TaskStackViewLayoutAlgorithm.java revision e41ab847a5c12cb7a6a5b2d0f40e101bc9ea6b59
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.android.systemui.recents.views;
18
19import android.graphics.Rect;
20import com.android.systemui.recents.RecentsConfiguration;
21import com.android.systemui.recents.misc.Utilities;
22import com.android.systemui.recents.model.Task;
23
24import java.util.ArrayList;
25import java.util.HashMap;
26
27/* The layout logic for a TaskStackView.
28 *
29 * We are using a curve that defines the curve of the tasks as that go back in the recents list.
30 * The curve is defined such that at curve progress p = 0 is the end of the curve (the top of the
31 * stack rect), and p = 1 at the start of the curve and the bottom of the stack rect.
32 */
33public class TaskStackViewLayoutAlgorithm {
34
35    // These are all going to change
36    static final float StackPeekMinScale = 0.825f; // The min scale of the last card in the peek area
37
38    RecentsConfiguration mConfig;
39
40    // The various rects that define the stack view
41    Rect mViewRect = new Rect();
42    Rect mStackVisibleRect = new Rect();
43    Rect mStackRect = new Rect();
44    Rect mTaskRect = new Rect();
45
46    // The min/max scroll progress
47    float mMinScrollP;
48    float mMaxScrollP;
49    float mInitialScrollP;
50    int mWithinAffiliationOffset;
51    int mBetweenAffiliationOffset;
52    HashMap<Task.TaskKey, Float> mTaskProgressMap = new HashMap<Task.TaskKey, Float>();
53
54    // Log function
55    static final float XScale = 1.75f;  // The large the XScale, the longer the flat area of the curve
56    static final float LogBase = 300;
57    static final int PrecisionSteps = 250;
58    static float[] xp;
59    static float[] px;
60
61    public TaskStackViewLayoutAlgorithm(RecentsConfiguration config) {
62        mConfig = config;
63        mWithinAffiliationOffset = mConfig.taskBarHeight;
64        mBetweenAffiliationOffset = 4 * mConfig.taskBarHeight;
65
66        // Precompute the path
67        initializeCurve();
68    }
69
70    /** Computes the stack and task rects */
71    public void computeRects(int windowWidth, int windowHeight, Rect taskStackBounds) {
72        // Compute the stack rects
73        mViewRect.set(0, 0, windowWidth, windowHeight);
74        mStackRect.set(taskStackBounds);
75        mStackVisibleRect.set(taskStackBounds);
76        mStackVisibleRect.bottom = mViewRect.bottom;
77
78        int widthPadding = (int) (mConfig.taskStackWidthPaddingPct * mStackRect.width());
79        int heightPadding = mConfig.taskStackTopPaddingPx;
80        mStackRect.inset(widthPadding, heightPadding);
81
82        // Compute the task rect
83        int size = mStackRect.width();
84        int left = mStackRect.left + (mStackRect.width() - size) / 2;
85        mTaskRect.set(left, mStackRect.top,
86                left + size, mStackRect.top + size);
87    }
88
89    /** Computes the minimum and maximum scroll progress values.  This method may be called before
90     * the RecentsConfiguration is set, so we need to pass in the alt-tab state. */
91    void computeMinMaxScroll(ArrayList<Task> tasks, boolean launchedWithAltTab) {
92        // Clear the progress map
93        mTaskProgressMap.clear();
94
95        // Return early if we have no tasks
96        if (tasks.isEmpty()) {
97            mMinScrollP = mMaxScrollP = 0;
98            return;
99        }
100
101        int taskHeight = mTaskRect.height();
102        float pAtBottomOfStackRect = screenYToCurveProgress(mStackVisibleRect.bottom);
103        float pWithinAffiliateOffset = pAtBottomOfStackRect -
104                screenYToCurveProgress(mStackVisibleRect.bottom - mWithinAffiliationOffset);
105        float pBetweenAffiliateOffset = pAtBottomOfStackRect -
106                screenYToCurveProgress(mStackVisibleRect.bottom - mBetweenAffiliationOffset);
107        float pTaskHeightOffset = pAtBottomOfStackRect -
108                screenYToCurveProgress(mStackVisibleRect.bottom - taskHeight);
109        float pNavBarOffset = pAtBottomOfStackRect -
110                screenYToCurveProgress(mStackVisibleRect.bottom - (mStackVisibleRect.bottom - mStackRect.bottom));
111
112        // Update the task offsets
113        float pAtBackMostCardTop = screenYToCurveProgress(mStackVisibleRect.top +
114                (mStackVisibleRect.height() - taskHeight) / 2);
115        float pAtFrontMostCardTop = pAtBackMostCardTop;
116        float pAtSecondFrontMostCardTop = pAtBackMostCardTop;
117        int taskCount = tasks.size();
118        for (int i = 0; i < taskCount; i++) {
119            Task task = tasks.get(i);
120            mTaskProgressMap.put(task.key, pAtFrontMostCardTop);
121
122            if (i < (taskCount - 1)) {
123                // Increment the peek height
124                float pPeek = task.group.isFrontMostTask(task) ? pBetweenAffiliateOffset :
125                    pWithinAffiliateOffset;
126                pAtSecondFrontMostCardTop = pAtFrontMostCardTop;
127                pAtFrontMostCardTop += pPeek;
128            }
129        }
130
131        mMinScrollP = 0f;
132        mMaxScrollP = pAtFrontMostCardTop - ((1f - pTaskHeightOffset - pNavBarOffset));
133        if (launchedWithAltTab) {
134            // Center the second most task, since that will be focused first
135            mInitialScrollP = pAtSecondFrontMostCardTop - 0.5f;
136        } else {
137            mInitialScrollP = pAtSecondFrontMostCardTop - ((1f - pTaskHeightOffset - pNavBarOffset));
138        }
139    }
140
141    /** Update/get the transform */
142    public TaskViewTransform getStackTransform(Task task, float stackScroll, TaskViewTransform transformOut,
143            TaskViewTransform prevTransform) {
144        // Return early if we have an invalid index
145        if (task == null) {
146            transformOut.reset();
147            return transformOut;
148        }
149        return getStackTransform(mTaskProgressMap.get(task.key), stackScroll, transformOut, prevTransform);
150    }
151
152    /** Update/get the transform */
153    public TaskViewTransform getStackTransform(float taskProgress, float stackScroll, TaskViewTransform transformOut, TaskViewTransform prevTransform) {
154        float pTaskRelative = taskProgress - stackScroll;
155        float pBounded = Math.max(0, Math.min(pTaskRelative, 1f));
156        // If the task top is outside of the bounds below the screen, then immediately reset it
157        if (pTaskRelative > 1f) {
158            transformOut.reset();
159            transformOut.rect.set(mTaskRect);
160            return transformOut;
161        }
162        // The check for the top is trickier, since we want to show the next task if it is at all
163        // visible, even if p < 0.
164        if (pTaskRelative < 0f) {
165            if (prevTransform != null && Float.compare(prevTransform.p, 0f) <= 0) {
166                transformOut.reset();
167                transformOut.rect.set(mTaskRect);
168                return transformOut;
169            }
170        }
171        float scale = curveProgressToScale(pBounded);
172        int scaleYOffset = (int) (((1f - scale) * mTaskRect.height()) / 2);
173        int minZ = mConfig.taskViewTranslationZMinPx;
174        int maxZ = mConfig.taskViewTranslationZMaxPx;
175        transformOut.scale = scale;
176        transformOut.translationY = curveProgressToScreenY(pBounded) - mStackVisibleRect.top -
177                scaleYOffset;
178        transformOut.translationZ = Math.max(minZ, minZ + (pBounded * (maxZ - minZ)));
179        transformOut.rect.set(mTaskRect);
180        transformOut.rect.offset(0, transformOut.translationY);
181        Utilities.scaleRectAboutCenter(transformOut.rect, transformOut.scale);
182        transformOut.visible = true;
183        transformOut.p = pTaskRelative;
184        return transformOut;
185    }
186
187    /**
188     * Returns the scroll to such task top = 1f;
189     */
190    float getStackScrollForTaskIndex(Task t) {
191        return mTaskProgressMap.get(t.key);
192    }
193
194    /** Initializes the curve. */
195    public static void initializeCurve() {
196        if (xp != null && px != null) return;
197        xp = new float[PrecisionSteps + 1];
198        px = new float[PrecisionSteps + 1];
199
200        // Approximate f(x)
201        float[] fx = new float[PrecisionSteps + 1];
202        float step = 1f / PrecisionSteps;
203        float x = 0;
204        for (int xStep = 0; xStep <= PrecisionSteps; xStep++) {
205            fx[xStep] = logFunc(x);
206            x += step;
207        }
208        // Calculate the arc length for x:1->0
209        float pLength = 0;
210        float[] dx = new float[PrecisionSteps + 1];
211        dx[0] = 0;
212        for (int xStep = 1; xStep < PrecisionSteps; xStep++) {
213            dx[xStep] = (float) Math.sqrt(Math.pow(fx[xStep] - fx[xStep - 1], 2) + Math.pow(step, 2));
214            pLength += dx[xStep];
215        }
216        // Approximate p(x), a function of cumulative progress with x, normalized to 0..1
217        float p = 0;
218        px[0] = 0f;
219        px[PrecisionSteps] = 1f;
220        for (int xStep = 1; xStep <= PrecisionSteps; xStep++) {
221            p += Math.abs(dx[xStep] / pLength);
222            px[xStep] = p;
223        }
224        // Given p(x), calculate the inverse function x(p). This assumes that x(p) is also a valid
225        // function.
226        int xStep = 0;
227        p = 0;
228        xp[0] = 0f;
229        xp[PrecisionSteps] = 1f;
230        for (int pStep = 0; pStep < PrecisionSteps; pStep++) {
231            // Walk forward in px and find the x where px <= p && p < px+1
232            while (xStep < PrecisionSteps) {
233                if (px[xStep] > p) break;
234                xStep++;
235            }
236            // Now, px[xStep-1] <= p < px[xStep]
237            if (xStep == 0) {
238                xp[pStep] = 0;
239            } else {
240                // Find x such that proportionally, x is correct
241                float fraction = (p - px[xStep - 1]) / (px[xStep] - px[xStep - 1]);
242                x = (xStep - 1 + fraction) * step;
243                xp[pStep] = x;
244            }
245            p += step;
246        }
247    }
248
249    /** Reverses and scales out x. */
250    static float reverse(float x) {
251        return (-x * XScale) + 1;
252    }
253    /** The log function describing the curve. */
254    static float logFunc(float x) {
255        return 1f - (float) (Math.pow(LogBase, reverse(x))) / (LogBase);
256    }
257    /** The inverse of the log function describing the curve. */
258    float invLogFunc(float y) {
259        return (float) (Math.log((1f - reverse(y)) * (LogBase - 1) + 1) / Math.log(LogBase));
260    }
261
262    /** Converts from the progress along the curve to a screen coordinate. */
263    int curveProgressToScreenY(float p) {
264        if (p < 0 || p > 1) return mStackVisibleRect.top + (int) (p * mStackVisibleRect.height());
265        float pIndex = p * PrecisionSteps;
266        int pFloorIndex = (int) Math.floor(pIndex);
267        int pCeilIndex = (int) Math.ceil(pIndex);
268        float xFraction = 0;
269        if (pFloorIndex < PrecisionSteps && (pCeilIndex != pFloorIndex)) {
270            float pFraction = (pIndex - pFloorIndex) / (pCeilIndex - pFloorIndex);
271            xFraction = (xp[pCeilIndex] - xp[pFloorIndex]) * pFraction;
272        }
273        float x = xp[pFloorIndex] + xFraction;
274        return mStackVisibleRect.top + (int) (x * mStackVisibleRect.height());
275    }
276
277    /** Converts from the progress along the curve to a scale. */
278    float curveProgressToScale(float p) {
279        if (p < 0) return StackPeekMinScale;
280        if (p > 1) return 1f;
281        float scaleRange = (1f - StackPeekMinScale);
282        float scale = StackPeekMinScale + (p * scaleRange);
283        return scale;
284    }
285
286    /** Converts from a screen coordinate to the progress along the curve. */
287    float screenYToCurveProgress(int screenY) {
288        float x = (float) (screenY - mStackVisibleRect.top) / mStackVisibleRect.height();
289        if (x < 0 || x > 1) return x;
290        float xIndex = x * PrecisionSteps;
291        int xFloorIndex = (int) Math.floor(xIndex);
292        int xCeilIndex = (int) Math.ceil(xIndex);
293        float pFraction = 0;
294        if (xFloorIndex < PrecisionSteps && (xCeilIndex != xFloorIndex)) {
295            float xFraction = (xIndex - xFloorIndex) / (xCeilIndex - xFloorIndex);
296            pFraction = (px[xCeilIndex] - px[xFloorIndex]) * xFraction;
297        }
298        return px[xFloorIndex] + pFraction;
299    }
300}