BufferQueueConsumer.cpp revision 399184a4cd728ea1421fb0bc1722274a29e38f4a
1/*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "BufferQueueConsumer"
18#define ATRACE_TAG ATRACE_TAG_GRAPHICS
19//#define LOG_NDEBUG 0
20
21#include <gui/BufferItem.h>
22#include <gui/BufferQueueConsumer.h>
23#include <gui/BufferQueueCore.h>
24#include <gui/IConsumerListener.h>
25
26namespace android {
27
28BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
29    mCore(core),
30    mSlots(core->mSlots),
31    mConsumerName() {}
32
33BufferQueueConsumer::~BufferQueueConsumer() {}
34
35status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
36        nsecs_t expectedPresent) {
37    ATRACE_CALL();
38    Mutex::Autolock lock(mCore->mMutex);
39
40    // Check that the consumer doesn't currently have the maximum number of
41    // buffers acquired. We allow the max buffer count to be exceeded by one
42    // buffer so that the consumer can successfully set up the newly acquired
43    // buffer before releasing the old one.
44    int numAcquiredBuffers = 0;
45    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
46        if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
47            ++numAcquiredBuffers;
48        }
49    }
50    if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
51        BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
52                numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
53        return INVALID_OPERATION;
54    }
55
56    // Check if the queue is empty.
57    // In asynchronous mode the list is guaranteed to be one buffer deep,
58    // while in synchronous mode we use the oldest buffer.
59    if (mCore->mQueue.empty()) {
60        return NO_BUFFER_AVAILABLE;
61    }
62
63    BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
64
65    // If expectedPresent is specified, we may not want to return a buffer yet.
66    // If it's specified and there's more than one buffer queued, we may want
67    // to drop a buffer.
68    if (expectedPresent != 0) {
69        const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second
70
71        // The 'expectedPresent' argument indicates when the buffer is expected
72        // to be presented on-screen. If the buffer's desired present time is
73        // earlier (less) than expectedPresent -- meaning it will be displayed
74        // on time or possibly late if we show it as soon as possible -- we
75        // acquire and return it. If we don't want to display it until after the
76        // expectedPresent time, we return PRESENT_LATER without acquiring it.
77        //
78        // To be safe, we don't defer acquisition if expectedPresent is more
79        // than one second in the future beyond the desired present time
80        // (i.e., we'd be holding the buffer for a long time).
81        //
82        // NOTE: Code assumes monotonic time values from the system clock
83        // are positive.
84
85        // Start by checking to see if we can drop frames. We skip this check if
86        // the timestamps are being auto-generated by Surface. If the app isn't
87        // generating timestamps explicitly, it probably doesn't want frames to
88        // be discarded based on them.
89        while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
90            // If entry[1] is timely, drop entry[0] (and repeat). We apply an
91            // additional criterion here: we only drop the earlier buffer if our
92            // desiredPresent falls within +/- 1 second of the expected present.
93            // Otherwise, bogus desiredPresent times (e.g., 0 or a small
94            // relative timestamp), which normally mean "ignore the timestamp
95            // and acquire immediately", would cause us to drop frames.
96            //
97            // We may want to add an additional criterion: don't drop the
98            // earlier buffer if entry[1]'s fence hasn't signaled yet.
99            const BufferItem& bufferItem(mCore->mQueue[1]);
100            nsecs_t desiredPresent = bufferItem.mTimestamp;
101            if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
102                    desiredPresent > expectedPresent) {
103                // This buffer is set to display in the near future, or
104                // desiredPresent is garbage. Either way we don't want to drop
105                // the previous buffer just to get this on the screen sooner.
106                BQ_LOGV("acquireBuffer: nodrop desire=%lld expect=%lld "
107                        "(%lld) now=%lld", desiredPresent, expectedPresent,
108                        desiredPresent - expectedPresent,
109                        systemTime(CLOCK_MONOTONIC));
110                break;
111            }
112
113            BQ_LOGV("acquireBuffer: drop desire=%lld expect=%lld size=%d",
114                    desiredPresent, expectedPresent, mCore->mQueue.size());
115            if (mCore->stillTracking(front)) {
116                // Front buffer is still in mSlots, so mark the slot as free
117                mSlots[front->mSlot].mBufferState = BufferSlot::FREE;
118            }
119            mCore->mQueue.erase(front);
120            front = mCore->mQueue.begin();
121        }
122
123        // See if the front buffer is due
124        nsecs_t desiredPresent = front->mTimestamp;
125        if (desiredPresent > expectedPresent &&
126                desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) {
127            BQ_LOGV("acquireBuffer: defer desire=%lld expect=%lld "
128                    "(%lld) now=%lld", desiredPresent, expectedPresent,
129                    desiredPresent - expectedPresent,
130                    systemTime(CLOCK_MONOTONIC));
131            return PRESENT_LATER;
132        }
133
134        BQ_LOGV("acquireBuffer: accept desire=%lld expect=%lld "
135                "(%lld) now=%lld", desiredPresent, expectedPresent,
136                desiredPresent - expectedPresent,
137                systemTime(CLOCK_MONOTONIC));
138    }
139
140    int slot = front->mSlot;
141    *outBuffer = *front;
142    ATRACE_BUFFER_INDEX(slot);
143
144    BQ_LOGV("acquireBuffer: acquiring { slot=%d/%llu buffer=%p }",
145            slot, front->mFrameNumber, front->mGraphicBuffer->handle);
146    // If the front buffer is still being tracked, update its slot state
147    if (mCore->stillTracking(front)) {
148        mSlots[slot].mAcquireCalled = true;
149        mSlots[slot].mNeedsCleanupOnRelease = false;
150        mSlots[slot].mBufferState = BufferSlot::ACQUIRED;
151        mSlots[slot].mFence = Fence::NO_FENCE;
152    }
153
154    // If the buffer has previously been acquired by the consumer, set
155    // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
156    // on the consumer side
157    if (outBuffer->mAcquireCalled) {
158        outBuffer->mGraphicBuffer = NULL;
159    }
160
161    mCore->mQueue.erase(front);
162    // TODO: Should this call be after we free a slot while dropping buffers?
163    // Simply acquiring the next buffer doesn't enable a producer to dequeue.
164    mCore->mDequeueCondition.broadcast();
165
166    ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size());
167
168    return NO_ERROR;
169}
170
171status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
172        const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
173        EGLSyncKHR eglFence) {
174    ATRACE_CALL();
175    ATRACE_BUFFER_INDEX(slot);
176
177    if (slot == BufferQueueCore::INVALID_BUFFER_SLOT || releaseFence == NULL) {
178        return BAD_VALUE;
179    }
180
181    Mutex::Autolock lock(mCore->mMutex);
182
183    // If the frame number has changed because the buffer has been reallocated,
184    // we can ignore this releaseBuffer for the old buffer
185    if (frameNumber != mSlots[slot].mFrameNumber) {
186        return STALE_BUFFER_SLOT;
187    }
188
189    // Make sure this buffer hasn't been queued while acquired by the consumer
190    BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
191    while (current != mCore->mQueue.end()) {
192        if (current->mSlot == slot) {
193            BQ_LOGE("releaseBuffer: buffer slot %d pending release is "
194                    "currently queued", slot);
195            return -EINVAL;
196        }
197        ++current;
198    }
199
200    if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
201        mSlots[slot].mEglDisplay = eglDisplay;
202        mSlots[slot].mEglFence = eglFence;
203        mSlots[slot].mFence = releaseFence;
204        mSlots[slot].mBufferState = BufferSlot::FREE;
205    } else if (mSlots[slot].mNeedsCleanupOnRelease) {
206        BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d "
207                "(state = %d)", slot, mSlots[slot].mBufferState);
208        mSlots[slot].mNeedsCleanupOnRelease = false;
209        return STALE_BUFFER_SLOT;
210    } else {
211        BQ_LOGV("releaseBuffer: attempted to release buffer slot %d "
212                "but its state was %d", slot, mSlots[slot].mBufferState);
213        return -EINVAL;
214    }
215
216    mCore->mDequeueCondition.broadcast();
217
218    return NO_ERROR;
219}
220
221status_t BufferQueueConsumer::connect(
222        const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
223    ATRACE_CALL();
224
225    if (consumerListener == NULL) {
226        BQ_LOGE("connect(C): consumerListener may not be NULL");
227        return BAD_VALUE;
228    }
229
230    BQ_LOGV("connect(C): controlledByApp=%s",
231            controlledByApp ? "true" : "false");
232
233    Mutex::Autolock lock(mCore->mMutex);
234
235    if (mCore->mIsAbandoned) {
236        BQ_LOGE("connect(C): BufferQueue has been abandoned");
237        return NO_INIT;
238    }
239
240    mCore->mConsumerListener = consumerListener;
241    mCore->mConsumerControlledByApp = controlledByApp;
242
243    return NO_ERROR;
244}
245
246status_t BufferQueueConsumer::disconnect() {
247    ATRACE_CALL();
248
249    BQ_LOGV("disconnect(C)");
250
251    Mutex::Autolock lock(mCore->mMutex);
252
253    if (mCore->mConsumerListener == NULL) {
254        BQ_LOGE("disconnect(C): no consumer is connected");
255        return -EINVAL;
256    }
257
258    mCore->mIsAbandoned = true;
259    mCore->mConsumerListener = NULL;
260    mCore->mQueue.clear();
261    mCore->freeAllBuffersLocked();
262    mCore->mDequeueCondition.broadcast();
263    return NO_ERROR;
264}
265
266status_t BufferQueueConsumer::getReleasedBuffers(uint32_t *outSlotMask) {
267    ATRACE_CALL();
268
269    if (outSlotMask == NULL) {
270        BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
271        return BAD_VALUE;
272    }
273
274    Mutex::Autolock lock(mCore->mMutex);
275
276    if (mCore->mIsAbandoned) {
277        BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
278        return NO_INIT;
279    }
280
281    uint32_t mask = 0;
282    for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
283        if (!mSlots[s].mAcquireCalled) {
284            mask |= (1u << s);
285        }
286    }
287
288    // Remove from the mask queued buffers for which acquire has been called,
289    // since the consumer will not receive their buffer addresses and so must
290    // retain their cached information
291    BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
292    while (current != mCore->mQueue.end()) {
293        if (current->mAcquireCalled) {
294            mask &= ~(1u << current->mSlot);
295        }
296        ++current;
297    }
298
299    BQ_LOGV("getReleasedBuffers: returning mask %#x", mask);
300    *outSlotMask = mask;
301    return NO_ERROR;
302}
303
304status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
305        uint32_t height) {
306    ATRACE_CALL();
307
308    if (width == 0 || height == 0) {
309        BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
310                "height=%u)", width, height);
311        return BAD_VALUE;
312    }
313
314    BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);
315
316    Mutex::Autolock lock(mCore->mMutex);
317    mCore->mDefaultWidth = width;
318    mCore->mDefaultHeight = height;
319    return NO_ERROR;
320}
321
322status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) {
323    ATRACE_CALL();
324    Mutex::Autolock lock(mCore->mMutex);
325    return mCore->setDefaultMaxBufferCountLocked(bufferCount);
326}
327
328status_t BufferQueueConsumer::disableAsyncBuffer() {
329    ATRACE_CALL();
330
331    Mutex::Autolock lock(mCore->mMutex);
332
333    if (mCore->mConsumerListener != NULL) {
334        BQ_LOGE("disableAsyncBuffer: consumer already connected");
335        return INVALID_OPERATION;
336    }
337
338    BQ_LOGV("disableAsyncBuffer");
339    mCore->mUseAsyncBuffer = false;
340    return NO_ERROR;
341}
342
343status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
344        int maxAcquiredBuffers) {
345    ATRACE_CALL();
346
347    if (maxAcquiredBuffers < 1 ||
348            maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
349        BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
350                maxAcquiredBuffers);
351        return BAD_VALUE;
352    }
353
354    Mutex::Autolock lock(mCore->mMutex);
355
356    if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
357        BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected");
358        return INVALID_OPERATION;
359    }
360
361    BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
362    mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
363    return NO_ERROR;
364}
365
366void BufferQueueConsumer::setConsumerName(const String8& name) {
367    ATRACE_CALL();
368    BQ_LOGV("setConsumerName: '%s'", name.string());
369    Mutex::Autolock lock(mCore->mMutex);
370    mCore->mConsumerName = name;
371    mConsumerName = name;
372}
373
374status_t BufferQueueConsumer::setDefaultBufferFormat(uint32_t defaultFormat) {
375    ATRACE_CALL();
376    BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
377    Mutex::Autolock lock(mCore->mMutex);
378    mCore->mDefaultBufferFormat = defaultFormat;
379    return NO_ERROR;
380}
381
382status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) {
383    ATRACE_CALL();
384    BQ_LOGV("setConsumerUsageBits: %#x", usage);
385    Mutex::Autolock lock(mCore->mMutex);
386    mCore->mConsumerUsageBits = usage;
387    return NO_ERROR;
388}
389
390status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
391    ATRACE_CALL();
392    BQ_LOGV("setTransformHint: %#x", hint);
393    Mutex::Autolock lock(mCore->mMutex);
394    mCore->mTransformHint = hint;
395    return NO_ERROR;
396}
397
398sp<NativeHandle> BufferQueueConsumer::getSidebandStream() const {
399    return mCore->mSidebandStream;
400}
401
402void BufferQueueConsumer::dump(String8& result, const char* prefix) const {
403    mCore->dump(result, prefix);
404}
405
406} // namespace android
407