BitcodeReader.cpp revision b730e239619a546d93e5926ea92d698ab77ec7f6
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "BitReader_2_7.h"
15
16#include "llvm/Bitcode/ReaderWriter.h"
17#include "BitcodeReader.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/AutoUpgrade.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/InlineAsm.h"
24#include "llvm/IR/IntrinsicInst.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/OperandTraits.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/MemoryBuffer.h"
30
31using namespace llvm;
32using namespace llvm_2_7;
33
34#define METADATA_NODE_2_7             2
35#define METADATA_FN_NODE_2_7          3
36#define METADATA_NAMED_NODE_2_7       5
37#define METADATA_ATTACHMENT_2_7       7
38#define FUNC_CODE_INST_UNWIND_2_7     14
39#define FUNC_CODE_INST_MALLOC_2_7     17
40#define FUNC_CODE_INST_FREE_2_7       18
41#define FUNC_CODE_INST_STORE_2_7      21
42#define FUNC_CODE_INST_CALL_2_7       22
43#define FUNC_CODE_INST_GETRESULT_2_7  25
44#define FUNC_CODE_DEBUG_LOC_2_7       32
45
46#define TYPE_BLOCK_ID_OLD_3_0         10
47#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
48#define TYPE_CODE_STRUCT_OLD_3_0      10
49
50namespace {
51  /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
52  /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
53  /// strips that use.
54  void CheckDebugInfoIntrinsics(Module *M) {
55    if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
56      while (!FuncStart->use_empty())
57        cast<CallInst>(FuncStart->use_back())->eraseFromParent();
58      FuncStart->eraseFromParent();
59    }
60
61    if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
62      while (!StopPoint->use_empty())
63        cast<CallInst>(StopPoint->use_back())->eraseFromParent();
64      StopPoint->eraseFromParent();
65    }
66
67    if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
68      while (!RegionStart->use_empty())
69        cast<CallInst>(RegionStart->use_back())->eraseFromParent();
70      RegionStart->eraseFromParent();
71    }
72
73    if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
74      while (!RegionEnd->use_empty())
75        cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
76      RegionEnd->eraseFromParent();
77    }
78
79    if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
80      if (!Declare->use_empty()) {
81        DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
82        if (!isa<MDNode>(DDI->getArgOperand(0)) ||
83            !isa<MDNode>(DDI->getArgOperand(1))) {
84          while (!Declare->use_empty()) {
85            CallInst *CI = cast<CallInst>(Declare->use_back());
86            CI->eraseFromParent();
87          }
88          Declare->eraseFromParent();
89        }
90      }
91    }
92  }
93} // end anonymous namespace
94
95void BitcodeReader::FreeState() {
96  if (BufferOwned)
97    delete Buffer;
98  Buffer = 0;
99  std::vector<Type*>().swap(TypeList);
100  ValueList.clear();
101  MDValueList.clear();
102
103  std::vector<AttributeSet>().swap(MAttributes);
104  std::vector<BasicBlock*>().swap(FunctionBBs);
105  std::vector<Function*>().swap(FunctionsWithBodies);
106  DeferredFunctionInfo.clear();
107  MDKindMap.clear();
108}
109
110//===----------------------------------------------------------------------===//
111//  Helper functions to implement forward reference resolution, etc.
112//===----------------------------------------------------------------------===//
113
114/// ConvertToString - Convert a string from a record into an std::string, return
115/// true on failure.
116template<typename StrTy>
117static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
118                            StrTy &Result) {
119  if (Idx > Record.size())
120    return true;
121
122  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
123    Result += (char)Record[i];
124  return false;
125}
126
127static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
128  switch (Val) {
129  default: // Map unknown/new linkages to external
130  case 0:  return GlobalValue::ExternalLinkage;
131  case 1:  return GlobalValue::WeakAnyLinkage;
132  case 2:  return GlobalValue::AppendingLinkage;
133  case 3:  return GlobalValue::InternalLinkage;
134  case 4:  return GlobalValue::LinkOnceAnyLinkage;
135  case 5:  return GlobalValue::DLLImportLinkage;
136  case 6:  return GlobalValue::DLLExportLinkage;
137  case 7:  return GlobalValue::ExternalWeakLinkage;
138  case 8:  return GlobalValue::CommonLinkage;
139  case 9:  return GlobalValue::PrivateLinkage;
140  case 10: return GlobalValue::WeakODRLinkage;
141  case 11: return GlobalValue::LinkOnceODRLinkage;
142  case 12: return GlobalValue::AvailableExternallyLinkage;
143  case 13: return GlobalValue::LinkerPrivateLinkage;
144  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
145  case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
146  }
147}
148
149static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
150  switch (Val) {
151  default: // Map unknown visibilities to default.
152  case 0: return GlobalValue::DefaultVisibility;
153  case 1: return GlobalValue::HiddenVisibility;
154  case 2: return GlobalValue::ProtectedVisibility;
155  }
156}
157
158static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
159  switch (Val) {
160    case 0: return GlobalVariable::NotThreadLocal;
161    default: // Map unknown non-zero value to general dynamic.
162    case 1: return GlobalVariable::GeneralDynamicTLSModel;
163    case 2: return GlobalVariable::LocalDynamicTLSModel;
164    case 3: return GlobalVariable::InitialExecTLSModel;
165    case 4: return GlobalVariable::LocalExecTLSModel;
166  }
167}
168
169static int GetDecodedCastOpcode(unsigned Val) {
170  switch (Val) {
171  default: return -1;
172  case bitc::CAST_TRUNC   : return Instruction::Trunc;
173  case bitc::CAST_ZEXT    : return Instruction::ZExt;
174  case bitc::CAST_SEXT    : return Instruction::SExt;
175  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
176  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
177  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
178  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
179  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
180  case bitc::CAST_FPEXT   : return Instruction::FPExt;
181  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
182  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
183  case bitc::CAST_BITCAST : return Instruction::BitCast;
184  }
185}
186static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
187  switch (Val) {
188  default: return -1;
189  case bitc::BINOP_ADD:
190    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
191  case bitc::BINOP_SUB:
192    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
193  case bitc::BINOP_MUL:
194    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
195  case bitc::BINOP_UDIV: return Instruction::UDiv;
196  case bitc::BINOP_SDIV:
197    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
198  case bitc::BINOP_UREM: return Instruction::URem;
199  case bitc::BINOP_SREM:
200    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
201  case bitc::BINOP_SHL:  return Instruction::Shl;
202  case bitc::BINOP_LSHR: return Instruction::LShr;
203  case bitc::BINOP_ASHR: return Instruction::AShr;
204  case bitc::BINOP_AND:  return Instruction::And;
205  case bitc::BINOP_OR:   return Instruction::Or;
206  case bitc::BINOP_XOR:  return Instruction::Xor;
207  }
208}
209
210namespace llvm {
211namespace {
212  /// @brief A class for maintaining the slot number definition
213  /// as a placeholder for the actual definition for forward constants defs.
214  class ConstantPlaceHolder : public ConstantExpr {
215    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
216  public:
217    // allocate space for exactly one operand
218    void *operator new(size_t s) {
219      return User::operator new(s, 1);
220    }
221    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
222      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
223      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
224    }
225
226    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
227    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
228    static bool classof(const Value *V) {
229      return isa<ConstantExpr>(V) &&
230             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
231    }
232
233
234    /// Provide fast operand accessors
235    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
236  };
237}
238
239// FIXME: can we inherit this from ConstantExpr?
240template <>
241struct OperandTraits<ConstantPlaceHolder> :
242  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
243};
244}
245
246
247void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
248  if (Idx == size()) {
249    push_back(V);
250    return;
251  }
252
253  if (Idx >= size())
254    resize(Idx+1);
255
256  WeakVH &OldV = ValuePtrs[Idx];
257  if (OldV == 0) {
258    OldV = V;
259    return;
260  }
261
262  // Handle constants and non-constants (e.g. instrs) differently for
263  // efficiency.
264  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
265    ResolveConstants.push_back(std::make_pair(PHC, Idx));
266    OldV = V;
267  } else {
268    // If there was a forward reference to this value, replace it.
269    Value *PrevVal = OldV;
270    OldV->replaceAllUsesWith(V);
271    delete PrevVal;
272  }
273}
274
275
276Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
277                                                    Type *Ty) {
278  if (Idx >= size())
279    resize(Idx + 1);
280
281  if (Value *V = ValuePtrs[Idx]) {
282    assert(Ty == V->getType() && "Type mismatch in constant table!");
283    return cast<Constant>(V);
284  }
285
286  // Create and return a placeholder, which will later be RAUW'd.
287  Constant *C = new ConstantPlaceHolder(Ty, Context);
288  ValuePtrs[Idx] = C;
289  return C;
290}
291
292Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
293  if (Idx >= size())
294    resize(Idx + 1);
295
296  if (Value *V = ValuePtrs[Idx]) {
297    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
298    return V;
299  }
300
301  // No type specified, must be invalid reference.
302  if (Ty == 0) return 0;
303
304  // Create and return a placeholder, which will later be RAUW'd.
305  Value *V = new Argument(Ty);
306  ValuePtrs[Idx] = V;
307  return V;
308}
309
310/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
311/// resolves any forward references.  The idea behind this is that we sometimes
312/// get constants (such as large arrays) which reference *many* forward ref
313/// constants.  Replacing each of these causes a lot of thrashing when
314/// building/reuniquing the constant.  Instead of doing this, we look at all the
315/// uses and rewrite all the place holders at once for any constant that uses
316/// a placeholder.
317void BitcodeReaderValueList::ResolveConstantForwardRefs() {
318  // Sort the values by-pointer so that they are efficient to look up with a
319  // binary search.
320  std::sort(ResolveConstants.begin(), ResolveConstants.end());
321
322  SmallVector<Constant*, 64> NewOps;
323
324  while (!ResolveConstants.empty()) {
325    Value *RealVal = operator[](ResolveConstants.back().second);
326    Constant *Placeholder = ResolveConstants.back().first;
327    ResolveConstants.pop_back();
328
329    // Loop over all users of the placeholder, updating them to reference the
330    // new value.  If they reference more than one placeholder, update them all
331    // at once.
332    while (!Placeholder->use_empty()) {
333      Value::use_iterator UI = Placeholder->use_begin();
334      User *U = *UI;
335
336      // If the using object isn't uniqued, just update the operands.  This
337      // handles instructions and initializers for global variables.
338      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
339        UI.getUse().set(RealVal);
340        continue;
341      }
342
343      // Otherwise, we have a constant that uses the placeholder.  Replace that
344      // constant with a new constant that has *all* placeholder uses updated.
345      Constant *UserC = cast<Constant>(U);
346      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
347           I != E; ++I) {
348        Value *NewOp;
349        if (!isa<ConstantPlaceHolder>(*I)) {
350          // Not a placeholder reference.
351          NewOp = *I;
352        } else if (*I == Placeholder) {
353          // Common case is that it just references this one placeholder.
354          NewOp = RealVal;
355        } else {
356          // Otherwise, look up the placeholder in ResolveConstants.
357          ResolveConstantsTy::iterator It =
358            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
359                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
360                                                            0));
361          assert(It != ResolveConstants.end() && It->first == *I);
362          NewOp = operator[](It->second);
363        }
364
365        NewOps.push_back(cast<Constant>(NewOp));
366      }
367
368      // Make the new constant.
369      Constant *NewC;
370      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
371        NewC = ConstantArray::get(UserCA->getType(), NewOps);
372      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
373        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
374      } else if (isa<ConstantVector>(UserC)) {
375        NewC = ConstantVector::get(NewOps);
376      } else {
377        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
378        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
379      }
380
381      UserC->replaceAllUsesWith(NewC);
382      UserC->destroyConstant();
383      NewOps.clear();
384    }
385
386    // Update all ValueHandles, they should be the only users at this point.
387    Placeholder->replaceAllUsesWith(RealVal);
388    delete Placeholder;
389  }
390}
391
392void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
393  if (Idx == size()) {
394    push_back(V);
395    return;
396  }
397
398  if (Idx >= size())
399    resize(Idx+1);
400
401  WeakVH &OldV = MDValuePtrs[Idx];
402  if (OldV == 0) {
403    OldV = V;
404    return;
405  }
406
407  // If there was a forward reference to this value, replace it.
408  MDNode *PrevVal = cast<MDNode>(OldV);
409  OldV->replaceAllUsesWith(V);
410  MDNode::deleteTemporary(PrevVal);
411  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
412  // value for Idx.
413  MDValuePtrs[Idx] = V;
414}
415
416Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
417  if (Idx >= size())
418    resize(Idx + 1);
419
420  if (Value *V = MDValuePtrs[Idx]) {
421    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
422    return V;
423  }
424
425  // Create and return a placeholder, which will later be RAUW'd.
426  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
427  MDValuePtrs[Idx] = V;
428  return V;
429}
430
431Type *BitcodeReader::getTypeByID(unsigned ID) {
432  // The type table size is always specified correctly.
433  if (ID >= TypeList.size())
434    return 0;
435
436  if (Type *Ty = TypeList[ID])
437    return Ty;
438
439  // If we have a forward reference, the only possible case is when it is to a
440  // named struct.  Just create a placeholder for now.
441  return TypeList[ID] = StructType::create(Context);
442}
443
444/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
445Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
446  if (ID >= TypeList.size())
447    TypeList.resize(ID+1);
448
449  return TypeList[ID];
450}
451
452
453//===----------------------------------------------------------------------===//
454//  Functions for parsing blocks from the bitcode file
455//===----------------------------------------------------------------------===//
456
457bool BitcodeReader::ParseAttributeBlock() {
458  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
459    return Error("Malformed block record");
460
461  if (!MAttributes.empty())
462    return Error("Multiple PARAMATTR blocks found!");
463
464  SmallVector<uint64_t, 64> Record;
465
466  SmallVector<AttributeWithIndex, 8> Attrs;
467
468  // Read all the records.
469  while (1) {
470    unsigned Code = Stream.ReadCode();
471    if (Code == bitc::END_BLOCK) {
472      if (Stream.ReadBlockEnd())
473        return Error("Error at end of PARAMATTR block");
474      return false;
475    }
476
477    if (Code == bitc::ENTER_SUBBLOCK) {
478      // No known subblocks, always skip them.
479      Stream.ReadSubBlockID();
480      if (Stream.SkipBlock())
481        return Error("Malformed block record");
482      continue;
483    }
484
485    if (Code == bitc::DEFINE_ABBREV) {
486      Stream.ReadAbbrevRecord();
487      continue;
488    }
489
490    // Read a record.
491    Record.clear();
492    switch (Stream.ReadRecord(Code, Record)) {
493    default:  // Default behavior: ignore.
494      break;
495    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
496      if (Record.size() & 1)
497        return Error("Invalid ENTRY record");
498
499      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
500        Attribute ReconstitutedAttr =
501          Attribute::decodeLLVMAttributesForBitcode(Context, Record[i+1]);
502        Record[i+1] = ReconstitutedAttr.getBitMask();
503#if 0
504      // FIXME : Remove this autoupgrade code in LLVM 3.0.
505      // If Function attributes are using index 0 then transfer them
506      // to index ~0. Index 0 is used for return value attributes but used to be
507      // used for function attributes.
508      Attributes RetAttribute = Attribute::None;
509      Attributes FnAttribute = Attribute::None;
510      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
511        // FIXME: remove in LLVM 3.0
512        // The alignment is stored as a 16-bit raw value from bits 31--16.
513        // We shift the bits above 31 down by 11 bits.
514
515        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
516        if (Alignment && !isPowerOf2_32(Alignment))
517          return Error("Alignment is not a power of two.");
518
519        Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
520        if (Alignment)
521          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
522        ReconstitutedAttr |=
523            Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
524
525        Record[i+1] = ReconstitutedAttr.Raw();
526        if (Record[i] == 0)
527          RetAttribute = ReconstitutedAttr;
528        else if (Record[i] == ~0U)
529          FnAttribute = ReconstitutedAttr;
530      }
531
532      Attributes OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn |
533                             Attribute::ReadOnly|Attribute::ReadNone);
534
535      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
536          (RetAttribute & OldRetAttrs)) {
537        if (FnAttribute == Attribute::None) { // add a slot so they get added.
538          Record.push_back(~0U);
539          Record.push_back(0);
540        }
541
542        FnAttribute  |= RetAttribute & OldRetAttrs;
543        RetAttribute &= ~OldRetAttrs;
544#endif
545      }
546
547      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
548        AttrBuilder B(Record[i+1]);
549        if (B.hasAttributes())
550          Attrs.push_back(AttributeWithIndex::get(Record[i],
551                                                  Attribute::get(Context, B)));
552      }
553
554      MAttributes.push_back(AttributeSet::get(Context, Attrs));
555      Attrs.clear();
556      break;
557    }
558    }
559  }
560}
561
562bool BitcodeReader::ParseTypeTable() {
563  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
564    return Error("Malformed block record");
565
566  return ParseTypeTableBody();
567}
568
569bool BitcodeReader::ParseTypeTableBody() {
570  if (!TypeList.empty())
571    return Error("Multiple TYPE_BLOCKs found!");
572
573  SmallVector<uint64_t, 64> Record;
574  unsigned NumRecords = 0;
575
576  SmallString<64> TypeName;
577
578  // Read all the records for this type table.
579  while (1) {
580    unsigned Code = Stream.ReadCode();
581    if (Code == bitc::END_BLOCK) {
582      if (NumRecords != TypeList.size())
583        return Error("Invalid type forward reference in TYPE_BLOCK");
584      if (Stream.ReadBlockEnd())
585        return Error("Error at end of type table block");
586      return false;
587    }
588
589    if (Code == bitc::ENTER_SUBBLOCK) {
590      // No known subblocks, always skip them.
591      Stream.ReadSubBlockID();
592      if (Stream.SkipBlock())
593        return Error("Malformed block record");
594      continue;
595    }
596
597    if (Code == bitc::DEFINE_ABBREV) {
598      Stream.ReadAbbrevRecord();
599      continue;
600    }
601
602    // Read a record.
603    Record.clear();
604    Type *ResultTy = 0;
605    switch (Stream.ReadRecord(Code, Record)) {
606    default: return Error("unknown type in type table");
607    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
608      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
609      // type list.  This allows us to reserve space.
610      if (Record.size() < 1)
611        return Error("Invalid TYPE_CODE_NUMENTRY record");
612      TypeList.resize(Record[0]);
613      continue;
614    case bitc::TYPE_CODE_VOID:      // VOID
615      ResultTy = Type::getVoidTy(Context);
616      break;
617    case bitc::TYPE_CODE_FLOAT:     // FLOAT
618      ResultTy = Type::getFloatTy(Context);
619      break;
620    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
621      ResultTy = Type::getDoubleTy(Context);
622      break;
623    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
624      ResultTy = Type::getX86_FP80Ty(Context);
625      break;
626    case bitc::TYPE_CODE_FP128:     // FP128
627      ResultTy = Type::getFP128Ty(Context);
628      break;
629    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
630      ResultTy = Type::getPPC_FP128Ty(Context);
631      break;
632    case bitc::TYPE_CODE_LABEL:     // LABEL
633      ResultTy = Type::getLabelTy(Context);
634      break;
635    case bitc::TYPE_CODE_METADATA:  // METADATA
636      ResultTy = Type::getMetadataTy(Context);
637      break;
638    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
639      ResultTy = Type::getX86_MMXTy(Context);
640      break;
641    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
642      if (Record.size() < 1)
643        return Error("Invalid Integer type record");
644
645      ResultTy = IntegerType::get(Context, Record[0]);
646      break;
647    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
648                                    //          [pointee type, address space]
649      if (Record.size() < 1)
650        return Error("Invalid POINTER type record");
651      unsigned AddressSpace = 0;
652      if (Record.size() == 2)
653        AddressSpace = Record[1];
654      ResultTy = getTypeByID(Record[0]);
655      if (ResultTy == 0) return Error("invalid element type in pointer type");
656      ResultTy = PointerType::get(ResultTy, AddressSpace);
657      break;
658    }
659    case bitc::TYPE_CODE_FUNCTION_OLD: {
660      // FIXME: attrid is dead, remove it in LLVM 4.0
661      // FUNCTION: [vararg, attrid, retty, paramty x N]
662      if (Record.size() < 3)
663        return Error("Invalid FUNCTION type record");
664      SmallVector<Type*, 8> ArgTys;
665      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
666        if (Type *T = getTypeByID(Record[i]))
667          ArgTys.push_back(T);
668        else
669          break;
670      }
671
672      ResultTy = getTypeByID(Record[2]);
673      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
674        return Error("invalid type in function type");
675
676      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
677      break;
678    }
679    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
680      if (Record.size() < 1)
681        return Error("Invalid STRUCT type record");
682      SmallVector<Type*, 8> EltTys;
683      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
684        if (Type *T = getTypeByID(Record[i]))
685          EltTys.push_back(T);
686        else
687          break;
688      }
689      if (EltTys.size() != Record.size()-1)
690        return Error("invalid type in struct type");
691      ResultTy = StructType::get(Context, EltTys, Record[0]);
692      break;
693    }
694    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
695      if (ConvertToString(Record, 0, TypeName))
696        return Error("Invalid STRUCT_NAME record");
697      continue;
698
699    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
700      if (Record.size() < 1)
701        return Error("Invalid STRUCT type record");
702
703      if (NumRecords >= TypeList.size())
704        return Error("invalid TYPE table");
705
706      // Check to see if this was forward referenced, if so fill in the temp.
707      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
708      if (Res) {
709        Res->setName(TypeName);
710        TypeList[NumRecords] = 0;
711      } else  // Otherwise, create a new struct.
712        Res = StructType::create(Context, TypeName);
713      TypeName.clear();
714
715      SmallVector<Type*, 8> EltTys;
716      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
717        if (Type *T = getTypeByID(Record[i]))
718          EltTys.push_back(T);
719        else
720          break;
721      }
722      if (EltTys.size() != Record.size()-1)
723        return Error("invalid STRUCT type record");
724      Res->setBody(EltTys, Record[0]);
725      ResultTy = Res;
726      break;
727    }
728    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
729      if (Record.size() != 1)
730        return Error("Invalid OPAQUE type record");
731
732      if (NumRecords >= TypeList.size())
733        return Error("invalid TYPE table");
734
735      // Check to see if this was forward referenced, if so fill in the temp.
736      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
737      if (Res) {
738        Res->setName(TypeName);
739        TypeList[NumRecords] = 0;
740      } else  // Otherwise, create a new struct with no body.
741        Res = StructType::create(Context, TypeName);
742      TypeName.clear();
743      ResultTy = Res;
744      break;
745    }
746    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
747      if (Record.size() < 2)
748        return Error("Invalid ARRAY type record");
749      if ((ResultTy = getTypeByID(Record[1])))
750        ResultTy = ArrayType::get(ResultTy, Record[0]);
751      else
752        return Error("Invalid ARRAY type element");
753      break;
754    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
755      if (Record.size() < 2)
756        return Error("Invalid VECTOR type record");
757      if ((ResultTy = getTypeByID(Record[1])))
758        ResultTy = VectorType::get(ResultTy, Record[0]);
759      else
760        return Error("Invalid ARRAY type element");
761      break;
762    }
763
764    if (NumRecords >= TypeList.size())
765      return Error("invalid TYPE table");
766    assert(ResultTy && "Didn't read a type?");
767    assert(TypeList[NumRecords] == 0 && "Already read type?");
768    TypeList[NumRecords++] = ResultTy;
769  }
770}
771
772// FIXME: Remove in LLVM 3.1
773bool BitcodeReader::ParseOldTypeTable() {
774  if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
775    return Error("Malformed block record");
776
777  if (!TypeList.empty())
778    return Error("Multiple TYPE_BLOCKs found!");
779
780
781  // While horrible, we have no good ordering of types in the bc file.  Just
782  // iteratively parse types out of the bc file in multiple passes until we get
783  // them all.  Do this by saving a cursor for the start of the type block.
784  BitstreamCursor StartOfTypeBlockCursor(Stream);
785
786  unsigned NumTypesRead = 0;
787
788  SmallVector<uint64_t, 64> Record;
789RestartScan:
790  unsigned NextTypeID = 0;
791  bool ReadAnyTypes = false;
792
793  // Read all the records for this type table.
794  while (1) {
795    unsigned Code = Stream.ReadCode();
796    if (Code == bitc::END_BLOCK) {
797      if (NextTypeID != TypeList.size())
798        return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
799
800      // If we haven't read all of the types yet, iterate again.
801      if (NumTypesRead != TypeList.size()) {
802        // If we didn't successfully read any types in this pass, then we must
803        // have an unhandled forward reference.
804        if (!ReadAnyTypes)
805          return Error("Obsolete bitcode contains unhandled recursive type");
806
807        Stream = StartOfTypeBlockCursor;
808        goto RestartScan;
809      }
810
811      if (Stream.ReadBlockEnd())
812        return Error("Error at end of type table block");
813      return false;
814    }
815
816    if (Code == bitc::ENTER_SUBBLOCK) {
817      // No known subblocks, always skip them.
818      Stream.ReadSubBlockID();
819      if (Stream.SkipBlock())
820        return Error("Malformed block record");
821      continue;
822    }
823
824    if (Code == bitc::DEFINE_ABBREV) {
825      Stream.ReadAbbrevRecord();
826      continue;
827    }
828
829    // Read a record.
830    Record.clear();
831    Type *ResultTy = 0;
832    switch (Stream.ReadRecord(Code, Record)) {
833    default: return Error("unknown type in type table");
834    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
835      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
836      // type list.  This allows us to reserve space.
837      if (Record.size() < 1)
838        return Error("Invalid TYPE_CODE_NUMENTRY record");
839      TypeList.resize(Record[0]);
840      continue;
841    case bitc::TYPE_CODE_VOID:      // VOID
842      ResultTy = Type::getVoidTy(Context);
843      break;
844    case bitc::TYPE_CODE_FLOAT:     // FLOAT
845      ResultTy = Type::getFloatTy(Context);
846      break;
847    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
848      ResultTy = Type::getDoubleTy(Context);
849      break;
850    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
851      ResultTy = Type::getX86_FP80Ty(Context);
852      break;
853    case bitc::TYPE_CODE_FP128:     // FP128
854      ResultTy = Type::getFP128Ty(Context);
855      break;
856    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
857      ResultTy = Type::getPPC_FP128Ty(Context);
858      break;
859    case bitc::TYPE_CODE_LABEL:     // LABEL
860      ResultTy = Type::getLabelTy(Context);
861      break;
862    case bitc::TYPE_CODE_METADATA:  // METADATA
863      ResultTy = Type::getMetadataTy(Context);
864      break;
865    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
866      ResultTy = Type::getX86_MMXTy(Context);
867      break;
868    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
869      if (Record.size() < 1)
870        return Error("Invalid Integer type record");
871      ResultTy = IntegerType::get(Context, Record[0]);
872      break;
873    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
874      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
875        ResultTy = StructType::create(Context, "");
876      break;
877    case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
878      if (NextTypeID >= TypeList.size()) break;
879      // If we already read it, don't reprocess.
880      if (TypeList[NextTypeID] &&
881          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
882        break;
883
884      // Set a type.
885      if (TypeList[NextTypeID] == 0)
886        TypeList[NextTypeID] = StructType::create(Context, "");
887
888      std::vector<Type*> EltTys;
889      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
890        if (Type *Elt = getTypeByIDOrNull(Record[i]))
891          EltTys.push_back(Elt);
892        else
893          break;
894      }
895
896      if (EltTys.size() != Record.size()-1)
897        break;      // Not all elements are ready.
898
899      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
900      ResultTy = TypeList[NextTypeID];
901      TypeList[NextTypeID] = 0;
902      break;
903    }
904    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
905      //          [pointee type, address space]
906      if (Record.size() < 1)
907        return Error("Invalid POINTER type record");
908      unsigned AddressSpace = 0;
909      if (Record.size() == 2)
910        AddressSpace = Record[1];
911      if ((ResultTy = getTypeByIDOrNull(Record[0])))
912        ResultTy = PointerType::get(ResultTy, AddressSpace);
913      break;
914    }
915    case bitc::TYPE_CODE_FUNCTION_OLD: {
916      // FIXME: attrid is dead, remove it in LLVM 3.0
917      // FUNCTION: [vararg, attrid, retty, paramty x N]
918      if (Record.size() < 3)
919        return Error("Invalid FUNCTION type record");
920      std::vector<Type*> ArgTys;
921      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
922        if (Type *Elt = getTypeByIDOrNull(Record[i]))
923          ArgTys.push_back(Elt);
924        else
925          break;
926      }
927      if (ArgTys.size()+3 != Record.size())
928        break;  // Something was null.
929      if ((ResultTy = getTypeByIDOrNull(Record[2])))
930        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
931      break;
932    }
933    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
934      if (Record.size() < 2)
935        return Error("Invalid ARRAY type record");
936      if ((ResultTy = getTypeByIDOrNull(Record[1])))
937        ResultTy = ArrayType::get(ResultTy, Record[0]);
938      break;
939    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
940      if (Record.size() < 2)
941        return Error("Invalid VECTOR type record");
942      if ((ResultTy = getTypeByIDOrNull(Record[1])))
943        ResultTy = VectorType::get(ResultTy, Record[0]);
944      break;
945    }
946
947    if (NextTypeID >= TypeList.size())
948      return Error("invalid TYPE table");
949
950    if (ResultTy && TypeList[NextTypeID] == 0) {
951      ++NumTypesRead;
952      ReadAnyTypes = true;
953
954      TypeList[NextTypeID] = ResultTy;
955    }
956
957    ++NextTypeID;
958  }
959}
960
961
962bool BitcodeReader::ParseOldTypeSymbolTable() {
963  if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
964    return Error("Malformed block record");
965
966  SmallVector<uint64_t, 64> Record;
967
968  // Read all the records for this type table.
969  std::string TypeName;
970  while (1) {
971    unsigned Code = Stream.ReadCode();
972    if (Code == bitc::END_BLOCK) {
973      if (Stream.ReadBlockEnd())
974        return Error("Error at end of type symbol table block");
975      return false;
976    }
977
978    if (Code == bitc::ENTER_SUBBLOCK) {
979      // No known subblocks, always skip them.
980      Stream.ReadSubBlockID();
981      if (Stream.SkipBlock())
982        return Error("Malformed block record");
983      continue;
984    }
985
986    if (Code == bitc::DEFINE_ABBREV) {
987      Stream.ReadAbbrevRecord();
988      continue;
989    }
990
991    // Read a record.
992    Record.clear();
993    switch (Stream.ReadRecord(Code, Record)) {
994    default:  // Default behavior: unknown type.
995      break;
996    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
997      if (ConvertToString(Record, 1, TypeName))
998        return Error("Invalid TST_ENTRY record");
999      unsigned TypeID = Record[0];
1000      if (TypeID >= TypeList.size())
1001        return Error("Invalid Type ID in TST_ENTRY record");
1002
1003      // Only apply the type name to a struct type with no name.
1004      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1005        if (!STy->isLiteral() && !STy->hasName())
1006          STy->setName(TypeName);
1007      TypeName.clear();
1008      break;
1009    }
1010  }
1011}
1012
1013bool BitcodeReader::ParseValueSymbolTable() {
1014  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1015    return Error("Malformed block record");
1016
1017  SmallVector<uint64_t, 64> Record;
1018
1019  // Read all the records for this value table.
1020  SmallString<128> ValueName;
1021  while (1) {
1022    unsigned Code = Stream.ReadCode();
1023    if (Code == bitc::END_BLOCK) {
1024      if (Stream.ReadBlockEnd())
1025        return Error("Error at end of value symbol table block");
1026      return false;
1027    }
1028    if (Code == bitc::ENTER_SUBBLOCK) {
1029      // No known subblocks, always skip them.
1030      Stream.ReadSubBlockID();
1031      if (Stream.SkipBlock())
1032        return Error("Malformed block record");
1033      continue;
1034    }
1035
1036    if (Code == bitc::DEFINE_ABBREV) {
1037      Stream.ReadAbbrevRecord();
1038      continue;
1039    }
1040
1041    // Read a record.
1042    Record.clear();
1043    switch (Stream.ReadRecord(Code, Record)) {
1044    default:  // Default behavior: unknown type.
1045      break;
1046    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1047      if (ConvertToString(Record, 1, ValueName))
1048        return Error("Invalid VST_ENTRY record");
1049      unsigned ValueID = Record[0];
1050      if (ValueID >= ValueList.size())
1051        return Error("Invalid Value ID in VST_ENTRY record");
1052      Value *V = ValueList[ValueID];
1053
1054      V->setName(StringRef(ValueName.data(), ValueName.size()));
1055      ValueName.clear();
1056      break;
1057    }
1058    case bitc::VST_CODE_BBENTRY: {
1059      if (ConvertToString(Record, 1, ValueName))
1060        return Error("Invalid VST_BBENTRY record");
1061      BasicBlock *BB = getBasicBlock(Record[0]);
1062      if (BB == 0)
1063        return Error("Invalid BB ID in VST_BBENTRY record");
1064
1065      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1066      ValueName.clear();
1067      break;
1068    }
1069    }
1070  }
1071}
1072
1073bool BitcodeReader::ParseMetadata() {
1074  unsigned NextMDValueNo = MDValueList.size();
1075
1076  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1077    return Error("Malformed block record");
1078
1079  SmallVector<uint64_t, 64> Record;
1080
1081  // Read all the records.
1082  while (1) {
1083    unsigned Code = Stream.ReadCode();
1084    if (Code == bitc::END_BLOCK) {
1085      if (Stream.ReadBlockEnd())
1086        return Error("Error at end of PARAMATTR block");
1087      return false;
1088    }
1089
1090    if (Code == bitc::ENTER_SUBBLOCK) {
1091      // No known subblocks, always skip them.
1092      Stream.ReadSubBlockID();
1093      if (Stream.SkipBlock())
1094        return Error("Malformed block record");
1095      continue;
1096    }
1097
1098    if (Code == bitc::DEFINE_ABBREV) {
1099      Stream.ReadAbbrevRecord();
1100      continue;
1101    }
1102
1103    bool IsFunctionLocal = false;
1104    // Read a record.
1105    Record.clear();
1106    Code = Stream.ReadRecord(Code, Record);
1107    switch (Code) {
1108    default:  // Default behavior: ignore.
1109      break;
1110    case bitc::METADATA_NAME: {
1111      // Read named of the named metadata.
1112      unsigned NameLength = Record.size();
1113      SmallString<8> Name;
1114      Name.resize(NameLength);
1115      for (unsigned i = 0; i != NameLength; ++i)
1116        Name[i] = Record[i];
1117      Record.clear();
1118      Code = Stream.ReadCode();
1119
1120      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1121      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1122      if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1123        LLVM2_7MetadataDetected = true;
1124      } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1125        assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1126      }
1127
1128      // Read named metadata elements.
1129      unsigned Size = Record.size();
1130      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1131      for (unsigned i = 0; i != Size; ++i) {
1132        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1133        if (MD == 0)
1134          return Error("Malformed metadata record");
1135        NMD->addOperand(MD);
1136      }
1137
1138      if (LLVM2_7MetadataDetected) {
1139        MDValueList.AssignValue(0, NextMDValueNo++);
1140      }
1141      break;
1142    }
1143    case METADATA_FN_NODE_2_7:
1144    case bitc::METADATA_FN_NODE:
1145      IsFunctionLocal = true;
1146      // fall-through
1147    case METADATA_NODE_2_7:
1148    case bitc::METADATA_NODE: {
1149      if (Code == METADATA_FN_NODE_2_7 ||
1150          Code == METADATA_NODE_2_7) {
1151        LLVM2_7MetadataDetected = true;
1152      }
1153
1154      if (Record.size() % 2 == 1)
1155        return Error("Invalid METADATA_NODE record");
1156
1157      unsigned Size = Record.size();
1158      SmallVector<Value*, 8> Elts;
1159      for (unsigned i = 0; i != Size; i += 2) {
1160        Type *Ty = getTypeByID(Record[i]);
1161        if (!Ty) return Error("Invalid METADATA_NODE record");
1162        if (Ty->isMetadataTy())
1163          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1164        else if (!Ty->isVoidTy())
1165          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1166        else
1167          Elts.push_back(NULL);
1168      }
1169      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1170      IsFunctionLocal = false;
1171      MDValueList.AssignValue(V, NextMDValueNo++);
1172      break;
1173    }
1174    case bitc::METADATA_STRING: {
1175      unsigned MDStringLength = Record.size();
1176      SmallString<8> String;
1177      String.resize(MDStringLength);
1178      for (unsigned i = 0; i != MDStringLength; ++i)
1179        String[i] = Record[i];
1180      Value *V = MDString::get(Context,
1181                               StringRef(String.data(), String.size()));
1182      MDValueList.AssignValue(V, NextMDValueNo++);
1183      break;
1184    }
1185    case bitc::METADATA_KIND: {
1186      unsigned RecordLength = Record.size();
1187      if (Record.empty() || RecordLength < 2)
1188        return Error("Invalid METADATA_KIND record");
1189      SmallString<8> Name;
1190      Name.resize(RecordLength-1);
1191      unsigned Kind = Record[0];
1192      for (unsigned i = 1; i != RecordLength; ++i)
1193        Name[i-1] = Record[i];
1194
1195      unsigned NewKind = TheModule->getMDKindID(Name.str());
1196      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1197        return Error("Conflicting METADATA_KIND records");
1198      break;
1199    }
1200    }
1201  }
1202}
1203
1204/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1205/// the LSB for dense VBR encoding.
1206static uint64_t DecodeSignRotatedValue(uint64_t V) {
1207  if ((V & 1) == 0)
1208    return V >> 1;
1209  if (V != 1)
1210    return -(V >> 1);
1211  // There is no such thing as -0 with integers.  "-0" really means MININT.
1212  return 1ULL << 63;
1213}
1214
1215/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1216/// values and aliases that we can.
1217bool BitcodeReader::ResolveGlobalAndAliasInits() {
1218  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1219  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1220
1221  GlobalInitWorklist.swap(GlobalInits);
1222  AliasInitWorklist.swap(AliasInits);
1223
1224  while (!GlobalInitWorklist.empty()) {
1225    unsigned ValID = GlobalInitWorklist.back().second;
1226    if (ValID >= ValueList.size()) {
1227      // Not ready to resolve this yet, it requires something later in the file.
1228      GlobalInits.push_back(GlobalInitWorklist.back());
1229    } else {
1230      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1231        GlobalInitWorklist.back().first->setInitializer(C);
1232      else
1233        return Error("Global variable initializer is not a constant!");
1234    }
1235    GlobalInitWorklist.pop_back();
1236  }
1237
1238  while (!AliasInitWorklist.empty()) {
1239    unsigned ValID = AliasInitWorklist.back().second;
1240    if (ValID >= ValueList.size()) {
1241      AliasInits.push_back(AliasInitWorklist.back());
1242    } else {
1243      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1244        AliasInitWorklist.back().first->setAliasee(C);
1245      else
1246        return Error("Alias initializer is not a constant!");
1247    }
1248    AliasInitWorklist.pop_back();
1249  }
1250  return false;
1251}
1252
1253bool BitcodeReader::ParseConstants() {
1254  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1255    return Error("Malformed block record");
1256
1257  SmallVector<uint64_t, 64> Record;
1258
1259  // Read all the records for this value table.
1260  Type *CurTy = Type::getInt32Ty(Context);
1261  unsigned NextCstNo = ValueList.size();
1262  while (1) {
1263    unsigned Code = Stream.ReadCode();
1264    if (Code == bitc::END_BLOCK)
1265      break;
1266
1267    if (Code == bitc::ENTER_SUBBLOCK) {
1268      // No known subblocks, always skip them.
1269      Stream.ReadSubBlockID();
1270      if (Stream.SkipBlock())
1271        return Error("Malformed block record");
1272      continue;
1273    }
1274
1275    if (Code == bitc::DEFINE_ABBREV) {
1276      Stream.ReadAbbrevRecord();
1277      continue;
1278    }
1279
1280    // Read a record.
1281    Record.clear();
1282    Value *V = 0;
1283    unsigned BitCode = Stream.ReadRecord(Code, Record);
1284    switch (BitCode) {
1285    default:  // Default behavior: unknown constant
1286    case bitc::CST_CODE_UNDEF:     // UNDEF
1287      V = UndefValue::get(CurTy);
1288      break;
1289    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1290      if (Record.empty())
1291        return Error("Malformed CST_SETTYPE record");
1292      if (Record[0] >= TypeList.size())
1293        return Error("Invalid Type ID in CST_SETTYPE record");
1294      CurTy = TypeList[Record[0]];
1295      continue;  // Skip the ValueList manipulation.
1296    case bitc::CST_CODE_NULL:      // NULL
1297      V = Constant::getNullValue(CurTy);
1298      break;
1299    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1300      if (!CurTy->isIntegerTy() || Record.empty())
1301        return Error("Invalid CST_INTEGER record");
1302      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1303      break;
1304    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1305      if (!CurTy->isIntegerTy() || Record.empty())
1306        return Error("Invalid WIDE_INTEGER record");
1307
1308      unsigned NumWords = Record.size();
1309      SmallVector<uint64_t, 8> Words;
1310      Words.resize(NumWords);
1311      for (unsigned i = 0; i != NumWords; ++i)
1312        Words[i] = DecodeSignRotatedValue(Record[i]);
1313      V = ConstantInt::get(Context,
1314                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1315                                 Words));
1316      break;
1317    }
1318    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1319      if (Record.empty())
1320        return Error("Invalid FLOAT record");
1321      if (CurTy->isFloatTy())
1322        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1323      else if (CurTy->isDoubleTy())
1324        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1325      else if (CurTy->isX86_FP80Ty()) {
1326        // Bits are not stored the same way as a normal i80 APInt, compensate.
1327        uint64_t Rearrange[2];
1328        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1329        Rearrange[1] = Record[0] >> 48;
1330        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1331      } else if (CurTy->isFP128Ty())
1332        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1333      else if (CurTy->isPPC_FP128Ty())
1334        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1335      else
1336        V = UndefValue::get(CurTy);
1337      break;
1338    }
1339
1340    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1341      if (Record.empty())
1342        return Error("Invalid CST_AGGREGATE record");
1343
1344      unsigned Size = Record.size();
1345      SmallVector<Constant*, 16> Elts;
1346
1347      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1348        for (unsigned i = 0; i != Size; ++i)
1349          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1350                                                     STy->getElementType(i)));
1351        V = ConstantStruct::get(STy, Elts);
1352      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1353        Type *EltTy = ATy->getElementType();
1354        for (unsigned i = 0; i != Size; ++i)
1355          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1356        V = ConstantArray::get(ATy, Elts);
1357      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1358        Type *EltTy = VTy->getElementType();
1359        for (unsigned i = 0; i != Size; ++i)
1360          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1361        V = ConstantVector::get(Elts);
1362      } else {
1363        V = UndefValue::get(CurTy);
1364      }
1365      break;
1366    }
1367    case bitc::CST_CODE_STRING: { // STRING: [values]
1368      if (Record.empty())
1369        return Error("Invalid CST_AGGREGATE record");
1370
1371      ArrayType *ATy = cast<ArrayType>(CurTy);
1372      Type *EltTy = ATy->getElementType();
1373
1374      unsigned Size = Record.size();
1375      std::vector<Constant*> Elts;
1376      for (unsigned i = 0; i != Size; ++i)
1377        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1378      V = ConstantArray::get(ATy, Elts);
1379      break;
1380    }
1381    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1382      if (Record.empty())
1383        return Error("Invalid CST_AGGREGATE record");
1384
1385      ArrayType *ATy = cast<ArrayType>(CurTy);
1386      Type *EltTy = ATy->getElementType();
1387
1388      unsigned Size = Record.size();
1389      std::vector<Constant*> Elts;
1390      for (unsigned i = 0; i != Size; ++i)
1391        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1392      Elts.push_back(Constant::getNullValue(EltTy));
1393      V = ConstantArray::get(ATy, Elts);
1394      break;
1395    }
1396    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1397      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1398      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1399      if (Opc < 0) {
1400        V = UndefValue::get(CurTy);  // Unknown binop.
1401      } else {
1402        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1403        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1404        unsigned Flags = 0;
1405        if (Record.size() >= 4) {
1406          if (Opc == Instruction::Add ||
1407              Opc == Instruction::Sub ||
1408              Opc == Instruction::Mul ||
1409              Opc == Instruction::Shl) {
1410            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1411              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1412            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1413              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1414          } else if (Opc == Instruction::SDiv ||
1415                     Opc == Instruction::UDiv ||
1416                     Opc == Instruction::LShr ||
1417                     Opc == Instruction::AShr) {
1418            if (Record[3] & (1 << bitc::PEO_EXACT))
1419              Flags |= SDivOperator::IsExact;
1420          }
1421        }
1422        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1423      }
1424      break;
1425    }
1426    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1427      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1428      int Opc = GetDecodedCastOpcode(Record[0]);
1429      if (Opc < 0) {
1430        V = UndefValue::get(CurTy);  // Unknown cast.
1431      } else {
1432        Type *OpTy = getTypeByID(Record[1]);
1433        if (!OpTy) return Error("Invalid CE_CAST record");
1434        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1435        V = ConstantExpr::getCast(Opc, Op, CurTy);
1436      }
1437      break;
1438    }
1439    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1440    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1441      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1442      SmallVector<Constant*, 16> Elts;
1443      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1444        Type *ElTy = getTypeByID(Record[i]);
1445        if (!ElTy) return Error("Invalid CE_GEP record");
1446        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1447      }
1448      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1449        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
1450          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1451      else
1452        V = ConstantExpr::getGetElementPtr(Elts[0],
1453          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1454      break;
1455    }
1456    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1457      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1458      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1459                                                              Type::getInt1Ty(Context)),
1460                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1461                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1462      break;
1463    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1464      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1465      VectorType *OpTy =
1466        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1467      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1468      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1469      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1470      V = ConstantExpr::getExtractElement(Op0, Op1);
1471      break;
1472    }
1473    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1474      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1475      if (Record.size() < 3 || OpTy == 0)
1476        return Error("Invalid CE_INSERTELT record");
1477      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1478      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1479                                                  OpTy->getElementType());
1480      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1481      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1482      break;
1483    }
1484    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1485      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1486      if (Record.size() < 3 || OpTy == 0)
1487        return Error("Invalid CE_SHUFFLEVEC record");
1488      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1489      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1490      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1491                                                 OpTy->getNumElements());
1492      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1493      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1494      break;
1495    }
1496    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1497      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1498      VectorType *OpTy =
1499        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1500      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1501        return Error("Invalid CE_SHUFVEC_EX record");
1502      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1503      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1504      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1505                                                 RTy->getNumElements());
1506      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1507      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1508      break;
1509    }
1510    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1511      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1512      Type *OpTy = getTypeByID(Record[0]);
1513      if (OpTy == 0) return Error("Invalid CE_CMP record");
1514      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1515      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1516
1517      if (OpTy->isFPOrFPVectorTy())
1518        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1519      else
1520        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1521      break;
1522    }
1523    case bitc::CST_CODE_INLINEASM: {
1524      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1525      std::string AsmStr, ConstrStr;
1526      bool HasSideEffects = Record[0] & 1;
1527      bool IsAlignStack = Record[0] >> 1;
1528      unsigned AsmStrSize = Record[1];
1529      if (2+AsmStrSize >= Record.size())
1530        return Error("Invalid INLINEASM record");
1531      unsigned ConstStrSize = Record[2+AsmStrSize];
1532      if (3+AsmStrSize+ConstStrSize > Record.size())
1533        return Error("Invalid INLINEASM record");
1534
1535      for (unsigned i = 0; i != AsmStrSize; ++i)
1536        AsmStr += (char)Record[2+i];
1537      for (unsigned i = 0; i != ConstStrSize; ++i)
1538        ConstrStr += (char)Record[3+AsmStrSize+i];
1539      PointerType *PTy = cast<PointerType>(CurTy);
1540      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1541                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1542      break;
1543    }
1544    case bitc::CST_CODE_BLOCKADDRESS:{
1545      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1546      Type *FnTy = getTypeByID(Record[0]);
1547      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1548      Function *Fn =
1549        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1550      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1551
1552      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1553                                                  Type::getInt8Ty(Context),
1554                                            false, GlobalValue::InternalLinkage,
1555                                                  0, "");
1556      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1557      V = FwdRef;
1558      break;
1559    }
1560    }
1561
1562    ValueList.AssignValue(V, NextCstNo);
1563    ++NextCstNo;
1564  }
1565
1566  if (NextCstNo != ValueList.size())
1567    return Error("Invalid constant reference!");
1568
1569  if (Stream.ReadBlockEnd())
1570    return Error("Error at end of constants block");
1571
1572  // Once all the constants have been read, go through and resolve forward
1573  // references.
1574  ValueList.ResolveConstantForwardRefs();
1575  return false;
1576}
1577
1578/// RememberAndSkipFunctionBody - When we see the block for a function body,
1579/// remember where it is and then skip it.  This lets us lazily deserialize the
1580/// functions.
1581bool BitcodeReader::RememberAndSkipFunctionBody() {
1582  // Get the function we are talking about.
1583  if (FunctionsWithBodies.empty())
1584    return Error("Insufficient function protos");
1585
1586  Function *Fn = FunctionsWithBodies.back();
1587  FunctionsWithBodies.pop_back();
1588
1589  // Save the current stream state.
1590  uint64_t CurBit = Stream.GetCurrentBitNo();
1591  DeferredFunctionInfo[Fn] = CurBit;
1592
1593  // Skip over the function block for now.
1594  if (Stream.SkipBlock())
1595    return Error("Malformed block record");
1596  return false;
1597}
1598
1599bool BitcodeReader::ParseModule() {
1600  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1601    return Error("Malformed block record");
1602
1603  SmallVector<uint64_t, 64> Record;
1604  std::vector<std::string> SectionTable;
1605  std::vector<std::string> GCTable;
1606
1607  // Read all the records for this module.
1608  while (!Stream.AtEndOfStream()) {
1609    unsigned Code = Stream.ReadCode();
1610    if (Code == bitc::END_BLOCK) {
1611      if (Stream.ReadBlockEnd())
1612        return Error("Error at end of module block");
1613
1614      // Patch the initializers for globals and aliases up.
1615      ResolveGlobalAndAliasInits();
1616      if (!GlobalInits.empty() || !AliasInits.empty())
1617        return Error("Malformed global initializer set");
1618      if (!FunctionsWithBodies.empty())
1619        return Error("Too few function bodies found");
1620
1621      // Look for intrinsic functions which need to be upgraded at some point
1622      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1623           FI != FE; ++FI) {
1624        Function* NewFn;
1625        if (UpgradeIntrinsicFunction(FI, NewFn))
1626          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1627      }
1628
1629      // Look for global variables which need to be renamed.
1630      for (Module::global_iterator
1631             GI = TheModule->global_begin(), GE = TheModule->global_end();
1632           GI != GE; ++GI)
1633        UpgradeGlobalVariable(GI);
1634
1635      // Force deallocation of memory for these vectors to favor the client that
1636      // want lazy deserialization.
1637      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1638      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1639      std::vector<Function*>().swap(FunctionsWithBodies);
1640      return false;
1641    }
1642
1643    if (Code == bitc::ENTER_SUBBLOCK) {
1644      switch (Stream.ReadSubBlockID()) {
1645      default:  // Skip unknown content.
1646        if (Stream.SkipBlock())
1647          return Error("Malformed block record");
1648        break;
1649      case bitc::BLOCKINFO_BLOCK_ID:
1650        if (Stream.ReadBlockInfoBlock())
1651          return Error("Malformed BlockInfoBlock");
1652        break;
1653      case bitc::PARAMATTR_BLOCK_ID:
1654        if (ParseAttributeBlock())
1655          return true;
1656        break;
1657      case bitc::TYPE_BLOCK_ID_NEW:
1658        if (ParseTypeTable())
1659          return true;
1660        break;
1661      case TYPE_BLOCK_ID_OLD_3_0:
1662        if (ParseOldTypeTable())
1663          return true;
1664        break;
1665      case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
1666        if (ParseOldTypeSymbolTable())
1667          return true;
1668        break;
1669      case bitc::VALUE_SYMTAB_BLOCK_ID:
1670        if (ParseValueSymbolTable())
1671          return true;
1672        break;
1673      case bitc::CONSTANTS_BLOCK_ID:
1674        if (ParseConstants() || ResolveGlobalAndAliasInits())
1675          return true;
1676        break;
1677      case bitc::METADATA_BLOCK_ID:
1678        if (ParseMetadata())
1679          return true;
1680        break;
1681      case bitc::FUNCTION_BLOCK_ID:
1682        // If this is the first function body we've seen, reverse the
1683        // FunctionsWithBodies list.
1684        if (!HasReversedFunctionsWithBodies) {
1685          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1686          HasReversedFunctionsWithBodies = true;
1687        }
1688
1689        if (RememberAndSkipFunctionBody())
1690          return true;
1691        break;
1692      }
1693      continue;
1694    }
1695
1696    if (Code == bitc::DEFINE_ABBREV) {
1697      Stream.ReadAbbrevRecord();
1698      continue;
1699    }
1700
1701    // Read a record.
1702    switch (Stream.ReadRecord(Code, Record)) {
1703    default: break;  // Default behavior, ignore unknown content.
1704    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1705      if (Record.size() < 1)
1706        return Error("Malformed MODULE_CODE_VERSION");
1707      // Only version #0 is supported so far.
1708      if (Record[0] != 0)
1709        return Error("Unknown bitstream version!");
1710      break;
1711    }
1712    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1713      std::string S;
1714      if (ConvertToString(Record, 0, S))
1715        return Error("Invalid MODULE_CODE_TRIPLE record");
1716      TheModule->setTargetTriple(S);
1717      break;
1718    }
1719    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1720      std::string S;
1721      if (ConvertToString(Record, 0, S))
1722        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1723      TheModule->setDataLayout(S);
1724      break;
1725    }
1726    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1727      std::string S;
1728      if (ConvertToString(Record, 0, S))
1729        return Error("Invalid MODULE_CODE_ASM record");
1730      TheModule->setModuleInlineAsm(S);
1731      break;
1732    }
1733    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1734      std::string S;
1735      if (ConvertToString(Record, 0, S))
1736        return Error("Invalid MODULE_CODE_DEPLIB record");
1737      // ANDROID: Ignore value, since we never used it anyways.
1738      // TheModule->addLibrary(S);
1739      break;
1740    }
1741    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1742      std::string S;
1743      if (ConvertToString(Record, 0, S))
1744        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1745      SectionTable.push_back(S);
1746      break;
1747    }
1748    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1749      std::string S;
1750      if (ConvertToString(Record, 0, S))
1751        return Error("Invalid MODULE_CODE_GCNAME record");
1752      GCTable.push_back(S);
1753      break;
1754    }
1755    // GLOBALVAR: [pointer type, isconst, initid,
1756    //             linkage, alignment, section, visibility, threadlocal,
1757    //             unnamed_addr]
1758    case bitc::MODULE_CODE_GLOBALVAR: {
1759      if (Record.size() < 6)
1760        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1761      Type *Ty = getTypeByID(Record[0]);
1762      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1763      if (!Ty->isPointerTy())
1764        return Error("Global not a pointer type!");
1765      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1766      Ty = cast<PointerType>(Ty)->getElementType();
1767
1768      bool isConstant = Record[1];
1769      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1770      unsigned Alignment = (1 << Record[4]) >> 1;
1771      std::string Section;
1772      if (Record[5]) {
1773        if (Record[5]-1 >= SectionTable.size())
1774          return Error("Invalid section ID");
1775        Section = SectionTable[Record[5]-1];
1776      }
1777      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1778      if (Record.size() > 6)
1779        Visibility = GetDecodedVisibility(Record[6]);
1780
1781      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1782      if (Record.size() > 7)
1783        TLM = GetDecodedThreadLocalMode(Record[7]);
1784
1785      bool UnnamedAddr = false;
1786      if (Record.size() > 8)
1787        UnnamedAddr = Record[8];
1788
1789      GlobalVariable *NewGV =
1790        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1791                           TLM, AddressSpace);
1792      NewGV->setAlignment(Alignment);
1793      if (!Section.empty())
1794        NewGV->setSection(Section);
1795      NewGV->setVisibility(Visibility);
1796      NewGV->setUnnamedAddr(UnnamedAddr);
1797
1798      ValueList.push_back(NewGV);
1799
1800      // Remember which value to use for the global initializer.
1801      if (unsigned InitID = Record[2])
1802        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1803      break;
1804    }
1805    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1806    //             alignment, section, visibility, gc, unnamed_addr]
1807    case bitc::MODULE_CODE_FUNCTION: {
1808      if (Record.size() < 8)
1809        return Error("Invalid MODULE_CODE_FUNCTION record");
1810      Type *Ty = getTypeByID(Record[0]);
1811      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1812      if (!Ty->isPointerTy())
1813        return Error("Function not a pointer type!");
1814      FunctionType *FTy =
1815        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1816      if (!FTy)
1817        return Error("Function not a pointer to function type!");
1818
1819      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1820                                        "", TheModule);
1821
1822      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1823      bool isProto = Record[2];
1824      Func->setLinkage(GetDecodedLinkage(Record[3]));
1825      Func->setAttributes(getAttributes(Record[4]));
1826
1827      Func->setAlignment((1 << Record[5]) >> 1);
1828      if (Record[6]) {
1829        if (Record[6]-1 >= SectionTable.size())
1830          return Error("Invalid section ID");
1831        Func->setSection(SectionTable[Record[6]-1]);
1832      }
1833      Func->setVisibility(GetDecodedVisibility(Record[7]));
1834      if (Record.size() > 8 && Record[8]) {
1835        if (Record[8]-1 > GCTable.size())
1836          return Error("Invalid GC ID");
1837        Func->setGC(GCTable[Record[8]-1].c_str());
1838      }
1839      bool UnnamedAddr = false;
1840      if (Record.size() > 9)
1841        UnnamedAddr = Record[9];
1842      Func->setUnnamedAddr(UnnamedAddr);
1843      ValueList.push_back(Func);
1844
1845      // If this is a function with a body, remember the prototype we are
1846      // creating now, so that we can match up the body with them later.
1847      if (!isProto)
1848        FunctionsWithBodies.push_back(Func);
1849      break;
1850    }
1851    // ALIAS: [alias type, aliasee val#, linkage]
1852    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1853    case bitc::MODULE_CODE_ALIAS: {
1854      if (Record.size() < 3)
1855        return Error("Invalid MODULE_ALIAS record");
1856      Type *Ty = getTypeByID(Record[0]);
1857      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1858      if (!Ty->isPointerTy())
1859        return Error("Function not a pointer type!");
1860
1861      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1862                                           "", 0, TheModule);
1863      // Old bitcode files didn't have visibility field.
1864      if (Record.size() > 3)
1865        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1866      ValueList.push_back(NewGA);
1867      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1868      break;
1869    }
1870    /// MODULE_CODE_PURGEVALS: [numvals]
1871    case bitc::MODULE_CODE_PURGEVALS:
1872      // Trim down the value list to the specified size.
1873      if (Record.size() < 1 || Record[0] > ValueList.size())
1874        return Error("Invalid MODULE_PURGEVALS record");
1875      ValueList.shrinkTo(Record[0]);
1876      break;
1877    }
1878    Record.clear();
1879  }
1880
1881  return Error("Premature end of bitstream");
1882}
1883
1884bool BitcodeReader::ParseBitcodeInto(Module *M) {
1885  TheModule = 0;
1886
1887  const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1888  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1889
1890  if (Buffer->getBufferSize() & 3) {
1891    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1892      return Error("Invalid bitcode signature");
1893    else
1894      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1895  }
1896
1897  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1898  // The magic number is 0x0B17C0DE stored in little endian.
1899  if (isBitcodeWrapper(BufPtr, BufEnd))
1900    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
1901      return Error("Invalid bitcode wrapper header");
1902
1903  StreamFile.init(BufPtr, BufEnd);
1904  Stream.init(StreamFile);
1905
1906  // Sniff for the signature.
1907  if (Stream.Read(8) != 'B' ||
1908      Stream.Read(8) != 'C' ||
1909      Stream.Read(4) != 0x0 ||
1910      Stream.Read(4) != 0xC ||
1911      Stream.Read(4) != 0xE ||
1912      Stream.Read(4) != 0xD)
1913    return Error("Invalid bitcode signature");
1914
1915  // We expect a number of well-defined blocks, though we don't necessarily
1916  // need to understand them all.
1917  while (!Stream.AtEndOfStream()) {
1918    unsigned Code = Stream.ReadCode();
1919
1920    if (Code != bitc::ENTER_SUBBLOCK) {
1921
1922      // The ranlib in xcode 4 will align archive members by appending newlines to the
1923      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1924      // ignore these final 4 bytes :-(
1925      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1926          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1927          Stream.AtEndOfStream())
1928        return false;
1929
1930      return Error("Invalid record at top-level");
1931    }
1932
1933    unsigned BlockID = Stream.ReadSubBlockID();
1934
1935    // We only know the MODULE subblock ID.
1936    switch (BlockID) {
1937    case bitc::BLOCKINFO_BLOCK_ID:
1938      if (Stream.ReadBlockInfoBlock())
1939        return Error("Malformed BlockInfoBlock");
1940      break;
1941    case bitc::MODULE_BLOCK_ID:
1942      // Reject multiple MODULE_BLOCK's in a single bitstream.
1943      if (TheModule)
1944        return Error("Multiple MODULE_BLOCKs in same stream");
1945      TheModule = M;
1946      if (ParseModule())
1947        return true;
1948      break;
1949    default:
1950      if (Stream.SkipBlock())
1951        return Error("Malformed block record");
1952      break;
1953    }
1954  }
1955
1956  return false;
1957}
1958
1959bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1960  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1961    return Error("Malformed block record");
1962
1963  SmallVector<uint64_t, 64> Record;
1964
1965  // Read all the records for this module.
1966  while (!Stream.AtEndOfStream()) {
1967    unsigned Code = Stream.ReadCode();
1968    if (Code == bitc::END_BLOCK) {
1969      if (Stream.ReadBlockEnd())
1970        return Error("Error at end of module block");
1971
1972      return false;
1973    }
1974
1975    if (Code == bitc::ENTER_SUBBLOCK) {
1976      switch (Stream.ReadSubBlockID()) {
1977      default:  // Skip unknown content.
1978        if (Stream.SkipBlock())
1979          return Error("Malformed block record");
1980        break;
1981      }
1982      continue;
1983    }
1984
1985    if (Code == bitc::DEFINE_ABBREV) {
1986      Stream.ReadAbbrevRecord();
1987      continue;
1988    }
1989
1990    // Read a record.
1991    switch (Stream.ReadRecord(Code, Record)) {
1992    default: break;  // Default behavior, ignore unknown content.
1993    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1994      if (Record.size() < 1)
1995        return Error("Malformed MODULE_CODE_VERSION");
1996      // Only version #0 is supported so far.
1997      if (Record[0] != 0)
1998        return Error("Unknown bitstream version!");
1999      break;
2000    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2001      std::string S;
2002      if (ConvertToString(Record, 0, S))
2003        return Error("Invalid MODULE_CODE_TRIPLE record");
2004      Triple = S;
2005      break;
2006    }
2007    }
2008    Record.clear();
2009  }
2010
2011  return Error("Premature end of bitstream");
2012}
2013
2014bool BitcodeReader::ParseTriple(std::string &Triple) {
2015  if (Buffer->getBufferSize() & 3)
2016    return Error("Bitcode stream should be a multiple of 4 bytes in length");
2017
2018  const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
2019  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2020
2021  // If we have a wrapper header, parse it and ignore the non-bc file contents.
2022  // The magic number is 0x0B17C0DE stored in little endian.
2023  if (isBitcodeWrapper(BufPtr, BufEnd))
2024    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
2025      return Error("Invalid bitcode wrapper header");
2026
2027  StreamFile.init(BufPtr, BufEnd);
2028  Stream.init(StreamFile);
2029
2030  // Sniff for the signature.
2031  if (Stream.Read(8) != 'B' ||
2032      Stream.Read(8) != 'C' ||
2033      Stream.Read(4) != 0x0 ||
2034      Stream.Read(4) != 0xC ||
2035      Stream.Read(4) != 0xE ||
2036      Stream.Read(4) != 0xD)
2037    return Error("Invalid bitcode signature");
2038
2039  // We expect a number of well-defined blocks, though we don't necessarily
2040  // need to understand them all.
2041  while (!Stream.AtEndOfStream()) {
2042    unsigned Code = Stream.ReadCode();
2043
2044    if (Code != bitc::ENTER_SUBBLOCK)
2045      return Error("Invalid record at top-level");
2046
2047    unsigned BlockID = Stream.ReadSubBlockID();
2048
2049    // We only know the MODULE subblock ID.
2050    switch (BlockID) {
2051    case bitc::MODULE_BLOCK_ID:
2052      if (ParseModuleTriple(Triple))
2053        return true;
2054      break;
2055    default:
2056      if (Stream.SkipBlock())
2057        return Error("Malformed block record");
2058      break;
2059    }
2060  }
2061
2062  return false;
2063}
2064
2065/// ParseMetadataAttachment - Parse metadata attachments.
2066bool BitcodeReader::ParseMetadataAttachment() {
2067  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2068    return Error("Malformed block record");
2069
2070  SmallVector<uint64_t, 64> Record;
2071  while(1) {
2072    unsigned Code = Stream.ReadCode();
2073    if (Code == bitc::END_BLOCK) {
2074      if (Stream.ReadBlockEnd())
2075        return Error("Error at end of PARAMATTR block");
2076      break;
2077    }
2078    if (Code == bitc::DEFINE_ABBREV) {
2079      Stream.ReadAbbrevRecord();
2080      continue;
2081    }
2082    // Read a metadata attachment record.
2083    Record.clear();
2084    switch (Stream.ReadRecord(Code, Record)) {
2085    default:  // Default behavior: ignore.
2086      break;
2087    case METADATA_ATTACHMENT_2_7:
2088      LLVM2_7MetadataDetected = true;
2089    case bitc::METADATA_ATTACHMENT: {
2090      unsigned RecordLength = Record.size();
2091      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2092        return Error ("Invalid METADATA_ATTACHMENT reader!");
2093      Instruction *Inst = InstructionList[Record[0]];
2094      for (unsigned i = 1; i != RecordLength; i = i+2) {
2095        unsigned Kind = Record[i];
2096        DenseMap<unsigned, unsigned>::iterator I =
2097          MDKindMap.find(Kind);
2098        if (I == MDKindMap.end())
2099          return Error("Invalid metadata kind ID");
2100        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2101        Inst->setMetadata(I->second, cast<MDNode>(Node));
2102      }
2103      break;
2104    }
2105    }
2106  }
2107  return false;
2108}
2109
2110/// ParseFunctionBody - Lazily parse the specified function body block.
2111bool BitcodeReader::ParseFunctionBody(Function *F) {
2112  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2113    return Error("Malformed block record");
2114
2115  InstructionList.clear();
2116  unsigned ModuleValueListSize = ValueList.size();
2117  unsigned ModuleMDValueListSize = MDValueList.size();
2118
2119  // Add all the function arguments to the value table.
2120  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2121    ValueList.push_back(I);
2122
2123  unsigned NextValueNo = ValueList.size();
2124  BasicBlock *CurBB = 0;
2125  unsigned CurBBNo = 0;
2126
2127  DebugLoc LastLoc;
2128
2129  // Read all the records.
2130  SmallVector<uint64_t, 64> Record;
2131  while (1) {
2132    unsigned Code = Stream.ReadCode();
2133    if (Code == bitc::END_BLOCK) {
2134      if (Stream.ReadBlockEnd())
2135        return Error("Error at end of function block");
2136      break;
2137    }
2138
2139    if (Code == bitc::ENTER_SUBBLOCK) {
2140      switch (Stream.ReadSubBlockID()) {
2141      default:  // Skip unknown content.
2142        if (Stream.SkipBlock())
2143          return Error("Malformed block record");
2144        break;
2145      case bitc::CONSTANTS_BLOCK_ID:
2146        if (ParseConstants()) return true;
2147        NextValueNo = ValueList.size();
2148        break;
2149      case bitc::VALUE_SYMTAB_BLOCK_ID:
2150        if (ParseValueSymbolTable()) return true;
2151        break;
2152      case bitc::METADATA_ATTACHMENT_ID:
2153        if (ParseMetadataAttachment()) return true;
2154        break;
2155      case bitc::METADATA_BLOCK_ID:
2156        if (ParseMetadata()) return true;
2157        break;
2158      }
2159      continue;
2160    }
2161
2162    if (Code == bitc::DEFINE_ABBREV) {
2163      Stream.ReadAbbrevRecord();
2164      continue;
2165    }
2166
2167    // Read a record.
2168    Record.clear();
2169    Instruction *I = 0;
2170    unsigned BitCode = Stream.ReadRecord(Code, Record);
2171    switch (BitCode) {
2172    default: // Default behavior: reject
2173      return Error("Unknown instruction");
2174    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2175      if (Record.size() < 1 || Record[0] == 0)
2176        return Error("Invalid DECLAREBLOCKS record");
2177      // Create all the basic blocks for the function.
2178      FunctionBBs.resize(Record[0]);
2179      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2180        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2181      CurBB = FunctionBBs[0];
2182      continue;
2183
2184    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2185      // This record indicates that the last instruction is at the same
2186      // location as the previous instruction with a location.
2187      I = 0;
2188
2189      // Get the last instruction emitted.
2190      if (CurBB && !CurBB->empty())
2191        I = &CurBB->back();
2192      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2193               !FunctionBBs[CurBBNo-1]->empty())
2194        I = &FunctionBBs[CurBBNo-1]->back();
2195
2196      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2197      I->setDebugLoc(LastLoc);
2198      I = 0;
2199      continue;
2200
2201    case FUNC_CODE_DEBUG_LOC_2_7:
2202      LLVM2_7MetadataDetected = true;
2203    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2204      I = 0;     // Get the last instruction emitted.
2205      if (CurBB && !CurBB->empty())
2206        I = &CurBB->back();
2207      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2208               !FunctionBBs[CurBBNo-1]->empty())
2209        I = &FunctionBBs[CurBBNo-1]->back();
2210      if (I == 0 || Record.size() < 4)
2211        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2212
2213      unsigned Line = Record[0], Col = Record[1];
2214      unsigned ScopeID = Record[2], IAID = Record[3];
2215
2216      MDNode *Scope = 0, *IA = 0;
2217      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2218      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2219      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2220      I->setDebugLoc(LastLoc);
2221      I = 0;
2222      continue;
2223    }
2224
2225    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2226      unsigned OpNum = 0;
2227      Value *LHS, *RHS;
2228      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2229          getValue(Record, OpNum, LHS->getType(), RHS) ||
2230          OpNum+1 > Record.size())
2231        return Error("Invalid BINOP record");
2232
2233      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2234      if (Opc == -1) return Error("Invalid BINOP record");
2235      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2236      InstructionList.push_back(I);
2237      if (OpNum < Record.size()) {
2238        if (Opc == Instruction::Add ||
2239            Opc == Instruction::Sub ||
2240            Opc == Instruction::Mul ||
2241            Opc == Instruction::Shl) {
2242          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2243            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2244          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2245            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2246        } else if (Opc == Instruction::SDiv ||
2247                   Opc == Instruction::UDiv ||
2248                   Opc == Instruction::LShr ||
2249                   Opc == Instruction::AShr) {
2250          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2251            cast<BinaryOperator>(I)->setIsExact(true);
2252        }
2253      }
2254      break;
2255    }
2256    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2257      unsigned OpNum = 0;
2258      Value *Op;
2259      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2260          OpNum+2 != Record.size())
2261        return Error("Invalid CAST record");
2262
2263      Type *ResTy = getTypeByID(Record[OpNum]);
2264      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2265      if (Opc == -1 || ResTy == 0)
2266        return Error("Invalid CAST record");
2267      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2268      InstructionList.push_back(I);
2269      break;
2270    }
2271    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2272    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2273      unsigned OpNum = 0;
2274      Value *BasePtr;
2275      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2276        return Error("Invalid GEP record");
2277
2278      SmallVector<Value*, 16> GEPIdx;
2279      while (OpNum != Record.size()) {
2280        Value *Op;
2281        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2282          return Error("Invalid GEP record");
2283        GEPIdx.push_back(Op);
2284      }
2285
2286      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2287      InstructionList.push_back(I);
2288      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2289        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2290      break;
2291    }
2292
2293    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2294                                       // EXTRACTVAL: [opty, opval, n x indices]
2295      unsigned OpNum = 0;
2296      Value *Agg;
2297      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2298        return Error("Invalid EXTRACTVAL record");
2299
2300      SmallVector<unsigned, 4> EXTRACTVALIdx;
2301      for (unsigned RecSize = Record.size();
2302           OpNum != RecSize; ++OpNum) {
2303        uint64_t Index = Record[OpNum];
2304        if ((unsigned)Index != Index)
2305          return Error("Invalid EXTRACTVAL index");
2306        EXTRACTVALIdx.push_back((unsigned)Index);
2307      }
2308
2309      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2310      InstructionList.push_back(I);
2311      break;
2312    }
2313
2314    case bitc::FUNC_CODE_INST_INSERTVAL: {
2315                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2316      unsigned OpNum = 0;
2317      Value *Agg;
2318      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2319        return Error("Invalid INSERTVAL record");
2320      Value *Val;
2321      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2322        return Error("Invalid INSERTVAL record");
2323
2324      SmallVector<unsigned, 4> INSERTVALIdx;
2325      for (unsigned RecSize = Record.size();
2326           OpNum != RecSize; ++OpNum) {
2327        uint64_t Index = Record[OpNum];
2328        if ((unsigned)Index != Index)
2329          return Error("Invalid INSERTVAL index");
2330        INSERTVALIdx.push_back((unsigned)Index);
2331      }
2332
2333      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2334      InstructionList.push_back(I);
2335      break;
2336    }
2337
2338    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2339      // obsolete form of select
2340      // handles select i1 ... in old bitcode
2341      unsigned OpNum = 0;
2342      Value *TrueVal, *FalseVal, *Cond;
2343      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2344          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2345          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2346        return Error("Invalid SELECT record");
2347
2348      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2349      InstructionList.push_back(I);
2350      break;
2351    }
2352
2353    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2354      // new form of select
2355      // handles select i1 or select [N x i1]
2356      unsigned OpNum = 0;
2357      Value *TrueVal, *FalseVal, *Cond;
2358      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2359          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2360          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2361        return Error("Invalid SELECT record");
2362
2363      // select condition can be either i1 or [N x i1]
2364      if (VectorType* vector_type =
2365          dyn_cast<VectorType>(Cond->getType())) {
2366        // expect <n x i1>
2367        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2368          return Error("Invalid SELECT condition type");
2369      } else {
2370        // expect i1
2371        if (Cond->getType() != Type::getInt1Ty(Context))
2372          return Error("Invalid SELECT condition type");
2373      }
2374
2375      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2376      InstructionList.push_back(I);
2377      break;
2378    }
2379
2380    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2381      unsigned OpNum = 0;
2382      Value *Vec, *Idx;
2383      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2384          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2385        return Error("Invalid EXTRACTELT record");
2386      I = ExtractElementInst::Create(Vec, Idx);
2387      InstructionList.push_back(I);
2388      break;
2389    }
2390
2391    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2392      unsigned OpNum = 0;
2393      Value *Vec, *Elt, *Idx;
2394      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2395          getValue(Record, OpNum,
2396                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2397          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2398        return Error("Invalid INSERTELT record");
2399      I = InsertElementInst::Create(Vec, Elt, Idx);
2400      InstructionList.push_back(I);
2401      break;
2402    }
2403
2404    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2405      unsigned OpNum = 0;
2406      Value *Vec1, *Vec2, *Mask;
2407      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2408          getValue(Record, OpNum, Vec1->getType(), Vec2))
2409        return Error("Invalid SHUFFLEVEC record");
2410
2411      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2412        return Error("Invalid SHUFFLEVEC record");
2413      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2414      InstructionList.push_back(I);
2415      break;
2416    }
2417
2418    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2419      // Old form of ICmp/FCmp returning bool
2420      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2421      // both legal on vectors but had different behaviour.
2422    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2423      // FCmp/ICmp returning bool or vector of bool
2424
2425      unsigned OpNum = 0;
2426      Value *LHS, *RHS;
2427      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2428          getValue(Record, OpNum, LHS->getType(), RHS) ||
2429          OpNum+1 != Record.size())
2430        return Error("Invalid CMP record");
2431
2432      if (LHS->getType()->isFPOrFPVectorTy())
2433        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2434      else
2435        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2436      InstructionList.push_back(I);
2437      break;
2438    }
2439
2440    case FUNC_CODE_INST_GETRESULT_2_7: {
2441      if (Record.size() != 2) {
2442        return Error("Invalid GETRESULT record");
2443      }
2444      unsigned OpNum = 0;
2445      Value *Op;
2446      getValueTypePair(Record, OpNum, NextValueNo, Op);
2447      unsigned Index = Record[1];
2448      I = ExtractValueInst::Create(Op, Index);
2449      InstructionList.push_back(I);
2450      break;
2451    }
2452
2453    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2454      {
2455        unsigned Size = Record.size();
2456        if (Size == 0) {
2457          I = ReturnInst::Create(Context);
2458          InstructionList.push_back(I);
2459          break;
2460        }
2461
2462        unsigned OpNum = 0;
2463        Value *Op = NULL;
2464        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2465          return Error("Invalid RET record");
2466        if (OpNum != Record.size())
2467          return Error("Invalid RET record");
2468
2469        I = ReturnInst::Create(Context, Op);
2470        InstructionList.push_back(I);
2471        break;
2472      }
2473    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2474      if (Record.size() != 1 && Record.size() != 3)
2475        return Error("Invalid BR record");
2476      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2477      if (TrueDest == 0)
2478        return Error("Invalid BR record");
2479
2480      if (Record.size() == 1) {
2481        I = BranchInst::Create(TrueDest);
2482        InstructionList.push_back(I);
2483      }
2484      else {
2485        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2486        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2487        if (FalseDest == 0 || Cond == 0)
2488          return Error("Invalid BR record");
2489        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2490        InstructionList.push_back(I);
2491      }
2492      break;
2493    }
2494    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2495      if (Record.size() < 3 || (Record.size() & 1) == 0)
2496        return Error("Invalid SWITCH record");
2497      Type *OpTy = getTypeByID(Record[0]);
2498      Value *Cond = getFnValueByID(Record[1], OpTy);
2499      BasicBlock *Default = getBasicBlock(Record[2]);
2500      if (OpTy == 0 || Cond == 0 || Default == 0)
2501        return Error("Invalid SWITCH record");
2502      unsigned NumCases = (Record.size()-3)/2;
2503      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2504      InstructionList.push_back(SI);
2505      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2506        ConstantInt *CaseVal =
2507          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2508        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2509        if (CaseVal == 0 || DestBB == 0) {
2510          delete SI;
2511          return Error("Invalid SWITCH record!");
2512        }
2513        SI->addCase(CaseVal, DestBB);
2514      }
2515      I = SI;
2516      break;
2517    }
2518    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2519      if (Record.size() < 2)
2520        return Error("Invalid INDIRECTBR record");
2521      Type *OpTy = getTypeByID(Record[0]);
2522      Value *Address = getFnValueByID(Record[1], OpTy);
2523      if (OpTy == 0 || Address == 0)
2524        return Error("Invalid INDIRECTBR record");
2525      unsigned NumDests = Record.size()-2;
2526      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2527      InstructionList.push_back(IBI);
2528      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2529        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2530          IBI->addDestination(DestBB);
2531        } else {
2532          delete IBI;
2533          return Error("Invalid INDIRECTBR record!");
2534        }
2535      }
2536      I = IBI;
2537      break;
2538    }
2539
2540    case bitc::FUNC_CODE_INST_INVOKE: {
2541      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2542      if (Record.size() < 4) return Error("Invalid INVOKE record");
2543      AttributeSet PAL = getAttributes(Record[0]);
2544      unsigned CCInfo = Record[1];
2545      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2546      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2547
2548      unsigned OpNum = 4;
2549      Value *Callee;
2550      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2551        return Error("Invalid INVOKE record");
2552
2553      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2554      FunctionType *FTy = !CalleeTy ? 0 :
2555        dyn_cast<FunctionType>(CalleeTy->getElementType());
2556
2557      // Check that the right number of fixed parameters are here.
2558      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2559          Record.size() < OpNum+FTy->getNumParams())
2560        return Error("Invalid INVOKE record");
2561
2562      SmallVector<Value*, 16> Ops;
2563      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2564        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2565        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2566      }
2567
2568      if (!FTy->isVarArg()) {
2569        if (Record.size() != OpNum)
2570          return Error("Invalid INVOKE record");
2571      } else {
2572        // Read type/value pairs for varargs params.
2573        while (OpNum != Record.size()) {
2574          Value *Op;
2575          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2576            return Error("Invalid INVOKE record");
2577          Ops.push_back(Op);
2578        }
2579      }
2580
2581      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2582      InstructionList.push_back(I);
2583      cast<InvokeInst>(I)->setCallingConv(
2584        static_cast<CallingConv::ID>(CCInfo));
2585      cast<InvokeInst>(I)->setAttributes(PAL);
2586      break;
2587    }
2588    case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
2589      // 'unwind' instruction has been removed in LLVM 3.1
2590      // Replace 'unwind' with 'landingpad' and 'resume'.
2591      Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
2592                                    Type::getInt32Ty(Context), NULL);
2593      Constant *PersFn =
2594        F->getParent()->
2595        getOrInsertFunction("__gcc_personality_v0",
2596                          FunctionType::get(Type::getInt32Ty(Context), true));
2597
2598      LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
2599      LP->setCleanup(true);
2600
2601      CurBB->getInstList().push_back(LP);
2602      I = ResumeInst::Create(LP);
2603      InstructionList.push_back(I);
2604      break;
2605    }
2606    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2607      I = new UnreachableInst(Context);
2608      InstructionList.push_back(I);
2609      break;
2610    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2611      if (Record.size() < 1 || ((Record.size()-1)&1))
2612        return Error("Invalid PHI record");
2613      Type *Ty = getTypeByID(Record[0]);
2614      if (!Ty) return Error("Invalid PHI record");
2615
2616      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2617      InstructionList.push_back(PN);
2618
2619      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2620        Value *V = getFnValueByID(Record[1+i], Ty);
2621        BasicBlock *BB = getBasicBlock(Record[2+i]);
2622        if (!V || !BB) return Error("Invalid PHI record");
2623        PN->addIncoming(V, BB);
2624      }
2625      I = PN;
2626      break;
2627    }
2628
2629    case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
2630      // Autoupgrade malloc instruction to malloc call.
2631      // FIXME: Remove in LLVM 3.0.
2632      if (Record.size() < 3) {
2633        return Error("Invalid MALLOC record");
2634      }
2635      PointerType *Ty =
2636          dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2637      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2638      if (!Ty || !Size) return Error("Invalid MALLOC record");
2639      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2640      Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2641      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2642      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2643      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2644                                 AllocSize, Size, NULL);
2645      InstructionList.push_back(I);
2646      break;
2647    }
2648    case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
2649      unsigned OpNum = 0;
2650      Value *Op;
2651      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2652          OpNum != Record.size()) {
2653        return Error("Invalid FREE record");
2654      }
2655      if (!CurBB) return Error("Invalid free instruction with no BB");
2656      I = CallInst::CreateFree(Op, CurBB);
2657      InstructionList.push_back(I);
2658      break;
2659    }
2660
2661    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2662      // For backward compatibility, tolerate a lack of an opty, and use i32.
2663      // Remove this in LLVM 3.0.
2664      if (Record.size() < 3 || Record.size() > 4) {
2665        return Error("Invalid ALLOCA record");
2666      }
2667      unsigned OpNum = 0;
2668      PointerType *Ty =
2669        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2670      Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2671                                              Type::getInt32Ty(Context);
2672      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2673      unsigned Align = Record[OpNum++];
2674      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2675      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2676      InstructionList.push_back(I);
2677      break;
2678    }
2679    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2680      unsigned OpNum = 0;
2681      Value *Op;
2682      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2683          OpNum+2 != Record.size())
2684        return Error("Invalid LOAD record");
2685
2686      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2687      InstructionList.push_back(I);
2688      break;
2689    }
2690    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2691      unsigned OpNum = 0;
2692      Value *Val, *Ptr;
2693      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2694          getValue(Record, OpNum,
2695                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2696          OpNum+2 != Record.size())
2697        return Error("Invalid STORE record");
2698
2699      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2700      InstructionList.push_back(I);
2701      break;
2702    }
2703    case FUNC_CODE_INST_STORE_2_7: {
2704      unsigned OpNum = 0;
2705      Value *Val, *Ptr;
2706      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2707          getValue(Record, OpNum,
2708                   PointerType::getUnqual(Val->getType()), Ptr)||
2709          OpNum+2 != Record.size()) {
2710        return Error("Invalid STORE record");
2711      }
2712      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2713      InstructionList.push_back(I);
2714      break;
2715    }
2716    case FUNC_CODE_INST_CALL_2_7:
2717      LLVM2_7MetadataDetected = true;
2718    case bitc::FUNC_CODE_INST_CALL: {
2719      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2720      if (Record.size() < 3)
2721        return Error("Invalid CALL record");
2722
2723      AttributeSet PAL = getAttributes(Record[0]);
2724      unsigned CCInfo = Record[1];
2725
2726      unsigned OpNum = 2;
2727      Value *Callee;
2728      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2729        return Error("Invalid CALL record");
2730
2731      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2732      FunctionType *FTy = 0;
2733      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2734      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2735        return Error("Invalid CALL record");
2736
2737      SmallVector<Value*, 16> Args;
2738      // Read the fixed params.
2739      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2740        if (FTy->getParamType(i)->isLabelTy())
2741          Args.push_back(getBasicBlock(Record[OpNum]));
2742        else
2743          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2744        if (Args.back() == 0) return Error("Invalid CALL record");
2745      }
2746
2747      // Read type/value pairs for varargs params.
2748      if (!FTy->isVarArg()) {
2749        if (OpNum != Record.size())
2750          return Error("Invalid CALL record");
2751      } else {
2752        while (OpNum != Record.size()) {
2753          Value *Op;
2754          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2755            return Error("Invalid CALL record");
2756          Args.push_back(Op);
2757        }
2758      }
2759
2760      I = CallInst::Create(Callee, Args);
2761      InstructionList.push_back(I);
2762      cast<CallInst>(I)->setCallingConv(
2763        static_cast<CallingConv::ID>(CCInfo>>1));
2764      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2765      cast<CallInst>(I)->setAttributes(PAL);
2766      break;
2767    }
2768    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2769      if (Record.size() < 3)
2770        return Error("Invalid VAARG record");
2771      Type *OpTy = getTypeByID(Record[0]);
2772      Value *Op = getFnValueByID(Record[1], OpTy);
2773      Type *ResTy = getTypeByID(Record[2]);
2774      if (!OpTy || !Op || !ResTy)
2775        return Error("Invalid VAARG record");
2776      I = new VAArgInst(Op, ResTy);
2777      InstructionList.push_back(I);
2778      break;
2779    }
2780    }
2781
2782    // Add instruction to end of current BB.  If there is no current BB, reject
2783    // this file.
2784    if (CurBB == 0) {
2785      delete I;
2786      return Error("Invalid instruction with no BB");
2787    }
2788    CurBB->getInstList().push_back(I);
2789
2790    // If this was a terminator instruction, move to the next block.
2791    if (isa<TerminatorInst>(I)) {
2792      ++CurBBNo;
2793      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2794    }
2795
2796    // Non-void values get registered in the value table for future use.
2797    if (I && !I->getType()->isVoidTy())
2798      ValueList.AssignValue(I, NextValueNo++);
2799  }
2800
2801  // Check the function list for unresolved values.
2802  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2803    if (A->getParent() == 0) {
2804      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2805      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2806        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2807          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2808          delete A;
2809        }
2810      }
2811      return Error("Never resolved value found in function!");
2812    }
2813  }
2814
2815  // FIXME: Check for unresolved forward-declared metadata references
2816  // and clean up leaks.
2817
2818  // See if anything took the address of blocks in this function.  If so,
2819  // resolve them now.
2820  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2821    BlockAddrFwdRefs.find(F);
2822  if (BAFRI != BlockAddrFwdRefs.end()) {
2823    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2824    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2825      unsigned BlockIdx = RefList[i].first;
2826      if (BlockIdx >= FunctionBBs.size())
2827        return Error("Invalid blockaddress block #");
2828
2829      GlobalVariable *FwdRef = RefList[i].second;
2830      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2831      FwdRef->eraseFromParent();
2832    }
2833
2834    BlockAddrFwdRefs.erase(BAFRI);
2835  }
2836
2837  unsigned NewMDValueListSize = MDValueList.size();
2838  // Trim the value list down to the size it was before we parsed this function.
2839  ValueList.shrinkTo(ModuleValueListSize);
2840  MDValueList.shrinkTo(ModuleMDValueListSize);
2841
2842  if (LLVM2_7MetadataDetected) {
2843    MDValueList.resize(NewMDValueListSize);
2844  }
2845
2846  std::vector<BasicBlock*>().swap(FunctionBBs);
2847  return false;
2848}
2849
2850//===----------------------------------------------------------------------===//
2851// GVMaterializer implementation
2852//===----------------------------------------------------------------------===//
2853
2854
2855bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2856  if (const Function *F = dyn_cast<Function>(GV)) {
2857    return F->isDeclaration() &&
2858      DeferredFunctionInfo.count(const_cast<Function*>(F));
2859  }
2860  return false;
2861}
2862
2863bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2864  Function *F = dyn_cast<Function>(GV);
2865  // If it's not a function or is already material, ignore the request.
2866  if (!F || !F->isMaterializable()) return false;
2867
2868  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2869  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2870
2871  // Move the bit stream to the saved position of the deferred function body.
2872  Stream.JumpToBit(DFII->second);
2873
2874  if (ParseFunctionBody(F)) {
2875    if (ErrInfo) *ErrInfo = ErrorString;
2876    return true;
2877  }
2878
2879  // Upgrade any old intrinsic calls in the function.
2880  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2881       E = UpgradedIntrinsics.end(); I != E; ++I) {
2882    if (I->first != I->second) {
2883      for (Value::use_iterator UI = I->first->use_begin(),
2884           UE = I->first->use_end(); UI != UE; ) {
2885        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2886          UpgradeIntrinsicCall(CI, I->second);
2887      }
2888    }
2889  }
2890
2891  return false;
2892}
2893
2894bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2895  const Function *F = dyn_cast<Function>(GV);
2896  if (!F || F->isDeclaration())
2897    return false;
2898  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2899}
2900
2901void BitcodeReader::Dematerialize(GlobalValue *GV) {
2902  Function *F = dyn_cast<Function>(GV);
2903  // If this function isn't dematerializable, this is a noop.
2904  if (!F || !isDematerializable(F))
2905    return;
2906
2907  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2908
2909  // Just forget the function body, we can remat it later.
2910  F->deleteBody();
2911}
2912
2913
2914bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2915  assert(M == TheModule &&
2916         "Can only Materialize the Module this BitcodeReader is attached to.");
2917  // Iterate over the module, deserializing any functions that are still on
2918  // disk.
2919  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2920       F != E; ++F)
2921    if (F->isMaterializable() &&
2922        Materialize(F, ErrInfo))
2923      return true;
2924
2925  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2926  // delete the old functions to clean up. We can't do this unless the entire
2927  // module is materialized because there could always be another function body
2928  // with calls to the old function.
2929  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2930       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2931    if (I->first != I->second) {
2932      for (Value::use_iterator UI = I->first->use_begin(),
2933           UE = I->first->use_end(); UI != UE; ) {
2934        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2935          UpgradeIntrinsicCall(CI, I->second);
2936      }
2937      if (!I->first->use_empty())
2938        I->first->replaceAllUsesWith(I->second);
2939      I->first->eraseFromParent();
2940    }
2941  }
2942  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2943
2944  // Check debug info intrinsics.
2945  CheckDebugInfoIntrinsics(TheModule);
2946
2947  return false;
2948}
2949
2950
2951//===----------------------------------------------------------------------===//
2952// External interface
2953//===----------------------------------------------------------------------===//
2954
2955/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2956///
2957Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
2958                                       LLVMContext& Context,
2959                                       std::string *ErrMsg) {
2960  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2961  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2962  M->setMaterializer(R);
2963  if (R->ParseBitcodeInto(M)) {
2964    if (ErrMsg)
2965      *ErrMsg = R->getErrorString();
2966
2967    delete M;  // Also deletes R.
2968    return 0;
2969  }
2970  // Have the BitcodeReader dtor delete 'Buffer'.
2971  R->setBufferOwned(true);
2972  return M;
2973}
2974
2975/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2976/// If an error occurs, return null and fill in *ErrMsg if non-null.
2977Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2978                                   std::string *ErrMsg){
2979  Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
2980  if (!M) return 0;
2981
2982  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2983  // there was an error.
2984  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2985
2986  // Read in the entire module, and destroy the BitcodeReader.
2987  if (M->MaterializeAllPermanently(ErrMsg)) {
2988    delete M;
2989    return 0;
2990  }
2991
2992  return M;
2993}
2994
2995std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2996                                             LLVMContext& Context,
2997                                             std::string *ErrMsg) {
2998  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2999  // Don't let the BitcodeReader dtor delete 'Buffer'.
3000  R->setBufferOwned(false);
3001
3002  std::string Triple("");
3003  if (R->ParseTriple(Triple))
3004    if (ErrMsg)
3005      *ErrMsg = R->getErrorString();
3006
3007  delete R;
3008  return Triple;
3009}
3010