SpotShadow.cpp revision 91a8c7c62913c2597e3bf5a6d59d2ed5fc7ba4e0
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19#define SHADOW_SHRINK_SCALE 0.1f
20
21#include <math.h>
22#include <stdlib.h>
23#include <utils/Log.h>
24
25#include "ShadowTessellator.h"
26#include "SpotShadow.h"
27#include "Vertex.h"
28
29namespace android {
30namespace uirenderer {
31
32static const double EPSILON = 1e-7;
33
34/**
35 * Calculate the angle between and x and a y coordinate.
36 * The atan2 range from -PI to PI.
37 */
38static float angle(const Vector2& point, const Vector2& center) {
39    return atan2(point.y - center.y, point.x - center.x);
40}
41
42/**
43 * Calculate the intersection of a ray with the line segment defined by two points.
44 *
45 * Returns a negative value in error conditions.
46
47 * @param rayOrigin The start of the ray
48 * @param dx The x vector of the ray
49 * @param dy The y vector of the ray
50 * @param p1 The first point defining the line segment
51 * @param p2 The second point defining the line segment
52 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
53 */
54static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
55        const Vector2& p1, const Vector2& p2) {
56    // The math below is derived from solving this formula, basically the
57    // intersection point should stay on both the ray and the edge of (p1, p2).
58    // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
59
60    double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
61    if (divisor == 0) return -1.0f; // error, invalid divisor
62
63#if DEBUG_SHADOW
64    double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
65    if (interpVal < 0 || interpVal > 1) {
66        ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
67    }
68#endif
69
70    double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
71            rayOrigin.x * (p2.y - p1.y)) / divisor;
72
73    return distance; // may be negative in error cases
74}
75
76/**
77 * Sort points by their X coordinates
78 *
79 * @param points the points as a Vector2 array.
80 * @param pointsLength the number of vertices of the polygon.
81 */
82void SpotShadow::xsort(Vector2* points, int pointsLength) {
83    quicksortX(points, 0, pointsLength - 1);
84}
85
86/**
87 * compute the convex hull of a collection of Points
88 *
89 * @param points the points as a Vector2 array.
90 * @param pointsLength the number of vertices of the polygon.
91 * @param retPoly pre allocated array of floats to put the vertices
92 * @return the number of points in the polygon 0 if no intersection
93 */
94int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
95    xsort(points, pointsLength);
96    int n = pointsLength;
97    Vector2 lUpper[n];
98    lUpper[0] = points[0];
99    lUpper[1] = points[1];
100
101    int lUpperSize = 2;
102
103    for (int i = 2; i < n; i++) {
104        lUpper[lUpperSize] = points[i];
105        lUpperSize++;
106
107        while (lUpperSize > 2 && !ccw(
108                lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
109                lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
110                lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
111            // Remove the middle point of the three last
112            lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
113            lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
114            lUpperSize--;
115        }
116    }
117
118    Vector2 lLower[n];
119    lLower[0] = points[n - 1];
120    lLower[1] = points[n - 2];
121
122    int lLowerSize = 2;
123
124    for (int i = n - 3; i >= 0; i--) {
125        lLower[lLowerSize] = points[i];
126        lLowerSize++;
127
128        while (lLowerSize > 2 && !ccw(
129                lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
130                lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
131                lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
132            // Remove the middle point of the three last
133            lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
134            lLowerSize--;
135        }
136    }
137
138    // output points in CW ordering
139    const int total = lUpperSize + lLowerSize - 2;
140    int outIndex = total - 1;
141    for (int i = 0; i < lUpperSize; i++) {
142        retPoly[outIndex] = lUpper[i];
143        outIndex--;
144    }
145
146    for (int i = 1; i < lLowerSize - 1; i++) {
147        retPoly[outIndex] = lLower[i];
148        outIndex--;
149    }
150    // TODO: Add test harness which verify that all the points are inside the hull.
151    return total;
152}
153
154/**
155 * Test whether the 3 points form a counter clockwise turn.
156 *
157 * @return true if a right hand turn
158 */
159bool SpotShadow::ccw(double ax, double ay, double bx, double by,
160        double cx, double cy) {
161    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
162}
163
164/**
165 * Calculates the intersection of poly1 with poly2 and put in poly2.
166 * Note that both poly1 and poly2 must be in CW order already!
167 *
168 * @param poly1 The 1st polygon, as a Vector2 array.
169 * @param poly1Length The number of vertices of 1st polygon.
170 * @param poly2 The 2nd and output polygon, as a Vector2 array.
171 * @param poly2Length The number of vertices of 2nd polygon.
172 * @return number of vertices in output polygon as poly2.
173 */
174int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
175        Vector2* poly2, int poly2Length) {
176#if DEBUG_SHADOW
177    if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
178        ALOGW("Poly1 is not clockwise! Intersection is wrong!");
179    }
180    if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
181        ALOGW("Poly2 is not clockwise! Intersection is wrong!");
182    }
183#endif
184    Vector2 poly[poly1Length * poly2Length + 2];
185    int count = 0;
186    int pcount = 0;
187
188    // If one vertex from one polygon sits inside another polygon, add it and
189    // count them.
190    for (int i = 0; i < poly1Length; i++) {
191        if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
192            poly[count] = poly1[i];
193            count++;
194            pcount++;
195
196        }
197    }
198
199    int insidePoly2 = pcount;
200    for (int i = 0; i < poly2Length; i++) {
201        if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
202            poly[count] = poly2[i];
203            count++;
204        }
205    }
206
207    int insidePoly1 = count - insidePoly2;
208    // If all vertices from poly1 are inside poly2, then just return poly1.
209    if (insidePoly2 == poly1Length) {
210        memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
211        return poly1Length;
212    }
213
214    // If all vertices from poly2 are inside poly1, then just return poly2.
215    if (insidePoly1 == poly2Length) {
216        return poly2Length;
217    }
218
219    // Since neither polygon fully contain the other one, we need to add all the
220    // intersection points.
221    Vector2 intersection = {0, 0};
222    for (int i = 0; i < poly2Length; i++) {
223        for (int j = 0; j < poly1Length; j++) {
224            int poly2LineStart = i;
225            int poly2LineEnd = ((i + 1) % poly2Length);
226            int poly1LineStart = j;
227            int poly1LineEnd = ((j + 1) % poly1Length);
228            bool found = lineIntersection(
229                    poly2[poly2LineStart].x, poly2[poly2LineStart].y,
230                    poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
231                    poly1[poly1LineStart].x, poly1[poly1LineStart].y,
232                    poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
233                    intersection);
234            if (found) {
235                poly[count].x = intersection.x;
236                poly[count].y = intersection.y;
237                count++;
238            } else {
239                Vector2 delta = poly2[i] - poly1[j];
240                if (delta.lengthSquared() < EPSILON) {
241                    poly[count] = poly2[i];
242                    count++;
243                }
244            }
245        }
246    }
247
248    if (count == 0) {
249        return 0;
250    }
251
252    // Sort the result polygon around the center.
253    Vector2 center = {0.0f, 0.0f};
254    for (int i = 0; i < count; i++) {
255        center += poly[i];
256    }
257    center /= count;
258    sort(poly, count, center);
259
260#if DEBUG_SHADOW
261    // Since poly2 is overwritten as the result, we need to save a copy to do
262    // our verification.
263    Vector2 oldPoly2[poly2Length];
264    int oldPoly2Length = poly2Length;
265    memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
266#endif
267
268    // Filter the result out from poly and put it into poly2.
269    poly2[0] = poly[0];
270    int lastOutputIndex = 0;
271    for (int i = 1; i < count; i++) {
272        Vector2 delta = poly[i] - poly2[lastOutputIndex];
273        if (delta.lengthSquared() >= EPSILON) {
274            poly2[++lastOutputIndex] = poly[i];
275        } else {
276            // If the vertices are too close, pick the inner one, because the
277            // inner one is more likely to be an intersection point.
278            Vector2 delta1 = poly[i] - center;
279            Vector2 delta2 = poly2[lastOutputIndex] - center;
280            if (delta1.lengthSquared() < delta2.lengthSquared()) {
281                poly2[lastOutputIndex] = poly[i];
282            }
283        }
284    }
285    int resultLength = lastOutputIndex + 1;
286
287#if DEBUG_SHADOW
288    testConvex(poly2, resultLength, "intersection");
289    testConvex(poly1, poly1Length, "input poly1");
290    testConvex(oldPoly2, oldPoly2Length, "input poly2");
291
292    testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
293#endif
294
295    return resultLength;
296}
297
298/**
299 * Sort points about a center point
300 *
301 * @param poly The in and out polyogon as a Vector2 array.
302 * @param polyLength The number of vertices of the polygon.
303 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
304 */
305void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
306    quicksortCirc(poly, 0, polyLength - 1, center);
307}
308
309/**
310 * Swap points pointed to by i and j
311 */
312void SpotShadow::swap(Vector2* points, int i, int j) {
313    Vector2 temp = points[i];
314    points[i] = points[j];
315    points[j] = temp;
316}
317
318/**
319 * quick sort implementation about the center.
320 */
321void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
322        const Vector2& center) {
323    int i = low, j = high;
324    int p = low + (high - low) / 2;
325    float pivot = angle(points[p], center);
326    while (i <= j) {
327        while (angle(points[i], center) > pivot) {
328            i++;
329        }
330        while (angle(points[j], center) < pivot) {
331            j--;
332        }
333
334        if (i <= j) {
335            swap(points, i, j);
336            i++;
337            j--;
338        }
339    }
340    if (low < j) quicksortCirc(points, low, j, center);
341    if (i < high) quicksortCirc(points, i, high, center);
342}
343
344/**
345 * Sort points by x axis
346 *
347 * @param points points to sort
348 * @param low start index
349 * @param high end index
350 */
351void SpotShadow::quicksortX(Vector2* points, int low, int high) {
352    int i = low, j = high;
353    int p = low + (high - low) / 2;
354    float pivot = points[p].x;
355    while (i <= j) {
356        while (points[i].x < pivot) {
357            i++;
358        }
359        while (points[j].x > pivot) {
360            j--;
361        }
362
363        if (i <= j) {
364            swap(points, i, j);
365            i++;
366            j--;
367        }
368    }
369    if (low < j) quicksortX(points, low, j);
370    if (i < high) quicksortX(points, i, high);
371}
372
373/**
374 * Test whether a point is inside the polygon.
375 *
376 * @param testPoint the point to test
377 * @param poly the polygon
378 * @return true if the testPoint is inside the poly.
379 */
380bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
381        const Vector2* poly, int len) {
382    bool c = false;
383    double testx = testPoint.x;
384    double testy = testPoint.y;
385    for (int i = 0, j = len - 1; i < len; j = i++) {
386        double startX = poly[j].x;
387        double startY = poly[j].y;
388        double endX = poly[i].x;
389        double endY = poly[i].y;
390
391        if (((endY > testy) != (startY > testy)) &&
392            (testx < (startX - endX) * (testy - endY)
393             / (startY - endY) + endX)) {
394            c = !c;
395        }
396    }
397    return c;
398}
399
400/**
401 * Make the polygon turn clockwise.
402 *
403 * @param polygon the polygon as a Vector2 array.
404 * @param len the number of points of the polygon
405 */
406void SpotShadow::makeClockwise(Vector2* polygon, int len) {
407    if (polygon == 0  || len == 0) {
408        return;
409    }
410    if (!ShadowTessellator::isClockwise(polygon, len)) {
411        reverse(polygon, len);
412    }
413}
414
415/**
416 * Reverse the polygon
417 *
418 * @param polygon the polygon as a Vector2 array
419 * @param len the number of points of the polygon
420 */
421void SpotShadow::reverse(Vector2* polygon, int len) {
422    int n = len / 2;
423    for (int i = 0; i < n; i++) {
424        Vector2 tmp = polygon[i];
425        int k = len - 1 - i;
426        polygon[i] = polygon[k];
427        polygon[k] = tmp;
428    }
429}
430
431/**
432 * Intersects two lines in parametric form. This function is called in a tight
433 * loop, and we need double precision to get things right.
434 *
435 * @param x1 the x coordinate point 1 of line 1
436 * @param y1 the y coordinate point 1 of line 1
437 * @param x2 the x coordinate point 2 of line 1
438 * @param y2 the y coordinate point 2 of line 1
439 * @param x3 the x coordinate point 1 of line 2
440 * @param y3 the y coordinate point 1 of line 2
441 * @param x4 the x coordinate point 2 of line 2
442 * @param y4 the y coordinate point 2 of line 2
443 * @param ret the x,y location of the intersection
444 * @return true if it found an intersection
445 */
446inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
447        double x3, double y3, double x4, double y4, Vector2& ret) {
448    double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
449    if (d == 0.0) return false;
450
451    double dx = (x1 * y2 - y1 * x2);
452    double dy = (x3 * y4 - y3 * x4);
453    double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
454    double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
455
456    // The intersection should be in the middle of the point 1 and point 2,
457    // likewise point 3 and point 4.
458    if (((x - x1) * (x - x2) > EPSILON)
459        || ((x - x3) * (x - x4) > EPSILON)
460        || ((y - y1) * (y - y2) > EPSILON)
461        || ((y - y3) * (y - y4) > EPSILON)) {
462        // Not interesected
463        return false;
464    }
465    ret.x = x;
466    ret.y = y;
467    return true;
468
469}
470
471/**
472 * Compute a horizontal circular polygon about point (x , y , height) of radius
473 * (size)
474 *
475 * @param points number of the points of the output polygon.
476 * @param lightCenter the center of the light.
477 * @param size the light size.
478 * @param ret result polygon.
479 */
480void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
481        float size, Vector3* ret) {
482    // TODO: Caching all the sin / cos values and store them in a look up table.
483    for (int i = 0; i < points; i++) {
484        double angle = 2 * i * M_PI / points;
485        ret[i].x = cosf(angle) * size + lightCenter.x;
486        ret[i].y = sinf(angle) * size + lightCenter.y;
487        ret[i].z = lightCenter.z;
488    }
489}
490
491/**
492* Generate the shadow from a spot light.
493*
494* @param poly x,y,z vertexes of a convex polygon that occludes the light source
495* @param polyLength number of vertexes of the occluding polygon
496* @param lightCenter the center of the light
497* @param lightSize the radius of the light source
498* @param lightVertexCount the vertex counter for the light polygon
499* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
500*                            empty strip if error.
501*
502*/
503void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly,
504        int polyLength, const Vector3& lightCenter, float lightSize,
505        int lightVertexCount, VertexBuffer& retStrips) {
506    Vector3 light[lightVertexCount * 3];
507    computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
508    computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
509            polyLength, retStrips);
510}
511
512/**
513 * Generate the shadow spot light of shape lightPoly and a object poly
514 *
515 * @param lightPoly x,y,z vertex of a convex polygon that is the light source
516 * @param lightPolyLength number of vertexes of the light source polygon
517 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
518 * @param polyLength number of vertexes of the occluding polygon
519 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
520 *                            empty strip if error.
521 */
522void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly,
523        int lightPolyLength, const Vector3& lightCenter, const Vector3* poly,
524        int polyLength, VertexBuffer& shadowTriangleStrip) {
525    // Point clouds for all the shadowed vertices
526    Vector2 shadowRegion[lightPolyLength * polyLength];
527    // Shadow polygon from one point light.
528    Vector2 outline[polyLength];
529    Vector2 umbraMem[polyLength * lightPolyLength];
530    Vector2* umbra = umbraMem;
531
532    int umbraLength = 0;
533
534    // Validate input, receiver is always at z = 0 plane.
535    bool inputPolyPositionValid = true;
536    for (int i = 0; i < polyLength; i++) {
537        if (poly[i].z >= lightPoly[0].z) {
538            inputPolyPositionValid = false;
539            ALOGW("polygon above the light");
540            break;
541        }
542    }
543
544    // If the caster's position is invalid, don't draw anything.
545    if (!inputPolyPositionValid) {
546        return;
547    }
548
549    // Calculate the umbra polygon based on intersections of all outlines
550    int k = 0;
551    for (int j = 0; j < lightPolyLength; j++) {
552        int m = 0;
553        for (int i = 0; i < polyLength; i++) {
554            // After validating the input, deltaZ is guaranteed to be positive.
555            float deltaZ = lightPoly[j].z - poly[i].z;
556            float ratioZ = lightPoly[j].z / deltaZ;
557            float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
558            float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
559
560            Vector2 newPoint = {x, y};
561            shadowRegion[k] = newPoint;
562            outline[m] = newPoint;
563
564            k++;
565            m++;
566        }
567
568        // For the first light polygon's vertex, use the outline as the umbra.
569        // Later on, use the intersection of the outline and existing umbra.
570        if (umbraLength == 0) {
571            for (int i = 0; i < polyLength; i++) {
572                umbra[i] = outline[i];
573            }
574            umbraLength = polyLength;
575        } else {
576            int col = ((j * 255) / lightPolyLength);
577            umbraLength = intersection(outline, polyLength, umbra, umbraLength);
578            if (umbraLength == 0) {
579                break;
580            }
581        }
582    }
583
584    // Generate the penumbra area using the hull of all shadow regions.
585    int shadowRegionLength = k;
586    Vector2 penumbra[k];
587    int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
588
589    Vector2 fakeUmbra[polyLength];
590    if (umbraLength < 3) {
591        // If there is no real umbra, make a fake one.
592        for (int i = 0; i < polyLength; i++) {
593            float deltaZ = lightCenter.z - poly[i].z;
594            float ratioZ = lightCenter.z / deltaZ;
595            float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
596            float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
597
598            fakeUmbra[i].x = x;
599            fakeUmbra[i].y = y;
600        }
601
602        // Shrink the centroid's shadow by 10%.
603        // TODO: Study the magic number of 10%.
604        Vector2 shadowCentroid =
605                ShadowTessellator::centroid2d(fakeUmbra, polyLength);
606        for (int i = 0; i < polyLength; i++) {
607            fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
608                    fakeUmbra[i] * SHADOW_SHRINK_SCALE;
609        }
610#if DEBUG_SHADOW
611        ALOGD("No real umbra make a fake one, centroid2d =  %f , %f",
612                shadowCentroid.x, shadowCentroid.y);
613#endif
614        // Set the fake umbra, whose size is the same as the original polygon.
615        umbra = fakeUmbra;
616        umbraLength = polyLength;
617    }
618
619    generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra,
620            umbraLength, poly, polyLength, shadowTriangleStrip);
621}
622
623/**
624 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
625 *
626 * Returns false in error conditions
627 *
628 * @param poly Array of vertices. Note that these *must* be CW.
629 * @param polyLength The number of vertices in the polygon.
630 * @param polyCentroid The centroid of the polygon, from which rays will be cast
631 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
632 */
633bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
634        float* rayDist) {
635    const int rays = SHADOW_RAY_COUNT;
636    const float step = M_PI * 2 / rays;
637
638    const Vector2* lastVertex = &(poly[polyLength - 1]);
639    float startAngle = angle(*lastVertex, polyCentroid);
640
641    // Start with the ray that's closest to and less than startAngle
642    int rayIndex = floor((startAngle - EPSILON) / step);
643    rayIndex = (rayIndex + rays) % rays; // ensure positive
644
645    for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
646        /*
647         * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
648         * intersect these will be those that are between the two angles from the centroid that the
649         * vertices define.
650         *
651         * Because the polygon vertices are stored clockwise, the closest ray with an angle
652         * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
653         * not intersect with poly[i-1], poly[i].
654         */
655        float currentAngle = angle(poly[polyIndex], polyCentroid);
656
657        // find first ray that will not intersect the line segment poly[i-1] & poly[i]
658        int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
659        firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
660
661        // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
662        // This may be 0 rays.
663        while (rayIndex != firstRayIndexOnNextSegment) {
664            float distanceToIntersect = rayIntersectPoints(polyCentroid,
665                    cos(rayIndex * step),
666                    sin(rayIndex * step),
667                    *lastVertex, poly[polyIndex]);
668            if (distanceToIntersect < 0) {
669#if DEBUG_SHADOW
670                ALOGW("ERROR: convertPolyToRayDist failed");
671#endif
672                return false; // error case, abort
673            }
674
675            rayDist[rayIndex] = distanceToIntersect;
676
677            rayIndex = (rayIndex - 1 + rays) % rays;
678        }
679        lastVertex = &poly[polyIndex];
680    }
681
682   return true;
683}
684
685int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
686        const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
687    // Occluded umbra area is computed as the intersection of the projected 2D
688    // poly and umbra.
689    for (int i = 0; i < polyLength; i++) {
690        occludedUmbra[i].x = poly[i].x;
691        occludedUmbra[i].y = poly[i].y;
692    }
693
694    // Both umbra and incoming polygon are guaranteed to be CW, so we can call
695    // intersection() directly.
696    return intersection(umbra, umbraLength,
697            occludedUmbra, polyLength);
698}
699
700#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
701/**
702 * Generate a triangle strip given two convex polygons
703 *
704 * @param penumbra The outer polygon x,y vertexes
705 * @param penumbraLength The number of vertexes in the outer polygon
706 * @param umbra The inner outer polygon x,y vertexes
707 * @param umbraLength The number of vertexes in the inner polygon
708 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
709 *                            empty strip if error.
710**/
711void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra,
712        int penumbraLength, const Vector2* umbra, int umbraLength,
713        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
714    const int rays = SHADOW_RAY_COUNT;
715    const int size = 2 * rays;
716    const float step = M_PI * 2 / rays;
717    // Centroid of the umbra.
718    Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
719#if DEBUG_SHADOW
720    ALOGD("centroid2d =  %f , %f", centroid.x, centroid.y);
721#endif
722    // Intersection to the penumbra.
723    float penumbraDistPerRay[rays];
724    // Intersection to the umbra.
725    float umbraDistPerRay[rays];
726    // Intersection to the occluded umbra area.
727    float occludedUmbraDistPerRay[rays];
728
729    // convert CW polygons to ray distance encoding, aborting on conversion failure
730    if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
731    if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
732
733    bool hasOccludedUmbraArea = false;
734    if (isCasterOpaque) {
735        Vector2 occludedUmbra[polyLength + umbraLength];
736        int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
737                occludedUmbra);
738        // Make sure the centroid is inside the umbra, otherwise, fall back to the
739        // approach as if there is no occluded umbra area.
740        if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
741            hasOccludedUmbraArea = true;
742            // Shrink the occluded umbra area to avoid pixel level artifacts.
743            for (int i = 0; i < occludedUmbraLength; i ++) {
744                occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
745                        OCLLUDED_UMBRA_SHRINK_FACTOR;
746            }
747            if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
748                    occludedUmbraDistPerRay)) {
749                return;
750            }
751        }
752    }
753
754    AlphaVertex* shadowVertices =
755            shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
756
757    // NOTE: Shadow alpha values are transformed when stored in alphavertices,
758    // so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp
759    float transformedMaxAlpha = M_PI;
760
761    // Calculate the vertices (x, y, alpha) in the shadow area.
762    AlphaVertex centroidXYA;
763    AlphaVertex::set(&centroidXYA, centroid.x, centroid.y, transformedMaxAlpha);
764    for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
765        float dx = cosf(step * rayIndex);
766        float dy = sinf(step * rayIndex);
767
768        // penumbra ring
769        float penumbraDistance = penumbraDistPerRay[rayIndex];
770        AlphaVertex::set(&shadowVertices[rayIndex],
771                dx * penumbraDistance + centroid.x,
772                dy * penumbraDistance + centroid.y, 0.0f);
773
774        // umbra ring
775        float umbraDistance = umbraDistPerRay[rayIndex];
776        AlphaVertex::set(&shadowVertices[rays + rayIndex],
777                dx * umbraDistance + centroid.x,
778                dy * umbraDistance + centroid.y,
779                transformedMaxAlpha);
780
781        // occluded umbra ring
782        if (hasOccludedUmbraArea) {
783            float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
784            AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
785                    dx * occludedUmbraDistance + centroid.x,
786                    dy * occludedUmbraDistance + centroid.y, transformedMaxAlpha);
787        } else {
788            // Put all vertices of the occluded umbra ring at the centroid.
789            shadowVertices[2 * rays + rayIndex] = centroidXYA;
790        }
791    }
792
793    shadowTriangleStrip.setMode(VertexBuffer::kTwoPolyRingShadow);
794    shadowTriangleStrip.computeBounds<AlphaVertex>();
795}
796
797/**
798 * This is only for experimental purpose.
799 * After intersections are calculated, we could smooth the polygon if needed.
800 * So far, we don't think it is more appealing yet.
801 *
802 * @param level The level of smoothness.
803 * @param rays The total number of rays.
804 * @param rayDist (In and Out) The distance for each ray.
805 *
806 */
807void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
808    for (int k = 0; k < level; k++) {
809        for (int i = 0; i < rays; i++) {
810            float p1 = rayDist[(rays - 1 + i) % rays];
811            float p2 = rayDist[i];
812            float p3 = rayDist[(i + 1) % rays];
813            rayDist[i] = (p1 + p2 * 2 + p3) / 4;
814        }
815    }
816}
817
818#if DEBUG_SHADOW
819
820#define TEST_POINT_NUMBER 128
821
822/**
823 * Calculate the bounds for generating random test points.
824 */
825void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
826        Vector2& upperBound ) {
827    if (inVector.x < lowerBound.x) {
828        lowerBound.x = inVector.x;
829    }
830
831    if (inVector.y < lowerBound.y) {
832        lowerBound.y = inVector.y;
833    }
834
835    if (inVector.x > upperBound.x) {
836        upperBound.x = inVector.x;
837    }
838
839    if (inVector.y > upperBound.y) {
840        upperBound.y = inVector.y;
841    }
842}
843
844/**
845 * For debug purpose, when things go wrong, dump the whole polygon data.
846 */
847static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
848    for (int i = 0; i < polyLength; i++) {
849        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
850    }
851}
852
853/**
854 * Test whether the polygon is convex.
855 */
856bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
857        const char* name) {
858    bool isConvex = true;
859    for (int i = 0; i < polygonLength; i++) {
860        Vector2 start = polygon[i];
861        Vector2 middle = polygon[(i + 1) % polygonLength];
862        Vector2 end = polygon[(i + 2) % polygonLength];
863
864        double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
865                (double(middle.y) - start.y) * (double(end.x) - start.x);
866        bool isCCWOrCoLinear = (delta >= EPSILON);
867
868        if (isCCWOrCoLinear) {
869            ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
870                    "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
871                    name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
872            isConvex = false;
873            break;
874        }
875    }
876    return isConvex;
877}
878
879/**
880 * Test whether or not the polygon (intersection) is within the 2 input polygons.
881 * Using Marte Carlo method, we generate a random point, and if it is inside the
882 * intersection, then it must be inside both source polygons.
883 */
884void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
885        const Vector2* poly2, int poly2Length,
886        const Vector2* intersection, int intersectionLength) {
887    // Find the min and max of x and y.
888    Vector2 lowerBound(FLT_MAX, FLT_MAX);
889    Vector2 upperBound(-FLT_MAX, -FLT_MAX);
890    for (int i = 0; i < poly1Length; i++) {
891        updateBound(poly1[i], lowerBound, upperBound);
892    }
893    for (int i = 0; i < poly2Length; i++) {
894        updateBound(poly2[i], lowerBound, upperBound);
895    }
896
897    bool dumpPoly = false;
898    for (int k = 0; k < TEST_POINT_NUMBER; k++) {
899        // Generate a random point between minX, minY and maxX, maxY.
900        double randomX = rand() / double(RAND_MAX);
901        double randomY = rand() / double(RAND_MAX);
902
903        Vector2 testPoint;
904        testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
905        testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
906
907        // If the random point is in both poly 1 and 2, then it must be intersection.
908        if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
909            if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
910                dumpPoly = true;
911                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
912                      " not in the poly1",
913                        testPoint.x, testPoint.y);
914            }
915
916            if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
917                dumpPoly = true;
918                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
919                      " not in the poly2",
920                        testPoint.x, testPoint.y);
921            }
922        }
923    }
924
925    if (dumpPoly) {
926        dumpPolygon(intersection, intersectionLength, "intersection");
927        for (int i = 1; i < intersectionLength; i++) {
928            Vector2 delta = intersection[i] - intersection[i - 1];
929            ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
930        }
931
932        dumpPolygon(poly1, poly1Length, "poly 1");
933        dumpPolygon(poly2, poly2Length, "poly 2");
934    }
935}
936#endif
937
938}; // namespace uirenderer
939}; // namespace android
940