
1278512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    //beginning of occluded area.
1279512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    indexBuffer[indexBufferIndex++] = 1;
1280512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1281512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    float occludedUmbraAlpha = M_PI;
1282512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    if (hasOccludedUmbraArea) {
1283512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // Now the occludedUmbra area;
1284512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int currentRayNumber = -1;
1285512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int firstOccludedUmbraIndex = -1;
1286512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int i = 0; i < realUmbraVertexCount; i++) {
1287512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1288512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1289512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // If the occludedUmbra vertex has not been added yet, then add it.
1290512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            // Otherwise, just use the previously added occludedUmbra vertices.
1291512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
1292512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                currentRayNumber++;
1293512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1294512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                // We need to remember the begining of the occludedUmbra vertices
1295512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                // to close this loop.
1296512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                if (currentRayNumber == 0) {
1297512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                    firstOccludedUmbraIndex = vertexBufferIndex;
1298512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                }
1299512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1300512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        occludedUmbraVertices[currentRayNumber].x,
1301512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        occludedUmbraVertices[currentRayNumber].y,
1302512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        occludedUmbraAlpha);
1303512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            } else {
1304512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
1305512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            }
1306512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1307512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // Close the loop here!
1308512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1309512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
1310512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    } else {
1311512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        int lastCentroidIndex = vertexBufferIndex;
1312512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1313512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                centroid.y, occludedUmbraAlpha);
1314512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        for (int i = 0; i < realUmbraVertexCount; i++) {
1315512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1316512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui            indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1317512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        }
1318512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        // Close the loop here!
1319512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1320512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1321512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1322512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1323512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
1324512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
1325512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
1326512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < vertexBufferIndex; i++) {
1327512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
1328512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                shadowVertices[i].alpha);
1329512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1330512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    for (int i = 0; i < indexBufferIndex; i++) {
1331512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
1332512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    }
1333512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#endif
1334512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1335512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    // At the end, update the real index and vertex buffer size.
1336512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1337512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1338512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1339512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1340512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1341512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1342512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui    shadowTriangleStrip.computeBounds<AlphaVertex>();
1343512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui}
1344512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1345512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#if DEBUG_SHADOW
1346512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui
1347512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui#define TEST_POINT_NUMBER 128
1348f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1349f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Calculate the bounds for generating random test points.
1350f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1351f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuivoid SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1352512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui        Vector2& upperBound) {
1353f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.x < lowerBound.x) {
1354f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        lowerBound.x = inVector.x;
1355f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1356f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1357f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.y < lowerBound.y) {
1358f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        lowerBound.y = inVector.y;
1359f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1360f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1361f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.x > upperBound.x) {
1362f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        upperBound.x = inVector.x;
1363f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1364f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1365f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (inVector.y > upperBound.y) {
1366f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        upperBound.y = inVector.y;
1367f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1368f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1369f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1370f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1371f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * For debug purpose, when things go wrong, dump the whole polygon data.
1372f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1373c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1374c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    for (int i = 0; i < polyLength; i++) {
1375c50a03d78aaedd0003377e98710e7038bda330e9ztenghui        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1376c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    }
1377c50a03d78aaedd0003377e98710e7038bda330e9ztenghui}
1378c50a03d78aaedd0003377e98710e7038bda330e9ztenghui
1379c50a03d78aaedd0003377e98710e7038bda330e9ztenghui/**
1380c50a03d78aaedd0003377e98710e7038bda330e9ztenghui * For debug purpose, when things go wrong, dump the whole polygon data.
1381c50a03d78aaedd0003377e98710e7038bda330e9ztenghui */
1382c50a03d78aaedd0003377e98710e7038bda330e9ztenghuivoid SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1383f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < polyLength; i++) {
1384f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1385f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1386f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1387f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1388f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1389f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether the polygon is convex.
1390f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1391f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuibool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1392f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const char* name) {
1393f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    bool isConvex = true;
1394f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < polygonLength; i++) {
1395f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 start = polygon[i];
1396f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 middle = polygon[(i + 1) % polygonLength];
1397f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 end = polygon[(i + 2) % polygonLength];
1398f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
13999122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
14009122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui                (float(middle.y) - start.y) * (float(end.x) - start.x);
1401f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        bool isCCWOrCoLinear = (delta >= EPSILON);
1402f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1403f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (isCCWOrCoLinear) {
140450ecf849cb7ccc3482517b74d2214b347927791eztenghui            ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1405f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                    "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1406f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                    name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1407f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            isConvex = false;
1408f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            break;
1409f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
1410f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1411f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    return isConvex;
1412f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1413f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1414f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui/**
1415f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Test whether or not the polygon (intersection) is within the 2 input polygons.
1416f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * Using Marte Carlo method, we generate a random point, and if it is inside the
1417f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui * intersection, then it must be inside both source polygons.
1418f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui */
1419f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghuivoid SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1420f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const Vector2* poly2, int poly2Length,
1421f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        const Vector2* intersection, int intersectionLength) {
1422f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    // Find the min and max of x and y.
1423c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1424c50a03d78aaedd0003377e98710e7038bda330e9ztenghui    Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1425f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < poly1Length; i++) {
1426f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        updateBound(poly1[i], lowerBound, upperBound);
1427f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1428f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int i = 0; i < poly2Length; i++) {
1429f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        updateBound(poly2[i], lowerBound, upperBound);
1430f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1431f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1432f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    bool dumpPoly = false;
1433f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1434f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        // Generate a random point between minX, minY and maxX, maxY.
14359122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float randomX = rand() / float(RAND_MAX);
14369122b1b168d2a74d51517ed7282f4d6a8adea367ztenghui        float randomY = rand() / float(RAND_MAX);
1437f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1438f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        Vector2 testPoint;
1439f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1440f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1441f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1442f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        // If the random point is in both poly 1 and 2, then it must be intersection.
1443f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1444f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1445f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                dumpPoly = true;
144650ecf849cb7ccc3482517b74d2214b347927791eztenghui                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1447512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        " not in the poly1",
1448f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                        testPoint.x, testPoint.y);
1449f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
1450f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1451f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1452f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                dumpPoly = true;
145350ecf849cb7ccc3482517b74d2214b347927791eztenghui                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1454512e643ce83b1d48ad9630a3622276f795cf4fb2ztenghui                        " not in the poly2",
1455f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui                        testPoint.x, testPoint.y);
1456f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            }
1457f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
1458f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1459f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1460f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    if (dumpPoly) {
1461f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(intersection, intersectionLength, "intersection");
1462f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        for (int i = 1; i < intersectionLength; i++) {
1463f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            Vector2 delta = intersection[i] - intersection[i - 1];
1464f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui            ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1465f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        }
1466f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
1467f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(poly1, poly1Length, "poly 1");
1468f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui        dumpPolygon(poly2, poly2Length, "poly 2");
1469f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui    }
1470f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui}
1471f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui#endif
1472f5ca8b4cb178008472e67fa0ae6a3e3fa75d7952ztenghui
14737b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}; // namespace uirenderer
14747b4516e7ea552ad08d6e7277d311ef11bd8f12e8ztenghui}; // namespace android
1475