SurfaceFlinger.cpp revision 089a15298e045598bf15fd2a46284c34dd56384c
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56
57#include "clz.h"
58#include "DdmConnection.h"
59#include "DisplayDevice.h"
60#include "Client.h"
61#include "EventThread.h"
62#include "GLExtensions.h"
63#include "Layer.h"
64#include "LayerDim.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/HWComposer.h"
69
70
71#define EGL_VERSION_HW_ANDROID  0x3143
72
73#define DISPLAY_COUNT       1
74
75namespace android {
76// ---------------------------------------------------------------------------
77
78const String16 sHardwareTest("android.permission.HARDWARE_TEST");
79const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
80const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
81const String16 sDump("android.permission.DUMP");
82
83// ---------------------------------------------------------------------------
84
85SurfaceFlinger::SurfaceFlinger()
86    :   BnSurfaceComposer(), Thread(false),
87        mTransactionFlags(0),
88        mTransactionPending(false),
89        mAnimTransactionPending(false),
90        mLayersRemoved(false),
91        mRepaintEverything(0),
92        mBootTime(systemTime()),
93        mVisibleRegionsDirty(false),
94        mHwWorkListDirty(false),
95        mAnimCompositionPending(false),
96        mDebugRegion(0),
97        mDebugDDMS(0),
98        mDebugDisableHWC(0),
99        mDebugDisableTransformHint(0),
100        mDebugInSwapBuffers(0),
101        mLastSwapBufferTime(0),
102        mDebugInTransaction(0),
103        mLastTransactionTime(0),
104        mBootFinished(false)
105{
106    ALOGI("SurfaceFlinger is starting");
107
108    // debugging stuff...
109    char value[PROPERTY_VALUE_MAX];
110
111    property_get("debug.sf.showupdates", value, "0");
112    mDebugRegion = atoi(value);
113
114    property_get("debug.sf.ddms", value, "0");
115    mDebugDDMS = atoi(value);
116    if (mDebugDDMS) {
117        if (!startDdmConnection()) {
118            // start failed, and DDMS debugging not enabled
119            mDebugDDMS = 0;
120        }
121    }
122    ALOGI_IF(mDebugRegion, "showupdates enabled");
123    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
124}
125
126void SurfaceFlinger::onFirstRef()
127{
128    mEventQueue.init(this);
129
130    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
131
132    // Wait for the main thread to be done with its initialization
133    mReadyToRunBarrier.wait();
134}
135
136
137SurfaceFlinger::~SurfaceFlinger()
138{
139    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
140    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
141    eglTerminate(display);
142}
143
144void SurfaceFlinger::binderDied(const wp<IBinder>& who)
145{
146    // the window manager died on us. prepare its eulogy.
147
148    // restore initial conditions (default device unblank, etc)
149    initializeDisplays();
150
151    // restart the boot-animation
152    startBootAnim();
153}
154
155sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
156{
157    sp<ISurfaceComposerClient> bclient;
158    sp<Client> client(new Client(this));
159    status_t err = client->initCheck();
160    if (err == NO_ERROR) {
161        bclient = client;
162    }
163    return bclient;
164}
165
166sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
167        bool secure)
168{
169    class DisplayToken : public BBinder {
170        sp<SurfaceFlinger> flinger;
171        virtual ~DisplayToken() {
172             // no more references, this display must be terminated
173             Mutex::Autolock _l(flinger->mStateLock);
174             flinger->mCurrentState.displays.removeItem(this);
175             flinger->setTransactionFlags(eDisplayTransactionNeeded);
176         }
177     public:
178        DisplayToken(const sp<SurfaceFlinger>& flinger)
179            : flinger(flinger) {
180        }
181    };
182
183    sp<BBinder> token = new DisplayToken(this);
184
185    Mutex::Autolock _l(mStateLock);
186    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
187    info.displayName = displayName;
188    info.isSecure = secure;
189    mCurrentState.displays.add(token, info);
190
191    return token;
192}
193
194void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
195    ALOGW_IF(mBuiltinDisplays[type],
196            "Overwriting display token for display type %d", type);
197    mBuiltinDisplays[type] = new BBinder();
198    DisplayDeviceState info(type);
199    // All non-virtual displays are currently considered secure.
200    info.isSecure = true;
201    mCurrentState.displays.add(mBuiltinDisplays[type], info);
202}
203
204sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
205    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
206        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
207        return NULL;
208    }
209    return mBuiltinDisplays[id];
210}
211
212sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
213{
214    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
215    return gba;
216}
217
218void SurfaceFlinger::bootFinished()
219{
220    const nsecs_t now = systemTime();
221    const nsecs_t duration = now - mBootTime;
222    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
223    mBootFinished = true;
224
225    // wait patiently for the window manager death
226    const String16 name("window");
227    sp<IBinder> window(defaultServiceManager()->getService(name));
228    if (window != 0) {
229        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
230    }
231
232    // stop boot animation
233    // formerly we would just kill the process, but we now ask it to exit so it
234    // can choose where to stop the animation.
235    property_set("service.bootanim.exit", "1");
236}
237
238void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
239    class MessageDestroyGLTexture : public MessageBase {
240        GLuint texture;
241    public:
242        MessageDestroyGLTexture(GLuint texture)
243            : texture(texture) {
244        }
245        virtual bool handler() {
246            glDeleteTextures(1, &texture);
247            return true;
248        }
249    };
250    postMessageAsync(new MessageDestroyGLTexture(texture));
251}
252
253status_t SurfaceFlinger::selectConfigForAttribute(
254        EGLDisplay dpy,
255        EGLint const* attrs,
256        EGLint attribute, EGLint wanted,
257        EGLConfig* outConfig)
258{
259    EGLConfig config = NULL;
260    EGLint numConfigs = -1, n=0;
261    eglGetConfigs(dpy, NULL, 0, &numConfigs);
262    EGLConfig* const configs = new EGLConfig[numConfigs];
263    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
264
265    if (n) {
266        if (attribute != EGL_NONE) {
267            for (int i=0 ; i<n ; i++) {
268                EGLint value = 0;
269                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
270                if (wanted == value) {
271                    *outConfig = configs[i];
272                    delete [] configs;
273                    return NO_ERROR;
274                }
275            }
276        } else {
277            // just pick the first one
278            *outConfig = configs[0];
279            delete [] configs;
280            return NO_ERROR;
281        }
282    }
283    delete [] configs;
284    return NAME_NOT_FOUND;
285}
286
287class EGLAttributeVector {
288    struct Attribute;
289    class Adder;
290    friend class Adder;
291    KeyedVector<Attribute, EGLint> mList;
292    struct Attribute {
293        Attribute() {};
294        Attribute(EGLint v) : v(v) { }
295        EGLint v;
296        bool operator < (const Attribute& other) const {
297            // this places EGL_NONE at the end
298            EGLint lhs(v);
299            EGLint rhs(other.v);
300            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
301            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
302            return lhs < rhs;
303        }
304    };
305    class Adder {
306        friend class EGLAttributeVector;
307        EGLAttributeVector& v;
308        EGLint attribute;
309        Adder(EGLAttributeVector& v, EGLint attribute)
310            : v(v), attribute(attribute) {
311        }
312    public:
313        void operator = (EGLint value) {
314            if (attribute != EGL_NONE) {
315                v.mList.add(attribute, value);
316            }
317        }
318        operator EGLint () const { return v.mList[attribute]; }
319    };
320public:
321    EGLAttributeVector() {
322        mList.add(EGL_NONE, EGL_NONE);
323    }
324    void remove(EGLint attribute) {
325        if (attribute != EGL_NONE) {
326            mList.removeItem(attribute);
327        }
328    }
329    Adder operator [] (EGLint attribute) {
330        return Adder(*this, attribute);
331    }
332    EGLint operator [] (EGLint attribute) const {
333       return mList[attribute];
334    }
335    // cast-operator to (EGLint const*)
336    operator EGLint const* () const { return &mList.keyAt(0).v; }
337};
338
339EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
340    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
341    // it is to be used with WIFI displays
342    EGLConfig config;
343    EGLint dummy;
344    status_t err;
345
346    EGLAttributeVector attribs;
347    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
348    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
349    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
350    attribs[EGL_RED_SIZE]                   = 8;
351    attribs[EGL_GREEN_SIZE]                 = 8;
352    attribs[EGL_BLUE_SIZE]                  = 8;
353
354    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
355    if (!err)
356        goto success;
357
358    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
359    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
360    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
361    err = selectConfigForAttribute(display, attribs,
362            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
363    if (!err)
364        goto success;
365
366    // maybe we failed because of EGL_RECORDABLE_ANDROID
367    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
368    attribs.remove(EGL_RECORDABLE_ANDROID);
369    err = selectConfigForAttribute(display, attribs,
370            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
371    if (!err)
372        goto success;
373
374    // allow less than 24-bit color; the non-gpu-accelerated emulator only
375    // supports 16-bit color
376    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
377    attribs.remove(EGL_RED_SIZE);
378    attribs.remove(EGL_GREEN_SIZE);
379    attribs.remove(EGL_BLUE_SIZE);
380    err = selectConfigForAttribute(display, attribs,
381            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
382    if (!err)
383        goto success;
384
385    // this EGL is too lame for Android
386    ALOGE("no suitable EGLConfig found, giving up");
387
388    return 0;
389
390success:
391    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
392        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
393    return config;
394}
395
396EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
397    // Also create our EGLContext
398    EGLint contextAttributes[] = {
399#ifdef EGL_IMG_context_priority
400#ifdef HAS_CONTEXT_PRIORITY
401#warning "using EGL_IMG_context_priority"
402            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
403#endif
404#endif
405            EGL_NONE, EGL_NONE
406    };
407    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
408    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
409    return ctxt;
410}
411
412void SurfaceFlinger::initializeGL(EGLDisplay display) {
413    GLExtensions& extensions(GLExtensions::getInstance());
414    extensions.initWithGLStrings(
415            glGetString(GL_VENDOR),
416            glGetString(GL_RENDERER),
417            glGetString(GL_VERSION),
418            glGetString(GL_EXTENSIONS),
419            eglQueryString(display, EGL_VENDOR),
420            eglQueryString(display, EGL_VERSION),
421            eglQueryString(display, EGL_EXTENSIONS));
422
423    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
424    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
425
426    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
427    glPixelStorei(GL_PACK_ALIGNMENT, 4);
428    glEnableClientState(GL_VERTEX_ARRAY);
429    glShadeModel(GL_FLAT);
430    glDisable(GL_DITHER);
431    glDisable(GL_CULL_FACE);
432
433    struct pack565 {
434        inline uint16_t operator() (int r, int g, int b) const {
435            return (r<<11)|(g<<5)|b;
436        }
437    } pack565;
438
439    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
440    glGenTextures(1, &mProtectedTexName);
441    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
442    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
443    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
444    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
445    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
446    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
447            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
448
449    // print some debugging info
450    EGLint r,g,b,a;
451    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
452    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
453    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
454    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
455    ALOGI("EGL informations:");
456    ALOGI("vendor    : %s", extensions.getEglVendor());
457    ALOGI("version   : %s", extensions.getEglVersion());
458    ALOGI("extensions: %s", extensions.getEglExtension());
459    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
460    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
461    ALOGI("OpenGL ES informations:");
462    ALOGI("vendor    : %s", extensions.getVendor());
463    ALOGI("renderer  : %s", extensions.getRenderer());
464    ALOGI("version   : %s", extensions.getVersion());
465    ALOGI("extensions: %s", extensions.getExtension());
466    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
467    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
468}
469
470status_t SurfaceFlinger::readyToRun()
471{
472    ALOGI(  "SurfaceFlinger's main thread ready to run. "
473            "Initializing graphics H/W...");
474
475    Mutex::Autolock _l(mStateLock);
476
477    // initialize EGL for the default display
478    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
479    eglInitialize(mEGLDisplay, NULL, NULL);
480
481    // Initialize the H/W composer object.  There may or may not be an
482    // actual hardware composer underneath.
483    mHwc = new HWComposer(this,
484            *static_cast<HWComposer::EventHandler *>(this));
485
486    // initialize the config and context
487    EGLint format = mHwc->getVisualID();
488    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
489    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
490
491    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
492            "couldn't create EGLContext");
493
494    // initialize our non-virtual displays
495    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
496        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
497        // set-up the displays that are already connected
498        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
499            // All non-virtual displays are currently considered secure.
500            bool isSecure = true;
501            createBuiltinDisplayLocked(type);
502            wp<IBinder> token = mBuiltinDisplays[i];
503
504            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
505            sp<Surface> stc = new Surface(
506                        static_cast< sp<IGraphicBufferProducer> >(fbs->getBufferQueue()));
507            sp<DisplayDevice> hw = new DisplayDevice(this,
508                    type, isSecure, token, stc, fbs, mEGLConfig);
509            if (i > DisplayDevice::DISPLAY_PRIMARY) {
510                // FIXME: currently we don't get blank/unblank requests
511                // for displays other than the main display, so we always
512                // assume a connected display is unblanked.
513                ALOGD("marking display %d as acquired/unblanked", i);
514                hw->acquireScreen();
515            }
516            mDisplays.add(token, hw);
517        }
518    }
519
520    //  we need a GL context current in a few places, when initializing
521    //  OpenGL ES (see below), or creating a layer,
522    //  or when a texture is (asynchronously) destroyed, and for that
523    //  we need a valid surface, so it's convenient to use the main display
524    //  for that.
525    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
526
527    //  initialize OpenGL ES
528    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
529    initializeGL(mEGLDisplay);
530
531    // start the EventThread
532    mEventThread = new EventThread(this);
533    mEventQueue.setEventThread(mEventThread);
534
535    // initialize our drawing state
536    mDrawingState = mCurrentState;
537
538
539    // We're now ready to accept clients...
540    mReadyToRunBarrier.open();
541
542    // set initial conditions (e.g. unblank default device)
543    initializeDisplays();
544
545    // start boot animation
546    startBootAnim();
547
548    return NO_ERROR;
549}
550
551int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
552    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
553            type : mHwc->allocateDisplayId();
554}
555
556void SurfaceFlinger::startBootAnim() {
557    // start boot animation
558    property_set("service.bootanim.exit", "0");
559    property_set("ctl.start", "bootanim");
560}
561
562uint32_t SurfaceFlinger::getMaxTextureSize() const {
563    return mMaxTextureSize;
564}
565
566uint32_t SurfaceFlinger::getMaxViewportDims() const {
567    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
568            mMaxViewportDims[0] : mMaxViewportDims[1];
569}
570
571// ----------------------------------------------------------------------------
572
573bool SurfaceFlinger::authenticateSurfaceTexture(
574        const sp<IGraphicBufferProducer>& bufferProducer) const {
575    Mutex::Autolock _l(mStateLock);
576    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
577
578    // We want to determine whether the IGraphicBufferProducer was created by
579    // SurfaceFlinger.  Check to see if we can find it in the layer list.
580    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
581    size_t count = currentLayers.size();
582    for (size_t i=0 ; i<count ; i++) {
583        const sp<LayerBase>& layer(currentLayers[i]);
584        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
585        if (lbc != NULL) {
586            // If this is an instance of Layer (as opposed to, say, LayerDim),
587            // we will get the consumer interface of SurfaceFlingerConsumer's
588            // BufferQueue.  If it's the same Binder object as the graphic
589            // buffer producer interface, return success.
590            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
591            if (lbcBinder == surfaceTextureBinder) {
592                return true;
593            }
594        }
595    }
596
597    // Check the layers in the purgatory.  This check is here so that if a
598    // GLConsumer gets destroyed before all the clients are done using it,
599    // the error will not be reported as "surface XYZ is not authenticated", but
600    // will instead fail later on when the client tries to use the surface,
601    // which should be reported as "surface XYZ returned an -ENODEV".  The
602    // purgatorized layers are no less authentic than the visible ones, so this
603    // should not cause any harm.
604    size_t purgatorySize =  mLayerPurgatory.size();
605    for (size_t i=0 ; i<purgatorySize ; i++) {
606        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
607        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
608        if (lbc != NULL) {
609            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
610            if (lbcBinder == surfaceTextureBinder) {
611                return true;
612            }
613        }
614    }
615
616    return false;
617}
618
619status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
620    int32_t type = NAME_NOT_FOUND;
621    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
622        if (display == mBuiltinDisplays[i]) {
623            type = i;
624            break;
625        }
626    }
627
628    if (type < 0) {
629        return type;
630    }
631
632    const HWComposer& hwc(getHwComposer());
633    float xdpi = hwc.getDpiX(type);
634    float ydpi = hwc.getDpiY(type);
635
636    // TODO: Not sure if display density should handled by SF any longer
637    class Density {
638        static int getDensityFromProperty(char const* propName) {
639            char property[PROPERTY_VALUE_MAX];
640            int density = 0;
641            if (property_get(propName, property, NULL) > 0) {
642                density = atoi(property);
643            }
644            return density;
645        }
646    public:
647        static int getEmuDensity() {
648            return getDensityFromProperty("qemu.sf.lcd_density"); }
649        static int getBuildDensity()  {
650            return getDensityFromProperty("ro.sf.lcd_density"); }
651    };
652
653    if (type == DisplayDevice::DISPLAY_PRIMARY) {
654        // The density of the device is provided by a build property
655        float density = Density::getBuildDensity() / 160.0f;
656        if (density == 0) {
657            // the build doesn't provide a density -- this is wrong!
658            // use xdpi instead
659            ALOGE("ro.sf.lcd_density must be defined as a build property");
660            density = xdpi / 160.0f;
661        }
662        if (Density::getEmuDensity()) {
663            // if "qemu.sf.lcd_density" is specified, it overrides everything
664            xdpi = ydpi = density = Density::getEmuDensity();
665            density /= 160.0f;
666        }
667        info->density = density;
668
669        // TODO: this needs to go away (currently needed only by webkit)
670        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
671        info->orientation = hw->getOrientation();
672        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
673    } else {
674        // TODO: where should this value come from?
675        static const int TV_DENSITY = 213;
676        info->density = TV_DENSITY / 160.0f;
677        info->orientation = 0;
678    }
679
680    info->w = hwc.getWidth(type);
681    info->h = hwc.getHeight(type);
682    info->xdpi = xdpi;
683    info->ydpi = ydpi;
684    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
685
686    // All non-virtual displays are currently considered secure.
687    info->secure = true;
688
689    return NO_ERROR;
690}
691
692// ----------------------------------------------------------------------------
693
694sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
695    return mEventThread->createEventConnection();
696}
697
698// ----------------------------------------------------------------------------
699
700void SurfaceFlinger::waitForEvent() {
701    mEventQueue.waitMessage();
702}
703
704void SurfaceFlinger::signalTransaction() {
705    mEventQueue.invalidate();
706}
707
708void SurfaceFlinger::signalLayerUpdate() {
709    mEventQueue.invalidate();
710}
711
712void SurfaceFlinger::signalRefresh() {
713    mEventQueue.refresh();
714}
715
716status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
717        nsecs_t reltime, uint32_t flags) {
718    return mEventQueue.postMessage(msg, reltime);
719}
720
721status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
722        nsecs_t reltime, uint32_t flags) {
723    status_t res = mEventQueue.postMessage(msg, reltime);
724    if (res == NO_ERROR) {
725        msg->wait();
726    }
727    return res;
728}
729
730bool SurfaceFlinger::threadLoop() {
731    waitForEvent();
732    return true;
733}
734
735void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
736    if (mEventThread == NULL) {
737        // This is a temporary workaround for b/7145521.  A non-null pointer
738        // does not mean EventThread has finished initializing, so this
739        // is not a correct fix.
740        ALOGW("WARNING: EventThread not started, ignoring vsync");
741        return;
742    }
743    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
744        // we should only receive DisplayDevice::DisplayType from the vsync callback
745        mEventThread->onVSyncReceived(type, timestamp);
746    }
747}
748
749void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
750    if (mEventThread == NULL) {
751        // This is a temporary workaround for b/7145521.  A non-null pointer
752        // does not mean EventThread has finished initializing, so this
753        // is not a correct fix.
754        ALOGW("WARNING: EventThread not started, ignoring hotplug");
755        return;
756    }
757
758    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
759        Mutex::Autolock _l(mStateLock);
760        if (connected) {
761            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
762        } else {
763            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
764            mBuiltinDisplays[type].clear();
765        }
766        setTransactionFlags(eDisplayTransactionNeeded);
767
768        // Defer EventThread notification until SF has updated mDisplays.
769    }
770}
771
772void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
773    getHwComposer().eventControl(disp, event, enabled);
774}
775
776void SurfaceFlinger::onMessageReceived(int32_t what) {
777    ATRACE_CALL();
778    switch (what) {
779    case MessageQueue::INVALIDATE:
780        handleMessageTransaction();
781        handleMessageInvalidate();
782        signalRefresh();
783        break;
784    case MessageQueue::REFRESH:
785        handleMessageRefresh();
786        break;
787    }
788}
789
790void SurfaceFlinger::handleMessageTransaction() {
791    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
792    if (transactionFlags) {
793        handleTransaction(transactionFlags);
794    }
795}
796
797void SurfaceFlinger::handleMessageInvalidate() {
798    ATRACE_CALL();
799    handlePageFlip();
800}
801
802void SurfaceFlinger::handleMessageRefresh() {
803    ATRACE_CALL();
804    preComposition();
805    rebuildLayerStacks();
806    setUpHWComposer();
807    doDebugFlashRegions();
808    doComposition();
809    postComposition();
810}
811
812void SurfaceFlinger::doDebugFlashRegions()
813{
814    // is debugging enabled
815    if (CC_LIKELY(!mDebugRegion))
816        return;
817
818    const bool repaintEverything = mRepaintEverything;
819    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
820        const sp<DisplayDevice>& hw(mDisplays[dpy]);
821        if (hw->canDraw()) {
822            // transform the dirty region into this screen's coordinate space
823            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
824            if (!dirtyRegion.isEmpty()) {
825                // redraw the whole screen
826                doComposeSurfaces(hw, Region(hw->bounds()));
827
828                // and draw the dirty region
829                glDisable(GL_TEXTURE_EXTERNAL_OES);
830                glDisable(GL_TEXTURE_2D);
831                glDisable(GL_BLEND);
832                glColor4f(1, 0, 1, 1);
833                const int32_t height = hw->getHeight();
834                Region::const_iterator it = dirtyRegion.begin();
835                Region::const_iterator const end = dirtyRegion.end();
836                while (it != end) {
837                    const Rect& r = *it++;
838                    GLfloat vertices[][2] = {
839                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
840                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
841                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
842                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
843                    };
844                    glVertexPointer(2, GL_FLOAT, 0, vertices);
845                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
846                }
847                hw->compositionComplete();
848                hw->swapBuffers(getHwComposer());
849            }
850        }
851    }
852
853    postFramebuffer();
854
855    if (mDebugRegion > 1) {
856        usleep(mDebugRegion * 1000);
857    }
858
859    HWComposer& hwc(getHwComposer());
860    if (hwc.initCheck() == NO_ERROR) {
861        status_t err = hwc.prepare();
862        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
863    }
864}
865
866void SurfaceFlinger::preComposition()
867{
868    bool needExtraInvalidate = false;
869    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
870    const size_t count = currentLayers.size();
871    for (size_t i=0 ; i<count ; i++) {
872        if (currentLayers[i]->onPreComposition()) {
873            needExtraInvalidate = true;
874        }
875    }
876    if (needExtraInvalidate) {
877        signalLayerUpdate();
878    }
879}
880
881void SurfaceFlinger::postComposition()
882{
883    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
884    const size_t count = currentLayers.size();
885    for (size_t i=0 ; i<count ; i++) {
886        currentLayers[i]->onPostComposition();
887    }
888
889    if (mAnimCompositionPending) {
890        mAnimCompositionPending = false;
891
892        const HWComposer& hwc = getHwComposer();
893        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
894        if (presentFence->isValid()) {
895            mAnimFrameTracker.setActualPresentFence(presentFence);
896        } else {
897            // The HWC doesn't support present fences, so use the refresh
898            // timestamp instead.
899            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
900            mAnimFrameTracker.setActualPresentTime(presentTime);
901        }
902        mAnimFrameTracker.advanceFrame();
903    }
904}
905
906void SurfaceFlinger::rebuildLayerStacks() {
907    // rebuild the visible layer list per screen
908    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
909        ATRACE_CALL();
910        mVisibleRegionsDirty = false;
911        invalidateHwcGeometry();
912
913        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
914        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
915            Region opaqueRegion;
916            Region dirtyRegion;
917            Vector< sp<LayerBase> > layersSortedByZ;
918            const sp<DisplayDevice>& hw(mDisplays[dpy]);
919            const Transform& tr(hw->getTransform());
920            const Rect bounds(hw->getBounds());
921            if (hw->canDraw()) {
922                SurfaceFlinger::computeVisibleRegions(currentLayers,
923                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
924
925                const size_t count = currentLayers.size();
926                for (size_t i=0 ; i<count ; i++) {
927                    const sp<LayerBase>& layer(currentLayers[i]);
928                    const Layer::State& s(layer->drawingState());
929                    if (s.layerStack == hw->getLayerStack()) {
930                        Region drawRegion(tr.transform(
931                                layer->visibleNonTransparentRegion));
932                        drawRegion.andSelf(bounds);
933                        if (!drawRegion.isEmpty()) {
934                            layersSortedByZ.add(layer);
935                        }
936                    }
937                }
938            }
939            hw->setVisibleLayersSortedByZ(layersSortedByZ);
940            hw->undefinedRegion.set(bounds);
941            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
942            hw->dirtyRegion.orSelf(dirtyRegion);
943        }
944    }
945}
946
947void SurfaceFlinger::setUpHWComposer() {
948    HWComposer& hwc(getHwComposer());
949    if (hwc.initCheck() == NO_ERROR) {
950        // build the h/w work list
951        if (CC_UNLIKELY(mHwWorkListDirty)) {
952            mHwWorkListDirty = false;
953            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
954                sp<const DisplayDevice> hw(mDisplays[dpy]);
955                const int32_t id = hw->getHwcDisplayId();
956                if (id >= 0) {
957                    const Vector< sp<LayerBase> >& currentLayers(
958                        hw->getVisibleLayersSortedByZ());
959                    const size_t count = currentLayers.size();
960                    if (hwc.createWorkList(id, count) == NO_ERROR) {
961                        HWComposer::LayerListIterator cur = hwc.begin(id);
962                        const HWComposer::LayerListIterator end = hwc.end(id);
963                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
964                            const sp<LayerBase>& layer(currentLayers[i]);
965                            layer->setGeometry(hw, *cur);
966                            if (mDebugDisableHWC || mDebugRegion) {
967                                cur->setSkip(true);
968                            }
969                        }
970                    }
971                }
972            }
973        }
974
975        // set the per-frame data
976        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
977            sp<const DisplayDevice> hw(mDisplays[dpy]);
978            const int32_t id = hw->getHwcDisplayId();
979            if (id >= 0) {
980                const Vector< sp<LayerBase> >& currentLayers(
981                    hw->getVisibleLayersSortedByZ());
982                const size_t count = currentLayers.size();
983                HWComposer::LayerListIterator cur = hwc.begin(id);
984                const HWComposer::LayerListIterator end = hwc.end(id);
985                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
986                    /*
987                     * update the per-frame h/w composer data for each layer
988                     * and build the transparent region of the FB
989                     */
990                    const sp<LayerBase>& layer(currentLayers[i]);
991                    layer->setPerFrameData(hw, *cur);
992                }
993            }
994        }
995
996        status_t err = hwc.prepare();
997        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
998    }
999}
1000
1001void SurfaceFlinger::doComposition() {
1002    ATRACE_CALL();
1003    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
1004    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1005        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1006        if (hw->canDraw()) {
1007            // transform the dirty region into this screen's coordinate space
1008            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
1009
1010            // repaint the framebuffer (if needed)
1011            doDisplayComposition(hw, dirtyRegion);
1012
1013            hw->dirtyRegion.clear();
1014            hw->flip(hw->swapRegion);
1015            hw->swapRegion.clear();
1016        }
1017        // inform the h/w that we're done compositing
1018        hw->compositionComplete();
1019    }
1020    postFramebuffer();
1021}
1022
1023void SurfaceFlinger::postFramebuffer()
1024{
1025    ATRACE_CALL();
1026
1027    const nsecs_t now = systemTime();
1028    mDebugInSwapBuffers = now;
1029
1030    HWComposer& hwc(getHwComposer());
1031    if (hwc.initCheck() == NO_ERROR) {
1032        if (!hwc.supportsFramebufferTarget()) {
1033            // EGL spec says:
1034            //   "surface must be bound to the calling thread's current context,
1035            //    for the current rendering API."
1036            DisplayDevice::makeCurrent(mEGLDisplay,
1037                    getDefaultDisplayDevice(), mEGLContext);
1038        }
1039        hwc.commit();
1040    }
1041
1042    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1043        sp<const DisplayDevice> hw(mDisplays[dpy]);
1044        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1045        hw->onSwapBuffersCompleted(hwc);
1046        const size_t count = currentLayers.size();
1047        int32_t id = hw->getHwcDisplayId();
1048        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1049            HWComposer::LayerListIterator cur = hwc.begin(id);
1050            const HWComposer::LayerListIterator end = hwc.end(id);
1051            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1052                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1053            }
1054        } else {
1055            for (size_t i = 0; i < count; i++) {
1056                currentLayers[i]->onLayerDisplayed(hw, NULL);
1057            }
1058        }
1059    }
1060
1061    mLastSwapBufferTime = systemTime() - now;
1062    mDebugInSwapBuffers = 0;
1063}
1064
1065void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1066{
1067    ATRACE_CALL();
1068
1069    Mutex::Autolock _l(mStateLock);
1070    const nsecs_t now = systemTime();
1071    mDebugInTransaction = now;
1072
1073    // Here we're guaranteed that some transaction flags are set
1074    // so we can call handleTransactionLocked() unconditionally.
1075    // We call getTransactionFlags(), which will also clear the flags,
1076    // with mStateLock held to guarantee that mCurrentState won't change
1077    // until the transaction is committed.
1078
1079    transactionFlags = getTransactionFlags(eTransactionMask);
1080    handleTransactionLocked(transactionFlags);
1081
1082    mLastTransactionTime = systemTime() - now;
1083    mDebugInTransaction = 0;
1084    invalidateHwcGeometry();
1085    // here the transaction has been committed
1086}
1087
1088void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1089{
1090    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1091    const size_t count = currentLayers.size();
1092
1093    /*
1094     * Traversal of the children
1095     * (perform the transaction for each of them if needed)
1096     */
1097
1098    if (transactionFlags & eTraversalNeeded) {
1099        for (size_t i=0 ; i<count ; i++) {
1100            const sp<LayerBase>& layer(currentLayers[i]);
1101            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1102            if (!trFlags) continue;
1103
1104            const uint32_t flags = layer->doTransaction(0);
1105            if (flags & Layer::eVisibleRegion)
1106                mVisibleRegionsDirty = true;
1107        }
1108    }
1109
1110    /*
1111     * Perform display own transactions if needed
1112     */
1113
1114    if (transactionFlags & eDisplayTransactionNeeded) {
1115        // here we take advantage of Vector's copy-on-write semantics to
1116        // improve performance by skipping the transaction entirely when
1117        // know that the lists are identical
1118        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1119        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1120        if (!curr.isIdenticalTo(draw)) {
1121            mVisibleRegionsDirty = true;
1122            const size_t cc = curr.size();
1123                  size_t dc = draw.size();
1124
1125            // find the displays that were removed
1126            // (ie: in drawing state but not in current state)
1127            // also handle displays that changed
1128            // (ie: displays that are in both lists)
1129            for (size_t i=0 ; i<dc ; i++) {
1130                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1131                if (j < 0) {
1132                    // in drawing state but not in current state
1133                    if (!draw[i].isMainDisplay()) {
1134                        // Call makeCurrent() on the primary display so we can
1135                        // be sure that nothing associated with this display
1136                        // is current.
1137                        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1138                        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1139                        mDisplays.removeItem(draw.keyAt(i));
1140                        getHwComposer().disconnectDisplay(draw[i].type);
1141                        mEventThread->onHotplugReceived(draw[i].type, false);
1142                    } else {
1143                        ALOGW("trying to remove the main display");
1144                    }
1145                } else {
1146                    // this display is in both lists. see if something changed.
1147                    const DisplayDeviceState& state(curr[j]);
1148                    const wp<IBinder>& display(curr.keyAt(j));
1149                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1150                        // changing the surface is like destroying and
1151                        // recreating the DisplayDevice, so we just remove it
1152                        // from the drawing state, so that it get re-added
1153                        // below.
1154                        mDisplays.removeItem(display);
1155                        mDrawingState.displays.removeItemsAt(i);
1156                        dc--; i--;
1157                        // at this point we must loop to the next item
1158                        continue;
1159                    }
1160
1161                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1162                    if (disp != NULL) {
1163                        if (state.layerStack != draw[i].layerStack) {
1164                            disp->setLayerStack(state.layerStack);
1165                        }
1166                        if ((state.orientation != draw[i].orientation)
1167                                || (state.viewport != draw[i].viewport)
1168                                || (state.frame != draw[i].frame))
1169                        {
1170                            disp->setProjection(state.orientation,
1171                                    state.viewport, state.frame);
1172                        }
1173                    }
1174                }
1175            }
1176
1177            // find displays that were added
1178            // (ie: in current state but not in drawing state)
1179            for (size_t i=0 ; i<cc ; i++) {
1180                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1181                    const DisplayDeviceState& state(curr[i]);
1182
1183                    sp<FramebufferSurface> fbs;
1184                    sp<Surface> stc;
1185                    if (!state.isVirtualDisplay()) {
1186
1187                        ALOGE_IF(state.surface!=NULL,
1188                                "adding a supported display, but rendering "
1189                                "surface is provided (%p), ignoring it",
1190                                state.surface.get());
1191
1192                        // for supported (by hwc) displays we provide our
1193                        // own rendering surface
1194                        fbs = new FramebufferSurface(*mHwc, state.type);
1195                        stc = new Surface(
1196                                static_cast< sp<IGraphicBufferProducer> >(
1197                                        fbs->getBufferQueue()));
1198                    } else {
1199                        if (state.surface != NULL) {
1200                            stc = new Surface(state.surface);
1201                        }
1202                    }
1203
1204                    const wp<IBinder>& display(curr.keyAt(i));
1205                    if (stc != NULL) {
1206                        sp<DisplayDevice> hw = new DisplayDevice(this,
1207                                state.type, state.isSecure, display, stc, fbs,
1208                                mEGLConfig);
1209                        hw->setLayerStack(state.layerStack);
1210                        hw->setProjection(state.orientation,
1211                                state.viewport, state.frame);
1212                        hw->setDisplayName(state.displayName);
1213                        mDisplays.add(display, hw);
1214                        mEventThread->onHotplugReceived(state.type, true);
1215                    }
1216                }
1217            }
1218        }
1219    }
1220
1221    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1222        // The transform hint might have changed for some layers
1223        // (either because a display has changed, or because a layer
1224        // as changed).
1225        //
1226        // Walk through all the layers in currentLayers,
1227        // and update their transform hint.
1228        //
1229        // If a layer is visible only on a single display, then that
1230        // display is used to calculate the hint, otherwise we use the
1231        // default display.
1232        //
1233        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1234        // the hint is set before we acquire a buffer from the surface texture.
1235        //
1236        // NOTE: layer transactions have taken place already, so we use their
1237        // drawing state. However, SurfaceFlinger's own transaction has not
1238        // happened yet, so we must use the current state layer list
1239        // (soon to become the drawing state list).
1240        //
1241        sp<const DisplayDevice> disp;
1242        uint32_t currentlayerStack = 0;
1243        for (size_t i=0; i<count; i++) {
1244            // NOTE: we rely on the fact that layers are sorted by
1245            // layerStack first (so we don't have to traverse the list
1246            // of displays for every layer).
1247            const sp<LayerBase>& layerBase(currentLayers[i]);
1248            uint32_t layerStack = layerBase->drawingState().layerStack;
1249            if (i==0 || currentlayerStack != layerStack) {
1250                currentlayerStack = layerStack;
1251                // figure out if this layerstack is mirrored
1252                // (more than one display) if so, pick the default display,
1253                // if not, pick the only display it's on.
1254                disp.clear();
1255                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1256                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1257                    if (hw->getLayerStack() == currentlayerStack) {
1258                        if (disp == NULL) {
1259                            disp = hw;
1260                        } else {
1261                            disp = getDefaultDisplayDevice();
1262                            break;
1263                        }
1264                    }
1265                }
1266            }
1267            if (disp != NULL) {
1268                // presumably this means this layer is using a layerStack
1269                // that is not visible on any display
1270                layerBase->updateTransformHint(disp);
1271            }
1272        }
1273    }
1274
1275
1276    /*
1277     * Perform our own transaction if needed
1278     */
1279
1280    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1281    if (currentLayers.size() > previousLayers.size()) {
1282        // layers have been added
1283        mVisibleRegionsDirty = true;
1284    }
1285
1286    // some layers might have been removed, so
1287    // we need to update the regions they're exposing.
1288    if (mLayersRemoved) {
1289        mLayersRemoved = false;
1290        mVisibleRegionsDirty = true;
1291        const size_t count = previousLayers.size();
1292        for (size_t i=0 ; i<count ; i++) {
1293            const sp<LayerBase>& layer(previousLayers[i]);
1294            if (currentLayers.indexOf(layer) < 0) {
1295                // this layer is not visible anymore
1296                // TODO: we could traverse the tree from front to back and
1297                //       compute the actual visible region
1298                // TODO: we could cache the transformed region
1299                const Layer::State& s(layer->drawingState());
1300                Region visibleReg = s.transform.transform(
1301                        Region(Rect(s.active.w, s.active.h)));
1302                invalidateLayerStack(s.layerStack, visibleReg);
1303            }
1304        }
1305    }
1306
1307    commitTransaction();
1308}
1309
1310void SurfaceFlinger::commitTransaction()
1311{
1312    if (!mLayersPendingRemoval.isEmpty()) {
1313        // Notify removed layers now that they can't be drawn from
1314        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1315            mLayersPendingRemoval[i]->onRemoved();
1316        }
1317        mLayersPendingRemoval.clear();
1318    }
1319
1320    // If this transaction is part of a window animation then the next frame
1321    // we composite should be considered an animation as well.
1322    mAnimCompositionPending = mAnimTransactionPending;
1323
1324    mDrawingState = mCurrentState;
1325    mTransactionPending = false;
1326    mAnimTransactionPending = false;
1327    mTransactionCV.broadcast();
1328}
1329
1330void SurfaceFlinger::computeVisibleRegions(
1331        const LayerVector& currentLayers, uint32_t layerStack,
1332        Region& outDirtyRegion, Region& outOpaqueRegion)
1333{
1334    ATRACE_CALL();
1335
1336    Region aboveOpaqueLayers;
1337    Region aboveCoveredLayers;
1338    Region dirty;
1339
1340    outDirtyRegion.clear();
1341
1342    size_t i = currentLayers.size();
1343    while (i--) {
1344        const sp<LayerBase>& layer = currentLayers[i];
1345
1346        // start with the whole surface at its current location
1347        const Layer::State& s(layer->drawingState());
1348
1349        // only consider the layers on the given layer stack
1350        if (s.layerStack != layerStack)
1351            continue;
1352
1353        /*
1354         * opaqueRegion: area of a surface that is fully opaque.
1355         */
1356        Region opaqueRegion;
1357
1358        /*
1359         * visibleRegion: area of a surface that is visible on screen
1360         * and not fully transparent. This is essentially the layer's
1361         * footprint minus the opaque regions above it.
1362         * Areas covered by a translucent surface are considered visible.
1363         */
1364        Region visibleRegion;
1365
1366        /*
1367         * coveredRegion: area of a surface that is covered by all
1368         * visible regions above it (which includes the translucent areas).
1369         */
1370        Region coveredRegion;
1371
1372        /*
1373         * transparentRegion: area of a surface that is hinted to be completely
1374         * transparent. This is only used to tell when the layer has no visible
1375         * non-transparent regions and can be removed from the layer list. It
1376         * does not affect the visibleRegion of this layer or any layers
1377         * beneath it. The hint may not be correct if apps don't respect the
1378         * SurfaceView restrictions (which, sadly, some don't).
1379         */
1380        Region transparentRegion;
1381
1382
1383        // handle hidden surfaces by setting the visible region to empty
1384        if (CC_LIKELY(layer->isVisible())) {
1385            const bool translucent = !layer->isOpaque();
1386            Rect bounds(s.transform.transform(layer->computeBounds()));
1387            visibleRegion.set(bounds);
1388            if (!visibleRegion.isEmpty()) {
1389                // Remove the transparent area from the visible region
1390                if (translucent) {
1391                    const Transform tr(s.transform);
1392                    if (tr.transformed()) {
1393                        if (tr.preserveRects()) {
1394                            // transform the transparent region
1395                            transparentRegion = tr.transform(s.transparentRegion);
1396                        } else {
1397                            // transformation too complex, can't do the
1398                            // transparent region optimization.
1399                            transparentRegion.clear();
1400                        }
1401                    } else {
1402                        transparentRegion = s.transparentRegion;
1403                    }
1404                }
1405
1406                // compute the opaque region
1407                const int32_t layerOrientation = s.transform.getOrientation();
1408                if (s.alpha==255 && !translucent &&
1409                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1410                    // the opaque region is the layer's footprint
1411                    opaqueRegion = visibleRegion;
1412                }
1413            }
1414        }
1415
1416        // Clip the covered region to the visible region
1417        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1418
1419        // Update aboveCoveredLayers for next (lower) layer
1420        aboveCoveredLayers.orSelf(visibleRegion);
1421
1422        // subtract the opaque region covered by the layers above us
1423        visibleRegion.subtractSelf(aboveOpaqueLayers);
1424
1425        // compute this layer's dirty region
1426        if (layer->contentDirty) {
1427            // we need to invalidate the whole region
1428            dirty = visibleRegion;
1429            // as well, as the old visible region
1430            dirty.orSelf(layer->visibleRegion);
1431            layer->contentDirty = false;
1432        } else {
1433            /* compute the exposed region:
1434             *   the exposed region consists of two components:
1435             *   1) what's VISIBLE now and was COVERED before
1436             *   2) what's EXPOSED now less what was EXPOSED before
1437             *
1438             * note that (1) is conservative, we start with the whole
1439             * visible region but only keep what used to be covered by
1440             * something -- which mean it may have been exposed.
1441             *
1442             * (2) handles areas that were not covered by anything but got
1443             * exposed because of a resize.
1444             */
1445            const Region newExposed = visibleRegion - coveredRegion;
1446            const Region oldVisibleRegion = layer->visibleRegion;
1447            const Region oldCoveredRegion = layer->coveredRegion;
1448            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1449            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1450        }
1451        dirty.subtractSelf(aboveOpaqueLayers);
1452
1453        // accumulate to the screen dirty region
1454        outDirtyRegion.orSelf(dirty);
1455
1456        // Update aboveOpaqueLayers for next (lower) layer
1457        aboveOpaqueLayers.orSelf(opaqueRegion);
1458
1459        // Store the visible region in screen space
1460        layer->setVisibleRegion(visibleRegion);
1461        layer->setCoveredRegion(coveredRegion);
1462        layer->setVisibleNonTransparentRegion(
1463                visibleRegion.subtract(transparentRegion));
1464    }
1465
1466    outOpaqueRegion = aboveOpaqueLayers;
1467}
1468
1469void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1470        const Region& dirty) {
1471    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1472        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1473        if (hw->getLayerStack() == layerStack) {
1474            hw->dirtyRegion.orSelf(dirty);
1475        }
1476    }
1477}
1478
1479void SurfaceFlinger::handlePageFlip()
1480{
1481    Region dirtyRegion;
1482
1483    bool visibleRegions = false;
1484    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1485    const size_t count = currentLayers.size();
1486    for (size_t i=0 ; i<count ; i++) {
1487        const sp<LayerBase>& layer(currentLayers[i]);
1488        const Region dirty(layer->latchBuffer(visibleRegions));
1489        const Layer::State& s(layer->drawingState());
1490        invalidateLayerStack(s.layerStack, dirty);
1491    }
1492
1493    mVisibleRegionsDirty |= visibleRegions;
1494}
1495
1496void SurfaceFlinger::invalidateHwcGeometry()
1497{
1498    mHwWorkListDirty = true;
1499}
1500
1501
1502void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1503        const Region& inDirtyRegion)
1504{
1505    Region dirtyRegion(inDirtyRegion);
1506
1507    // compute the invalid region
1508    hw->swapRegion.orSelf(dirtyRegion);
1509
1510    uint32_t flags = hw->getFlags();
1511    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1512        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1513        // takes a rectangle, we must make sure to update that whole
1514        // rectangle in that case
1515        dirtyRegion.set(hw->swapRegion.bounds());
1516    } else {
1517        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1518            // We need to redraw the rectangle that will be updated
1519            // (pushed to the framebuffer).
1520            // This is needed because PARTIAL_UPDATES only takes one
1521            // rectangle instead of a region (see DisplayDevice::flip())
1522            dirtyRegion.set(hw->swapRegion.bounds());
1523        } else {
1524            // we need to redraw everything (the whole screen)
1525            dirtyRegion.set(hw->bounds());
1526            hw->swapRegion = dirtyRegion;
1527        }
1528    }
1529
1530    doComposeSurfaces(hw, dirtyRegion);
1531
1532    // update the swap region and clear the dirty region
1533    hw->swapRegion.orSelf(dirtyRegion);
1534
1535    // swap buffers (presentation)
1536    hw->swapBuffers(getHwComposer());
1537}
1538
1539void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1540{
1541    const int32_t id = hw->getHwcDisplayId();
1542    HWComposer& hwc(getHwComposer());
1543    HWComposer::LayerListIterator cur = hwc.begin(id);
1544    const HWComposer::LayerListIterator end = hwc.end(id);
1545
1546    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1547    if (hasGlesComposition) {
1548        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1549
1550        // set the frame buffer
1551        glMatrixMode(GL_MODELVIEW);
1552        glLoadIdentity();
1553
1554        // Never touch the framebuffer if we don't have any framebuffer layers
1555        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1556        if (hasHwcComposition) {
1557            // when using overlays, we assume a fully transparent framebuffer
1558            // NOTE: we could reduce how much we need to clear, for instance
1559            // remove where there are opaque FB layers. however, on some
1560            // GPUs doing a "clean slate" glClear might be more efficient.
1561            // We'll revisit later if needed.
1562            glClearColor(0, 0, 0, 0);
1563            glClear(GL_COLOR_BUFFER_BIT);
1564        } else {
1565            // we start with the whole screen area
1566            const Region bounds(hw->getBounds());
1567
1568            // we remove the scissor part
1569            // we're left with the letterbox region
1570            // (common case is that letterbox ends-up being empty)
1571            const Region letterbox(bounds.subtract(hw->getScissor()));
1572
1573            // compute the area to clear
1574            Region region(hw->undefinedRegion.merge(letterbox));
1575
1576            // but limit it to the dirty region
1577            region.andSelf(dirty);
1578
1579            // screen is already cleared here
1580            if (!region.isEmpty()) {
1581                // can happen with SurfaceView
1582                drawWormhole(hw, region);
1583            }
1584        }
1585
1586        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1587            // just to be on the safe side, we don't set the
1588            // scissor on the main display. It should never be needed
1589            // anyways (though in theory it could since the API allows it).
1590            const Rect& bounds(hw->getBounds());
1591            const Rect& scissor(hw->getScissor());
1592            if (scissor != bounds) {
1593                // scissor doesn't match the screen's dimensions, so we
1594                // need to clear everything outside of it and enable
1595                // the GL scissor so we don't draw anything where we shouldn't
1596                const GLint height = hw->getHeight();
1597                glScissor(scissor.left, height - scissor.bottom,
1598                        scissor.getWidth(), scissor.getHeight());
1599                // enable scissor for this frame
1600                glEnable(GL_SCISSOR_TEST);
1601            }
1602        }
1603    }
1604
1605    /*
1606     * and then, render the layers targeted at the framebuffer
1607     */
1608
1609    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1610    const size_t count = layers.size();
1611    const Transform& tr = hw->getTransform();
1612    if (cur != end) {
1613        // we're using h/w composer
1614        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1615            const sp<LayerBase>& layer(layers[i]);
1616            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1617            if (!clip.isEmpty()) {
1618                switch (cur->getCompositionType()) {
1619                    case HWC_OVERLAY: {
1620                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1621                                && i
1622                                && layer->isOpaque()
1623                                && hasGlesComposition) {
1624                            // never clear the very first layer since we're
1625                            // guaranteed the FB is already cleared
1626                            layer->clearWithOpenGL(hw, clip);
1627                        }
1628                        break;
1629                    }
1630                    case HWC_FRAMEBUFFER: {
1631                        layer->draw(hw, clip);
1632                        break;
1633                    }
1634                    case HWC_FRAMEBUFFER_TARGET: {
1635                        // this should not happen as the iterator shouldn't
1636                        // let us get there.
1637                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1638                        break;
1639                    }
1640                }
1641            }
1642            layer->setAcquireFence(hw, *cur);
1643        }
1644    } else {
1645        // we're not using h/w composer
1646        for (size_t i=0 ; i<count ; ++i) {
1647            const sp<LayerBase>& layer(layers[i]);
1648            const Region clip(dirty.intersect(
1649                    tr.transform(layer->visibleRegion)));
1650            if (!clip.isEmpty()) {
1651                layer->draw(hw, clip);
1652            }
1653        }
1654    }
1655
1656    // disable scissor at the end of the frame
1657    glDisable(GL_SCISSOR_TEST);
1658}
1659
1660void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1661        const Region& region) const
1662{
1663    glDisable(GL_TEXTURE_EXTERNAL_OES);
1664    glDisable(GL_TEXTURE_2D);
1665    glDisable(GL_BLEND);
1666    glColor4f(0,0,0,0);
1667
1668    const int32_t height = hw->getHeight();
1669    Region::const_iterator it = region.begin();
1670    Region::const_iterator const end = region.end();
1671    while (it != end) {
1672        const Rect& r = *it++;
1673        GLfloat vertices[][2] = {
1674                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1675                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1676                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1677                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1678        };
1679        glVertexPointer(2, GL_FLOAT, 0, vertices);
1680        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1681    }
1682}
1683
1684void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1685        const sp<IBinder>& handle,
1686        const sp<LayerBaseClient>& lbc)
1687{
1688    // attach this layer to the client
1689    client->attachLayer(handle, lbc);
1690
1691    // add this layer to the current state list
1692    Mutex::Autolock _l(mStateLock);
1693    mCurrentState.layersSortedByZ.add(lbc);
1694}
1695
1696status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1697{
1698    Mutex::Autolock _l(mStateLock);
1699    status_t err = purgatorizeLayer_l(layer);
1700    if (err == NO_ERROR)
1701        setTransactionFlags(eTransactionNeeded);
1702    return err;
1703}
1704
1705status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1706{
1707    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1708    if (index >= 0) {
1709        mLayersRemoved = true;
1710        return NO_ERROR;
1711    }
1712    return status_t(index);
1713}
1714
1715status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1716{
1717    // First add the layer to the purgatory list, which makes sure it won't
1718    // go away, then remove it from the main list (through a transaction).
1719    ssize_t err = removeLayer_l(layerBase);
1720    if (err >= 0) {
1721        mLayerPurgatory.add(layerBase);
1722    }
1723
1724    mLayersPendingRemoval.push(layerBase);
1725
1726    // it's possible that we don't find a layer, because it might
1727    // have been destroyed already -- this is not technically an error
1728    // from the user because there is a race between Client::destroySurface(),
1729    // ~Client() and ~ISurface().
1730    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1731}
1732
1733uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1734{
1735    return android_atomic_release_load(&mTransactionFlags);
1736}
1737
1738uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1739{
1740    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1741}
1742
1743uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1744{
1745    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1746    if ((old & flags)==0) { // wake the server up
1747        signalTransaction();
1748    }
1749    return old;
1750}
1751
1752void SurfaceFlinger::setTransactionState(
1753        const Vector<ComposerState>& state,
1754        const Vector<DisplayState>& displays,
1755        uint32_t flags)
1756{
1757    ATRACE_CALL();
1758    Mutex::Autolock _l(mStateLock);
1759    uint32_t transactionFlags = 0;
1760
1761    if (flags & eAnimation) {
1762        // For window updates that are part of an animation we must wait for
1763        // previous animation "frames" to be handled.
1764        while (mAnimTransactionPending) {
1765            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1766            if (CC_UNLIKELY(err != NO_ERROR)) {
1767                // just in case something goes wrong in SF, return to the
1768                // caller after a few seconds.
1769                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1770                        "waiting for previous animation frame");
1771                mAnimTransactionPending = false;
1772                break;
1773            }
1774        }
1775    }
1776
1777    size_t count = displays.size();
1778    for (size_t i=0 ; i<count ; i++) {
1779        const DisplayState& s(displays[i]);
1780        transactionFlags |= setDisplayStateLocked(s);
1781    }
1782
1783    count = state.size();
1784    for (size_t i=0 ; i<count ; i++) {
1785        const ComposerState& s(state[i]);
1786        // Here we need to check that the interface we're given is indeed
1787        // one of our own. A malicious client could give us a NULL
1788        // IInterface, or one of its own or even one of our own but a
1789        // different type. All these situations would cause us to crash.
1790        //
1791        // NOTE: it would be better to use RTTI as we could directly check
1792        // that we have a Client*. however, RTTI is disabled in Android.
1793        if (s.client != NULL) {
1794            sp<IBinder> binder = s.client->asBinder();
1795            if (binder != NULL) {
1796                String16 desc(binder->getInterfaceDescriptor());
1797                if (desc == ISurfaceComposerClient::descriptor) {
1798                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1799                    transactionFlags |= setClientStateLocked(client, s.state);
1800                }
1801            }
1802        }
1803    }
1804
1805    if (transactionFlags) {
1806        // this triggers the transaction
1807        setTransactionFlags(transactionFlags);
1808
1809        // if this is a synchronous transaction, wait for it to take effect
1810        // before returning.
1811        if (flags & eSynchronous) {
1812            mTransactionPending = true;
1813        }
1814        if (flags & eAnimation) {
1815            mAnimTransactionPending = true;
1816        }
1817        while (mTransactionPending) {
1818            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1819            if (CC_UNLIKELY(err != NO_ERROR)) {
1820                // just in case something goes wrong in SF, return to the
1821                // called after a few seconds.
1822                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1823                mTransactionPending = false;
1824                break;
1825            }
1826        }
1827    }
1828}
1829
1830uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1831{
1832    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1833    if (dpyIdx < 0)
1834        return 0;
1835
1836    uint32_t flags = 0;
1837    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1838    if (disp.isValid()) {
1839        const uint32_t what = s.what;
1840        if (what & DisplayState::eSurfaceChanged) {
1841            if (disp.surface->asBinder() != s.surface->asBinder()) {
1842                disp.surface = s.surface;
1843                flags |= eDisplayTransactionNeeded;
1844            }
1845        }
1846        if (what & DisplayState::eLayerStackChanged) {
1847            if (disp.layerStack != s.layerStack) {
1848                disp.layerStack = s.layerStack;
1849                flags |= eDisplayTransactionNeeded;
1850            }
1851        }
1852        if (what & DisplayState::eDisplayProjectionChanged) {
1853            if (disp.orientation != s.orientation) {
1854                disp.orientation = s.orientation;
1855                flags |= eDisplayTransactionNeeded;
1856            }
1857            if (disp.frame != s.frame) {
1858                disp.frame = s.frame;
1859                flags |= eDisplayTransactionNeeded;
1860            }
1861            if (disp.viewport != s.viewport) {
1862                disp.viewport = s.viewport;
1863                flags |= eDisplayTransactionNeeded;
1864            }
1865        }
1866    }
1867    return flags;
1868}
1869
1870uint32_t SurfaceFlinger::setClientStateLocked(
1871        const sp<Client>& client,
1872        const layer_state_t& s)
1873{
1874    uint32_t flags = 0;
1875    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1876    if (layer != 0) {
1877        const uint32_t what = s.what;
1878        if (what & layer_state_t::ePositionChanged) {
1879            if (layer->setPosition(s.x, s.y))
1880                flags |= eTraversalNeeded;
1881        }
1882        if (what & layer_state_t::eLayerChanged) {
1883            // NOTE: index needs to be calculated before we update the state
1884            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1885            if (layer->setLayer(s.z)) {
1886                mCurrentState.layersSortedByZ.removeAt(idx);
1887                mCurrentState.layersSortedByZ.add(layer);
1888                // we need traversal (state changed)
1889                // AND transaction (list changed)
1890                flags |= eTransactionNeeded|eTraversalNeeded;
1891            }
1892        }
1893        if (what & layer_state_t::eSizeChanged) {
1894            if (layer->setSize(s.w, s.h)) {
1895                flags |= eTraversalNeeded;
1896            }
1897        }
1898        if (what & layer_state_t::eAlphaChanged) {
1899            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1900                flags |= eTraversalNeeded;
1901        }
1902        if (what & layer_state_t::eMatrixChanged) {
1903            if (layer->setMatrix(s.matrix))
1904                flags |= eTraversalNeeded;
1905        }
1906        if (what & layer_state_t::eTransparentRegionChanged) {
1907            if (layer->setTransparentRegionHint(s.transparentRegion))
1908                flags |= eTraversalNeeded;
1909        }
1910        if (what & layer_state_t::eVisibilityChanged) {
1911            if (layer->setFlags(s.flags, s.mask))
1912                flags |= eTraversalNeeded;
1913        }
1914        if (what & layer_state_t::eCropChanged) {
1915            if (layer->setCrop(s.crop))
1916                flags |= eTraversalNeeded;
1917        }
1918        if (what & layer_state_t::eLayerStackChanged) {
1919            // NOTE: index needs to be calculated before we update the state
1920            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1921            if (layer->setLayerStack(s.layerStack)) {
1922                mCurrentState.layersSortedByZ.removeAt(idx);
1923                mCurrentState.layersSortedByZ.add(layer);
1924                // we need traversal (state changed)
1925                // AND transaction (list changed)
1926                flags |= eTransactionNeeded|eTraversalNeeded;
1927            }
1928        }
1929    }
1930    return flags;
1931}
1932
1933sp<ISurface> SurfaceFlinger::createLayer(
1934        const String8& name,
1935        const sp<Client>& client,
1936        uint32_t w, uint32_t h, PixelFormat format,
1937        uint32_t flags)
1938{
1939    sp<LayerBaseClient> layer;
1940    sp<ISurface> surfaceHandle;
1941
1942    if (int32_t(w|h) < 0) {
1943        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1944                int(w), int(h));
1945        return surfaceHandle;
1946    }
1947
1948    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1949    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1950        case ISurfaceComposerClient::eFXSurfaceNormal:
1951            layer = createNormalLayer(client, w, h, flags, format);
1952            break;
1953        case ISurfaceComposerClient::eFXSurfaceDim:
1954            layer = createDimLayer(client, w, h, flags);
1955            break;
1956    }
1957
1958    if (layer != 0) {
1959        layer->initStates(w, h, flags);
1960        layer->setName(name);
1961        surfaceHandle = layer->getSurface();
1962        if (surfaceHandle != 0) {
1963            addClientLayer(client, surfaceHandle->asBinder(), layer);
1964        }
1965        setTransactionFlags(eTransactionNeeded);
1966    }
1967
1968    return surfaceHandle;
1969}
1970
1971sp<Layer> SurfaceFlinger::createNormalLayer(
1972        const sp<Client>& client,
1973        uint32_t w, uint32_t h, uint32_t flags,
1974        PixelFormat& format)
1975{
1976    // initialize the surfaces
1977    switch (format) {
1978    case PIXEL_FORMAT_TRANSPARENT:
1979    case PIXEL_FORMAT_TRANSLUCENT:
1980        format = PIXEL_FORMAT_RGBA_8888;
1981        break;
1982    case PIXEL_FORMAT_OPAQUE:
1983#ifdef NO_RGBX_8888
1984        format = PIXEL_FORMAT_RGB_565;
1985#else
1986        format = PIXEL_FORMAT_RGBX_8888;
1987#endif
1988        break;
1989    }
1990
1991#ifdef NO_RGBX_8888
1992    if (format == PIXEL_FORMAT_RGBX_8888)
1993        format = PIXEL_FORMAT_RGBA_8888;
1994#endif
1995
1996    sp<Layer> layer = new Layer(this, client);
1997    status_t err = layer->setBuffers(w, h, format, flags);
1998    if (CC_LIKELY(err != NO_ERROR)) {
1999        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
2000        layer.clear();
2001    }
2002    return layer;
2003}
2004
2005sp<LayerDim> SurfaceFlinger::createDimLayer(
2006        const sp<Client>& client,
2007        uint32_t w, uint32_t h, uint32_t flags)
2008{
2009    sp<LayerDim> layer = new LayerDim(this, client);
2010    return layer;
2011}
2012
2013status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
2014{
2015    /*
2016     * called by the window manager, when a surface should be marked for
2017     * destruction.
2018     *
2019     * The surface is removed from the current and drawing lists, but placed
2020     * in the purgatory queue, so it's not destroyed right-away (we need
2021     * to wait for all client's references to go away first).
2022     */
2023
2024    status_t err = NAME_NOT_FOUND;
2025    Mutex::Autolock _l(mStateLock);
2026    sp<LayerBaseClient> layer = client->getLayerUser(handle);
2027
2028    if (layer != 0) {
2029        err = purgatorizeLayer_l(layer);
2030        if (err == NO_ERROR) {
2031            setTransactionFlags(eTransactionNeeded);
2032        }
2033    }
2034    return err;
2035}
2036
2037status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
2038{
2039    // called by ~ISurface() when all references are gone
2040    status_t err = NO_ERROR;
2041    sp<LayerBaseClient> l(layer.promote());
2042    if (l != NULL) {
2043        Mutex::Autolock _l(mStateLock);
2044        err = removeLayer_l(l);
2045        if (err == NAME_NOT_FOUND) {
2046            // The surface wasn't in the current list, which means it was
2047            // removed already, which means it is in the purgatory,
2048            // and need to be removed from there.
2049            ssize_t idx = mLayerPurgatory.remove(l);
2050            ALOGE_IF(idx < 0,
2051                    "layer=%p is not in the purgatory list", l.get());
2052        }
2053        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2054                "error removing layer=%p (%s)", l.get(), strerror(-err));
2055    }
2056    return err;
2057}
2058
2059// ---------------------------------------------------------------------------
2060
2061void SurfaceFlinger::onInitializeDisplays() {
2062    // reset screen orientation and use primary layer stack
2063    Vector<ComposerState> state;
2064    Vector<DisplayState> displays;
2065    DisplayState d;
2066    d.what = DisplayState::eDisplayProjectionChanged |
2067             DisplayState::eLayerStackChanged;
2068    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2069    d.layerStack = 0;
2070    d.orientation = DisplayState::eOrientationDefault;
2071    d.frame.makeInvalid();
2072    d.viewport.makeInvalid();
2073    displays.add(d);
2074    setTransactionState(state, displays, 0);
2075    onScreenAcquired(getDefaultDisplayDevice());
2076}
2077
2078void SurfaceFlinger::initializeDisplays() {
2079    class MessageScreenInitialized : public MessageBase {
2080        SurfaceFlinger* flinger;
2081    public:
2082        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2083        virtual bool handler() {
2084            flinger->onInitializeDisplays();
2085            return true;
2086        }
2087    };
2088    sp<MessageBase> msg = new MessageScreenInitialized(this);
2089    postMessageAsync(msg);  // we may be called from main thread, use async message
2090}
2091
2092
2093void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2094    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2095    if (hw->isScreenAcquired()) {
2096        // this is expected, e.g. when power manager wakes up during boot
2097        ALOGD(" screen was previously acquired");
2098        return;
2099    }
2100
2101    hw->acquireScreen();
2102    int32_t type = hw->getDisplayType();
2103    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2104        // built-in display, tell the HWC
2105        getHwComposer().acquire(type);
2106
2107        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2108            // FIXME: eventthread only knows about the main display right now
2109            mEventThread->onScreenAcquired();
2110        }
2111    }
2112    mVisibleRegionsDirty = true;
2113    repaintEverything();
2114}
2115
2116void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2117    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2118    if (!hw->isScreenAcquired()) {
2119        ALOGD(" screen was previously released");
2120        return;
2121    }
2122
2123    hw->releaseScreen();
2124    int32_t type = hw->getDisplayType();
2125    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2126        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2127            // FIXME: eventthread only knows about the main display right now
2128            mEventThread->onScreenReleased();
2129        }
2130
2131        // built-in display, tell the HWC
2132        getHwComposer().release(type);
2133    }
2134    mVisibleRegionsDirty = true;
2135    // from this point on, SF will stop drawing on this display
2136}
2137
2138void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2139    class MessageScreenAcquired : public MessageBase {
2140        SurfaceFlinger& mFlinger;
2141        sp<IBinder> mDisplay;
2142    public:
2143        MessageScreenAcquired(SurfaceFlinger& flinger,
2144                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2145        virtual bool handler() {
2146            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2147            if (hw == NULL) {
2148                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2149            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2150                ALOGW("Attempt to unblank virtual display");
2151            } else {
2152                mFlinger.onScreenAcquired(hw);
2153            }
2154            return true;
2155        }
2156    };
2157    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2158    postMessageSync(msg);
2159}
2160
2161void SurfaceFlinger::blank(const sp<IBinder>& display) {
2162    class MessageScreenReleased : public MessageBase {
2163        SurfaceFlinger& mFlinger;
2164        sp<IBinder> mDisplay;
2165    public:
2166        MessageScreenReleased(SurfaceFlinger& flinger,
2167                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2168        virtual bool handler() {
2169            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2170            if (hw == NULL) {
2171                ALOGE("Attempt to blank null display %p", mDisplay.get());
2172            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2173                ALOGW("Attempt to blank virtual display");
2174            } else {
2175                mFlinger.onScreenReleased(hw);
2176            }
2177            return true;
2178        }
2179    };
2180    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2181    postMessageSync(msg);
2182}
2183
2184// ---------------------------------------------------------------------------
2185
2186status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2187{
2188    const size_t SIZE = 4096;
2189    char buffer[SIZE];
2190    String8 result;
2191
2192    if (!PermissionCache::checkCallingPermission(sDump)) {
2193        snprintf(buffer, SIZE, "Permission Denial: "
2194                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2195                IPCThreadState::self()->getCallingPid(),
2196                IPCThreadState::self()->getCallingUid());
2197        result.append(buffer);
2198    } else {
2199        // Try to get the main lock, but don't insist if we can't
2200        // (this would indicate SF is stuck, but we want to be able to
2201        // print something in dumpsys).
2202        int retry = 3;
2203        while (mStateLock.tryLock()<0 && --retry>=0) {
2204            usleep(1000000);
2205        }
2206        const bool locked(retry >= 0);
2207        if (!locked) {
2208            snprintf(buffer, SIZE,
2209                    "SurfaceFlinger appears to be unresponsive, "
2210                    "dumping anyways (no locks held)\n");
2211            result.append(buffer);
2212        }
2213
2214        bool dumpAll = true;
2215        size_t index = 0;
2216        size_t numArgs = args.size();
2217        if (numArgs) {
2218            if ((index < numArgs) &&
2219                    (args[index] == String16("--list"))) {
2220                index++;
2221                listLayersLocked(args, index, result, buffer, SIZE);
2222                dumpAll = false;
2223            }
2224
2225            if ((index < numArgs) &&
2226                    (args[index] == String16("--latency"))) {
2227                index++;
2228                dumpStatsLocked(args, index, result, buffer, SIZE);
2229                dumpAll = false;
2230            }
2231
2232            if ((index < numArgs) &&
2233                    (args[index] == String16("--latency-clear"))) {
2234                index++;
2235                clearStatsLocked(args, index, result, buffer, SIZE);
2236                dumpAll = false;
2237            }
2238        }
2239
2240        if (dumpAll) {
2241            dumpAllLocked(result, buffer, SIZE);
2242        }
2243
2244        if (locked) {
2245            mStateLock.unlock();
2246        }
2247    }
2248    write(fd, result.string(), result.size());
2249    return NO_ERROR;
2250}
2251
2252void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2253        String8& result, char* buffer, size_t SIZE) const
2254{
2255    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2256    const size_t count = currentLayers.size();
2257    for (size_t i=0 ; i<count ; i++) {
2258        const sp<LayerBase>& layer(currentLayers[i]);
2259        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2260        result.append(buffer);
2261    }
2262}
2263
2264void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2265        String8& result, char* buffer, size_t SIZE) const
2266{
2267    String8 name;
2268    if (index < args.size()) {
2269        name = String8(args[index]);
2270        index++;
2271    }
2272
2273    const nsecs_t period =
2274            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2275    result.appendFormat("%lld\n", period);
2276
2277    if (name.isEmpty()) {
2278        mAnimFrameTracker.dump(result);
2279    } else {
2280        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2281        const size_t count = currentLayers.size();
2282        for (size_t i=0 ; i<count ; i++) {
2283            const sp<LayerBase>& layer(currentLayers[i]);
2284            if (name == layer->getName()) {
2285                layer->dumpStats(result, buffer, SIZE);
2286            }
2287        }
2288    }
2289}
2290
2291void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2292        String8& result, char* buffer, size_t SIZE)
2293{
2294    String8 name;
2295    if (index < args.size()) {
2296        name = String8(args[index]);
2297        index++;
2298    }
2299
2300    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2301    const size_t count = currentLayers.size();
2302    for (size_t i=0 ; i<count ; i++) {
2303        const sp<LayerBase>& layer(currentLayers[i]);
2304        if (name.isEmpty() || (name == layer->getName())) {
2305            layer->clearStats();
2306        }
2307    }
2308
2309    mAnimFrameTracker.clear();
2310}
2311
2312/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2313{
2314    static const char* config =
2315            " [sf"
2316#ifdef NO_RGBX_8888
2317            " NO_RGBX_8888"
2318#endif
2319#ifdef HAS_CONTEXT_PRIORITY
2320            " HAS_CONTEXT_PRIORITY"
2321#endif
2322#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2323            " NEVER_DEFAULT_TO_ASYNC_MODE"
2324#endif
2325#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2326            " TARGET_DISABLE_TRIPLE_BUFFERING"
2327#endif
2328            "]";
2329    result.append(config);
2330}
2331
2332void SurfaceFlinger::dumpAllLocked(
2333        String8& result, char* buffer, size_t SIZE) const
2334{
2335    // figure out if we're stuck somewhere
2336    const nsecs_t now = systemTime();
2337    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2338    const nsecs_t inTransaction(mDebugInTransaction);
2339    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2340    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2341
2342    /*
2343     * Dump library configuration.
2344     */
2345    result.append("Build configuration:");
2346    appendSfConfigString(result);
2347    appendUiConfigString(result);
2348    appendGuiConfigString(result);
2349    result.append("\n");
2350
2351    /*
2352     * Dump the visible layer list
2353     */
2354    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2355    const size_t count = currentLayers.size();
2356    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2357    result.append(buffer);
2358    for (size_t i=0 ; i<count ; i++) {
2359        const sp<LayerBase>& layer(currentLayers[i]);
2360        layer->dump(result, buffer, SIZE);
2361    }
2362
2363    /*
2364     * Dump the layers in the purgatory
2365     */
2366
2367    const size_t purgatorySize = mLayerPurgatory.size();
2368    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2369    result.append(buffer);
2370    for (size_t i=0 ; i<purgatorySize ; i++) {
2371        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2372        layer->shortDump(result, buffer, SIZE);
2373    }
2374
2375    /*
2376     * Dump Display state
2377     */
2378
2379    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2380    result.append(buffer);
2381    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2382        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2383        hw->dump(result, buffer, SIZE);
2384    }
2385
2386    /*
2387     * Dump SurfaceFlinger global state
2388     */
2389
2390    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2391    result.append(buffer);
2392
2393    HWComposer& hwc(getHwComposer());
2394    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2395    const GLExtensions& extensions(GLExtensions::getInstance());
2396    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2397            extensions.getVendor(),
2398            extensions.getRenderer(),
2399            extensions.getVersion());
2400    result.append(buffer);
2401
2402    snprintf(buffer, SIZE, "EGL : %s\n",
2403            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2404    result.append(buffer);
2405
2406    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2407    result.append(buffer);
2408
2409    hw->undefinedRegion.dump(result, "undefinedRegion");
2410    snprintf(buffer, SIZE,
2411            "  orientation=%d, canDraw=%d\n",
2412            hw->getOrientation(), hw->canDraw());
2413    result.append(buffer);
2414    snprintf(buffer, SIZE,
2415            "  last eglSwapBuffers() time: %f us\n"
2416            "  last transaction time     : %f us\n"
2417            "  transaction-flags         : %08x\n"
2418            "  refresh-rate              : %f fps\n"
2419            "  x-dpi                     : %f\n"
2420            "  y-dpi                     : %f\n",
2421            mLastSwapBufferTime/1000.0,
2422            mLastTransactionTime/1000.0,
2423            mTransactionFlags,
2424            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2425            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2426            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2427    result.append(buffer);
2428
2429    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2430            inSwapBuffersDuration/1000.0);
2431    result.append(buffer);
2432
2433    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2434            inTransactionDuration/1000.0);
2435    result.append(buffer);
2436
2437    /*
2438     * VSYNC state
2439     */
2440    mEventThread->dump(result, buffer, SIZE);
2441
2442    /*
2443     * Dump HWComposer state
2444     */
2445    snprintf(buffer, SIZE, "h/w composer state:\n");
2446    result.append(buffer);
2447    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2448            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2449                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2450    result.append(buffer);
2451    hwc.dump(result, buffer, SIZE);
2452
2453    /*
2454     * Dump gralloc state
2455     */
2456    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2457    alloc.dump(result);
2458}
2459
2460const Vector< sp<LayerBase> >&
2461SurfaceFlinger::getLayerSortedByZForHwcDisplay(int disp) {
2462    // Note: mStateLock is held here
2463    return getDisplayDevice( getBuiltInDisplay(disp) )->getVisibleLayersSortedByZ();
2464}
2465
2466bool SurfaceFlinger::startDdmConnection()
2467{
2468    void* libddmconnection_dso =
2469            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2470    if (!libddmconnection_dso) {
2471        return false;
2472    }
2473    void (*DdmConnection_start)(const char* name);
2474    DdmConnection_start =
2475            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2476    if (!DdmConnection_start) {
2477        dlclose(libddmconnection_dso);
2478        return false;
2479    }
2480    (*DdmConnection_start)(getServiceName());
2481    return true;
2482}
2483
2484status_t SurfaceFlinger::onTransact(
2485    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2486{
2487    switch (code) {
2488        case CREATE_CONNECTION:
2489        case SET_TRANSACTION_STATE:
2490        case BOOT_FINISHED:
2491        case BLANK:
2492        case UNBLANK:
2493        {
2494            // codes that require permission check
2495            IPCThreadState* ipc = IPCThreadState::self();
2496            const int pid = ipc->getCallingPid();
2497            const int uid = ipc->getCallingUid();
2498            if ((uid != AID_GRAPHICS) &&
2499                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2500                ALOGE("Permission Denial: "
2501                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2502                return PERMISSION_DENIED;
2503            }
2504            break;
2505        }
2506        case CAPTURE_SCREEN:
2507        {
2508            // codes that require permission check
2509            IPCThreadState* ipc = IPCThreadState::self();
2510            const int pid = ipc->getCallingPid();
2511            const int uid = ipc->getCallingUid();
2512            if ((uid != AID_GRAPHICS) &&
2513                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2514                ALOGE("Permission Denial: "
2515                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2516                return PERMISSION_DENIED;
2517            }
2518            break;
2519        }
2520    }
2521
2522    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2523    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2524        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2525        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2526            IPCThreadState* ipc = IPCThreadState::self();
2527            const int pid = ipc->getCallingPid();
2528            const int uid = ipc->getCallingUid();
2529            ALOGE("Permission Denial: "
2530                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2531            return PERMISSION_DENIED;
2532        }
2533        int n;
2534        switch (code) {
2535            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2536            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2537                return NO_ERROR;
2538            case 1002:  // SHOW_UPDATES
2539                n = data.readInt32();
2540                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2541                invalidateHwcGeometry();
2542                repaintEverything();
2543                return NO_ERROR;
2544            case 1004:{ // repaint everything
2545                repaintEverything();
2546                return NO_ERROR;
2547            }
2548            case 1005:{ // force transaction
2549                setTransactionFlags(
2550                        eTransactionNeeded|
2551                        eDisplayTransactionNeeded|
2552                        eTraversalNeeded);
2553                return NO_ERROR;
2554            }
2555            case 1006:{ // send empty update
2556                signalRefresh();
2557                return NO_ERROR;
2558            }
2559            case 1008:  // toggle use of hw composer
2560                n = data.readInt32();
2561                mDebugDisableHWC = n ? 1 : 0;
2562                invalidateHwcGeometry();
2563                repaintEverything();
2564                return NO_ERROR;
2565            case 1009:  // toggle use of transform hint
2566                n = data.readInt32();
2567                mDebugDisableTransformHint = n ? 1 : 0;
2568                invalidateHwcGeometry();
2569                repaintEverything();
2570                return NO_ERROR;
2571            case 1010:  // interrogate.
2572                reply->writeInt32(0);
2573                reply->writeInt32(0);
2574                reply->writeInt32(mDebugRegion);
2575                reply->writeInt32(0);
2576                reply->writeInt32(mDebugDisableHWC);
2577                return NO_ERROR;
2578            case 1013: {
2579                Mutex::Autolock _l(mStateLock);
2580                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2581                reply->writeInt32(hw->getPageFlipCount());
2582            }
2583            return NO_ERROR;
2584        }
2585    }
2586    return err;
2587}
2588
2589void SurfaceFlinger::repaintEverything() {
2590    android_atomic_or(1, &mRepaintEverything);
2591    signalTransaction();
2592}
2593
2594// ---------------------------------------------------------------------------
2595// Capture screen into an IGraphiBufferProducer
2596// ---------------------------------------------------------------------------
2597
2598status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2599        const sp<IGraphicBufferProducer>& producer,
2600        uint32_t reqWidth, uint32_t reqHeight,
2601        uint32_t minLayerZ, uint32_t maxLayerZ) {
2602
2603    if (CC_UNLIKELY(display == 0))
2604        return BAD_VALUE;
2605
2606    if (CC_UNLIKELY(producer == 0))
2607        return BAD_VALUE;
2608
2609    class MessageCaptureScreen : public MessageBase {
2610        SurfaceFlinger* flinger;
2611        sp<IBinder> display;
2612        sp<IGraphicBufferProducer> producer;
2613        uint32_t reqWidth, reqHeight;
2614        uint32_t minLayerZ,maxLayerZ;
2615        status_t result;
2616    public:
2617        MessageCaptureScreen(SurfaceFlinger* flinger,
2618                const sp<IBinder>& display,
2619                const sp<IGraphicBufferProducer>& producer,
2620                uint32_t reqWidth, uint32_t reqHeight,
2621                uint32_t minLayerZ, uint32_t maxLayerZ)
2622            : flinger(flinger), display(display), producer(producer),
2623              reqWidth(reqWidth), reqHeight(reqHeight),
2624              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2625              result(PERMISSION_DENIED)
2626        {
2627        }
2628        status_t getResult() const {
2629            return result;
2630        }
2631        virtual bool handler() {
2632            Mutex::Autolock _l(flinger->mStateLock);
2633            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2634            result = flinger->captureScreenImplLocked(hw, producer,
2635                    reqWidth, reqHeight, minLayerZ, maxLayerZ);
2636            return true;
2637        }
2638    };
2639
2640    sp<MessageBase> msg = new MessageCaptureScreen(this,
2641            display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2642    status_t res = postMessageSync(msg);
2643    if (res == NO_ERROR) {
2644        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2645    }
2646    return res;
2647}
2648
2649status_t SurfaceFlinger::captureScreenImplLocked(
2650        const sp<const DisplayDevice>& hw,
2651        const sp<IGraphicBufferProducer>& producer,
2652        uint32_t reqWidth, uint32_t reqHeight,
2653        uint32_t minLayerZ, uint32_t maxLayerZ)
2654{
2655    ATRACE_CALL();
2656
2657    // get screen geometry
2658    const uint32_t hw_w = hw->getWidth();
2659    const uint32_t hw_h = hw->getHeight();
2660
2661    // if we have secure windows on this display, never allow the screen capture
2662    if (hw->getSecureLayerVisible()) {
2663        ALOGW("FB is protected: PERMISSION_DENIED");
2664        return PERMISSION_DENIED;
2665    }
2666
2667    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2668        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2669                reqWidth, reqHeight, hw_w, hw_h);
2670        return BAD_VALUE;
2671    }
2672
2673    reqWidth = (!reqWidth) ? hw_w : reqWidth;
2674    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2675    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2676
2677    // Create a surface to render into
2678    sp<Surface> surface = new Surface(producer);
2679    ANativeWindow* const window = surface.get();
2680
2681    // set the buffer size to what the user requested
2682    native_window_set_buffers_user_dimensions(window, reqWidth, reqHeight);
2683
2684    // and create the corresponding EGLSurface
2685    EGLSurface eglSurface = eglCreateWindowSurface(
2686            mEGLDisplay, mEGLConfig, window, NULL);
2687    if (eglSurface == EGL_NO_SURFACE) {
2688        ALOGE("captureScreenImplLocked: eglCreateWindowSurface() failed 0x%4x",
2689                eglGetError());
2690        return BAD_VALUE;
2691    }
2692
2693    if (!eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext)) {
2694        ALOGE("captureScreenImplLocked: eglMakeCurrent() failed 0x%4x",
2695                eglGetError());
2696        eglDestroySurface(mEGLDisplay, eglSurface);
2697        return BAD_VALUE;
2698    }
2699
2700    // make sure to clear all GL error flags
2701    while ( glGetError() != GL_NO_ERROR ) ;
2702
2703    // set-up our viewport
2704    glViewport(0, 0, reqWidth, reqHeight);
2705    glMatrixMode(GL_PROJECTION);
2706    glLoadIdentity();
2707    glOrthof(0, hw_w, 0, hw_h, 0, 1);
2708    glMatrixMode(GL_MODELVIEW);
2709    glLoadIdentity();
2710
2711    // redraw the screen entirely...
2712    glDisable(GL_TEXTURE_EXTERNAL_OES);
2713    glDisable(GL_TEXTURE_2D);
2714    glClearColor(0,0,0,1);
2715    glClear(GL_COLOR_BUFFER_BIT);
2716
2717    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2718    const size_t count = layers.size();
2719    for (size_t i=0 ; i<count ; ++i) {
2720        const sp<LayerBase>& layer(layers[i]);
2721        const uint32_t z = layer->drawingState().z;
2722        if (z >= minLayerZ && z <= maxLayerZ) {
2723            if (filtering) layer->setFiltering(true);
2724            layer->draw(hw);
2725            if (filtering) layer->setFiltering(false);
2726        }
2727    }
2728
2729    // and finishing things up...
2730    if (eglSwapBuffers(mEGLDisplay, eglSurface) != EGL_TRUE) {
2731        ALOGE("captureScreenImplLocked: eglSwapBuffers() failed 0x%4x",
2732                eglGetError());
2733        eglDestroySurface(mEGLDisplay, eglSurface);
2734        return BAD_VALUE;
2735    }
2736
2737    eglDestroySurface(mEGLDisplay, eglSurface);
2738    return NO_ERROR;
2739}
2740
2741// ---------------------------------------------------------------------------
2742// Capture screen into an IMemoryHeap (legacy)
2743// ---------------------------------------------------------------------------
2744
2745status_t SurfaceFlinger::captureScreenImplLocked(
2746        const sp<const DisplayDevice>& hw,
2747        sp<IMemoryHeap>* heap,
2748        uint32_t* w, uint32_t* h, PixelFormat* f,
2749        uint32_t sw, uint32_t sh,
2750        uint32_t minLayerZ, uint32_t maxLayerZ)
2751{
2752    ATRACE_CALL();
2753
2754    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2755        return INVALID_OPERATION;
2756    }
2757
2758    // create the texture that will receive the screenshot, later we'll
2759    // attach a FBO to it so we can call glReadPixels().
2760    GLuint tname;
2761    glGenTextures(1, &tname);
2762    glBindTexture(GL_TEXTURE_2D, tname);
2763    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2764    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2765
2766    // the GLConsumer will provide the BufferQueue
2767    sp<GLConsumer> consumer = new GLConsumer(tname, true, GL_TEXTURE_2D);
2768    consumer->getBufferQueue()->setDefaultBufferFormat(HAL_PIXEL_FORMAT_RGBA_8888);
2769
2770    // call the new screenshot taking code, passing a BufferQueue to it
2771    status_t result = captureScreenImplLocked(hw,
2772            consumer->getBufferQueue(), sw, sh, minLayerZ, maxLayerZ);
2773
2774    if (result == NO_ERROR) {
2775        result = consumer->updateTexImage();
2776        if (result == NO_ERROR) {
2777            // create a FBO
2778            GLuint name;
2779            glGenFramebuffersOES(1, &name);
2780            glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2781            glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2782                    GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2783
2784            sp<GraphicBuffer> buf(consumer->getCurrentBuffer());
2785            sw = buf->getWidth();
2786            sh = buf->getHeight();
2787            size_t size = buf->getStride() * sh * 4;
2788
2789            // allocate shared memory large enough to hold the
2790            // screen capture
2791            sp<MemoryHeapBase> base(
2792                    new MemoryHeapBase(size, 0, "screen-capture") );
2793            void* const ptr = base->getBase();
2794            if (ptr != MAP_FAILED) {
2795                // capture the screen with glReadPixels()
2796                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2797                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2798                if (glGetError() == GL_NO_ERROR) {
2799                    *heap = base;
2800                    *w = sw;
2801                    *h = sh;
2802                    *f = PIXEL_FORMAT_RGBA_8888;
2803                    result = NO_ERROR;
2804                }
2805            } else {
2806                result = NO_MEMORY;
2807            }
2808
2809            // back to main framebuffer
2810            glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2811            glDeleteFramebuffersOES(1, &name);
2812        }
2813    }
2814
2815    glDeleteTextures(1, &tname);
2816
2817    return result;
2818}
2819
2820status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2821        sp<IMemoryHeap>* heap,
2822        uint32_t* outWidth, uint32_t* outHeight, PixelFormat* outFormat,
2823        uint32_t reqWidth, uint32_t reqHeight,
2824        uint32_t minLayerZ, uint32_t maxLayerZ)
2825{
2826    if (CC_UNLIKELY(display == 0))
2827        return BAD_VALUE;
2828
2829    class MessageCaptureScreen : public MessageBase {
2830        SurfaceFlinger* flinger;
2831        sp<IBinder> display;
2832        sp<IMemoryHeap>* heap;
2833        uint32_t* outWidth;
2834        uint32_t* outHeight;
2835        PixelFormat* outFormat;
2836        uint32_t reqWidth;
2837        uint32_t reqHeight;
2838        uint32_t minLayerZ;
2839        uint32_t maxLayerZ;
2840        status_t result;
2841    public:
2842        MessageCaptureScreen(SurfaceFlinger* flinger,
2843                const sp<IBinder>& display, sp<IMemoryHeap>* heap,
2844                uint32_t* outWidth, uint32_t* outHeight, PixelFormat* outFormat,
2845                uint32_t reqWidth, uint32_t reqHeight,
2846                uint32_t minLayerZ, uint32_t maxLayerZ)
2847            : flinger(flinger), display(display), heap(heap),
2848              outWidth(outWidth), outHeight(outHeight), outFormat(outFormat),
2849              reqWidth(reqWidth), reqHeight(reqHeight),
2850              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2851              result(PERMISSION_DENIED)
2852        {
2853        }
2854        status_t getResult() const {
2855            return result;
2856        }
2857        virtual bool handler() {
2858            Mutex::Autolock _l(flinger->mStateLock);
2859            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2860            result = flinger->captureScreenImplLocked(hw, heap,
2861                    outWidth, outHeight, outFormat,
2862                    reqWidth, reqHeight, minLayerZ, maxLayerZ);
2863            return true;
2864        }
2865    };
2866
2867    sp<MessageBase> msg = new MessageCaptureScreen(this, display, heap,
2868            outWidth, outHeight, outFormat,
2869            reqWidth, reqHeight, minLayerZ, maxLayerZ);
2870    status_t res = postMessageSync(msg);
2871    if (res == NO_ERROR) {
2872        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2873    }
2874    return res;
2875}
2876
2877// ---------------------------------------------------------------------------
2878
2879SurfaceFlinger::LayerVector::LayerVector() {
2880}
2881
2882SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2883    : SortedVector<sp<LayerBase> >(rhs) {
2884}
2885
2886int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2887    const void* rhs) const
2888{
2889    // sort layers per layer-stack, then by z-order and finally by sequence
2890    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2891    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2892
2893    uint32_t ls = l->currentState().layerStack;
2894    uint32_t rs = r->currentState().layerStack;
2895    if (ls != rs)
2896        return ls - rs;
2897
2898    uint32_t lz = l->currentState().z;
2899    uint32_t rz = r->currentState().z;
2900    if (lz != rz)
2901        return lz - rz;
2902
2903    return l->sequence - r->sequence;
2904}
2905
2906// ---------------------------------------------------------------------------
2907
2908SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2909    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2910}
2911
2912SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2913    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2914    viewport.makeInvalid();
2915    frame.makeInvalid();
2916}
2917
2918// ---------------------------------------------------------------------------
2919
2920}; // namespace android
2921