SurfaceFlinger.cpp revision 0f2f5ff75b7b48ceb64270655ee6b62d09bf4d00
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23
24#include <EGL/egl.h>
25#include <GLES/gl.h>
26
27#include <cutils/log.h>
28#include <cutils/properties.h>
29
30#include <binder/IPCThreadState.h>
31#include <binder/IServiceManager.h>
32#include <binder/MemoryHeapBase.h>
33#include <binder/PermissionCache.h>
34
35#include <ui/DisplayInfo.h>
36
37#include <gui/IDisplayEventConnection.h>
38#include <gui/BitTube.h>
39#include <gui/SurfaceTextureClient.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/PixelFormat.h>
43
44#include <utils/String8.h>
45#include <utils/String16.h>
46#include <utils/StopWatch.h>
47#include <utils/Trace.h>
48
49#include <private/android_filesystem_config.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "DisplayDevice.h"
54#include "Client.h"
55#include "EventThread.h"
56#include "GLExtensions.h"
57#include "Layer.h"
58#include "LayerDim.h"
59#include "LayerScreenshot.h"
60#include "SurfaceFlinger.h"
61
62#include "DisplayHardware/FramebufferSurface.h"
63#include "DisplayHardware/HWComposer.h"
64
65
66#define EGL_VERSION_HW_ANDROID  0x3143
67
68#define DISPLAY_COUNT       1
69
70namespace android {
71// ---------------------------------------------------------------------------
72
73const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76const String16 sDump("android.permission.DUMP");
77
78// ---------------------------------------------------------------------------
79
80SurfaceFlinger::SurfaceFlinger()
81    :   BnSurfaceComposer(), Thread(false),
82        mTransactionFlags(0),
83        mTransationPending(false),
84        mLayersRemoved(false),
85        mRepaintEverything(0),
86        mBootTime(systemTime()),
87        mVisibleRegionsDirty(false),
88        mHwWorkListDirty(false),
89        mElectronBeamAnimationMode(0),
90        mDebugRegion(0),
91        mDebugDDMS(0),
92        mDebugDisableHWC(0),
93        mDebugDisableTransformHint(0),
94        mDebugInSwapBuffers(0),
95        mLastSwapBufferTime(0),
96        mDebugInTransaction(0),
97        mLastTransactionTime(0),
98        mBootFinished(false),
99        mExternalDisplaySurface(EGL_NO_SURFACE)
100{
101    ALOGI("SurfaceFlinger is starting");
102
103    // debugging stuff...
104    char value[PROPERTY_VALUE_MAX];
105
106    property_get("debug.sf.showupdates", value, "0");
107    mDebugRegion = atoi(value);
108
109#ifdef DDMS_DEBUGGING
110    property_get("debug.sf.ddms", value, "0");
111    mDebugDDMS = atoi(value);
112    if (mDebugDDMS) {
113        DdmConnection::start(getServiceName());
114    }
115#else
116#warning "DDMS_DEBUGGING disabled"
117#endif
118
119    ALOGI_IF(mDebugRegion,       "showupdates enabled");
120    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
121}
122
123void SurfaceFlinger::onFirstRef()
124{
125    mEventQueue.init(this);
126
127    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
128
129    // Wait for the main thread to be done with its initialization
130    mReadyToRunBarrier.wait();
131}
132
133
134SurfaceFlinger::~SurfaceFlinger()
135{
136    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
137    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
138    eglTerminate(display);
139}
140
141void SurfaceFlinger::binderDied(const wp<IBinder>& who)
142{
143    // the window manager died on us. prepare its eulogy.
144
145    // reset screen orientation
146    Vector<ComposerState> state;
147    Vector<DisplayState> displays;
148    DisplayState d;
149    d.orientation = eOrientationDefault;
150    displays.add(d);
151    setTransactionState(state, displays, 0);
152
153    // restart the boot-animation
154    startBootAnim();
155}
156
157sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
158{
159    sp<ISurfaceComposerClient> bclient;
160    sp<Client> client(new Client(this));
161    status_t err = client->initCheck();
162    if (err == NO_ERROR) {
163        bclient = client;
164    }
165    return bclient;
166}
167
168sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
169{
170    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
171    return gba;
172}
173
174void SurfaceFlinger::bootFinished()
175{
176    const nsecs_t now = systemTime();
177    const nsecs_t duration = now - mBootTime;
178    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
179    mBootFinished = true;
180
181    // wait patiently for the window manager death
182    const String16 name("window");
183    sp<IBinder> window(defaultServiceManager()->getService(name));
184    if (window != 0) {
185        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
186    }
187
188    // stop boot animation
189    // formerly we would just kill the process, but we now ask it to exit so it
190    // can choose where to stop the animation.
191    property_set("service.bootanim.exit", "1");
192}
193
194void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
195    class MessageDestroyGLTexture : public MessageBase {
196        GLuint texture;
197    public:
198        MessageDestroyGLTexture(GLuint texture)
199            : texture(texture) {
200        }
201        virtual bool handler() {
202            glDeleteTextures(1, &texture);
203            return true;
204        }
205    };
206    postMessageAsync(new MessageDestroyGLTexture(texture));
207}
208
209status_t SurfaceFlinger::selectConfigForPixelFormat(
210        EGLDisplay dpy,
211        EGLint const* attrs,
212        PixelFormat format,
213        EGLConfig* outConfig)
214{
215    EGLConfig config = NULL;
216    EGLint numConfigs = -1, n=0;
217    eglGetConfigs(dpy, NULL, 0, &numConfigs);
218    EGLConfig* const configs = new EGLConfig[numConfigs];
219    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
220    for (int i=0 ; i<n ; i++) {
221        EGLint nativeVisualId = 0;
222        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
223        if (nativeVisualId>0 && format == nativeVisualId) {
224            *outConfig = configs[i];
225            delete [] configs;
226            return NO_ERROR;
227        }
228    }
229    delete [] configs;
230    return NAME_NOT_FOUND;
231}
232
233EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
234    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
235    // it is to be used with WIFI displays
236    EGLConfig config;
237    EGLint dummy;
238    status_t err;
239    EGLint attribs[] = {
240            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
241            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
242            EGL_NONE
243    };
244    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
245    if (err) {
246        // maybe we failed because of EGL_RECORDABLE_ANDROID
247        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
248        attribs[2] = EGL_NONE;
249        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
250    }
251    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
252    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
253        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
254    }
255    return config;
256}
257
258EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
259    // Also create our EGLContext
260    EGLint contextAttributes[] = {
261#ifdef EGL_IMG_context_priority
262#ifdef HAS_CONTEXT_PRIORITY
263#warning "using EGL_IMG_context_priority"
264            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
265#endif
266#endif
267            EGL_NONE, EGL_NONE
268    };
269    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
270    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
271    return ctxt;
272}
273
274void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
275    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
276    if (!result) {
277        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
278        exit(0);
279    }
280
281    GLExtensions& extensions(GLExtensions::getInstance());
282    extensions.initWithGLStrings(
283            glGetString(GL_VENDOR),
284            glGetString(GL_RENDERER),
285            glGetString(GL_VERSION),
286            glGetString(GL_EXTENSIONS),
287            eglQueryString(display, EGL_VENDOR),
288            eglQueryString(display, EGL_VERSION),
289            eglQueryString(display, EGL_EXTENSIONS));
290
291    EGLint w, h;
292    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
293    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
294
295    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
296    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
297
298    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
299    glPixelStorei(GL_PACK_ALIGNMENT, 4);
300    glEnableClientState(GL_VERTEX_ARRAY);
301    glShadeModel(GL_FLAT);
302    glDisable(GL_DITHER);
303    glDisable(GL_CULL_FACE);
304
305    struct pack565 {
306        inline uint16_t operator() (int r, int g, int b) const {
307            return (r<<11)|(g<<5)|b;
308        }
309    } pack565;
310
311    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
312    glGenTextures(1, &mProtectedTexName);
313    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
314    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
315    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
316    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
317    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
318    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
319            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
320
321    glViewport(0, 0, w, h);
322    glMatrixMode(GL_PROJECTION);
323    glLoadIdentity();
324    // put the origin in the left-bottom corner
325    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
326
327    // print some debugging info
328    EGLint r,g,b,a;
329    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
330    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
331    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
332    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
333    ALOGI("EGL informations:");
334    ALOGI("vendor    : %s", extensions.getEglVendor());
335    ALOGI("version   : %s", extensions.getEglVersion());
336    ALOGI("extensions: %s", extensions.getEglExtension());
337    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
338    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
339    ALOGI("OpenGL ES informations:");
340    ALOGI("vendor    : %s", extensions.getVendor());
341    ALOGI("renderer  : %s", extensions.getRenderer());
342    ALOGI("version   : %s", extensions.getVersion());
343    ALOGI("extensions: %s", extensions.getExtension());
344    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
345    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
346}
347
348status_t SurfaceFlinger::readyToRun()
349{
350    ALOGI(  "SurfaceFlinger's main thread ready to run. "
351            "Initializing graphics H/W...");
352
353    // initialize EGL
354    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
355    eglInitialize(mEGLDisplay, NULL, NULL);
356
357    // Initialize the main display
358    // create native window to main display
359    sp<FramebufferSurface> anw = FramebufferSurface::create();
360    ANativeWindow* const window = anw.get();
361    if (!window) {
362        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
363        exit(0);
364    }
365
366    // initialize the config and context
367    int format;
368    window->query(window, NATIVE_WINDOW_FORMAT, &format);
369    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
370    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
371
372    // initialize our main display hardware
373    DisplayDevice* const hw = new DisplayDevice(this, 0, anw, mEGLConfig);
374    mDisplayDevices[0] = hw;
375
376    //  initialize OpenGL ES
377    EGLSurface surface = hw->getEGLSurface();
378    initializeGL(mEGLDisplay, surface);
379
380    // start the EventThread
381    mEventThread = new EventThread(this);
382    mEventQueue.setEventThread(mEventThread);
383
384    // initialize the H/W composer
385    mHwc = new HWComposer(this,
386            *static_cast<HWComposer::EventHandler *>(this),
387            hw->getRefreshPeriod());
388
389    // We're now ready to accept clients...
390    mReadyToRunBarrier.open();
391
392    // start boot animation
393    startBootAnim();
394
395    return NO_ERROR;
396}
397
398void SurfaceFlinger::startBootAnim() {
399    // start boot animation
400    property_set("service.bootanim.exit", "0");
401    property_set("ctl.start", "bootanim");
402}
403
404uint32_t SurfaceFlinger::getMaxTextureSize() const {
405    return mMaxTextureSize;
406}
407
408uint32_t SurfaceFlinger::getMaxViewportDims() const {
409    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
410            mMaxViewportDims[0] : mMaxViewportDims[1];
411}
412
413// ----------------------------------------------------------------------------
414
415bool SurfaceFlinger::authenticateSurfaceTexture(
416        const sp<ISurfaceTexture>& surfaceTexture) const {
417    Mutex::Autolock _l(mStateLock);
418    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
419
420    // Check the visible layer list for the ISurface
421    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
422    size_t count = currentLayers.size();
423    for (size_t i=0 ; i<count ; i++) {
424        const sp<LayerBase>& layer(currentLayers[i]);
425        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
426        if (lbc != NULL) {
427            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
428            if (lbcBinder == surfaceTextureBinder) {
429                return true;
430            }
431        }
432    }
433
434    // Check the layers in the purgatory.  This check is here so that if a
435    // SurfaceTexture gets destroyed before all the clients are done using it,
436    // the error will not be reported as "surface XYZ is not authenticated", but
437    // will instead fail later on when the client tries to use the surface,
438    // which should be reported as "surface XYZ returned an -ENODEV".  The
439    // purgatorized layers are no less authentic than the visible ones, so this
440    // should not cause any harm.
441    size_t purgatorySize =  mLayerPurgatory.size();
442    for (size_t i=0 ; i<purgatorySize ; i++) {
443        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
444        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
445        if (lbc != NULL) {
446            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
447            if (lbcBinder == surfaceTextureBinder) {
448                return true;
449            }
450        }
451    }
452
453    return false;
454}
455
456status_t SurfaceFlinger::getDisplayInfo(DisplayID dpy, DisplayInfo* info) {
457    if (uint32_t(dpy) >= 2) {
458        return BAD_INDEX;
459    }
460    const DisplayDevice& hw(getDefaultDisplayDevice());
461    return hw.getInfo(info);
462}
463
464// ----------------------------------------------------------------------------
465
466sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
467    return mEventThread->createEventConnection();
468}
469
470void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
471    const DisplayDevice& hw(getDefaultDisplayDevice());
472    EGLSurface result = EGL_NO_SURFACE;
473    EGLSurface old_surface = EGL_NO_SURFACE;
474    sp<SurfaceTextureClient> stc;
475
476    if (display != NULL) {
477        stc = new SurfaceTextureClient(display);
478        result = eglCreateWindowSurface(hw.getEGLDisplay(),
479                mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
480        ALOGE_IF(result == EGL_NO_SURFACE,
481                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
482                display.get());
483    }
484
485    { // scope for the lock
486        Mutex::Autolock _l(mStateLock);
487        old_surface = mExternalDisplaySurface;
488        mExternalDisplayNativeWindow = stc;
489        mExternalDisplaySurface = result;
490        ALOGD("mExternalDisplaySurface = %p", result);
491    }
492
493    if (old_surface != EGL_NO_SURFACE) {
494        // Note: EGL allows to destroy an object while its current
495        // it will fail to become current next time though.
496        eglDestroySurface(hw.getEGLDisplay(), old_surface);
497    }
498}
499
500EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
501    Mutex::Autolock _l(mStateLock);
502    return mExternalDisplaySurface;
503}
504
505// ----------------------------------------------------------------------------
506
507void SurfaceFlinger::waitForEvent() {
508    mEventQueue.waitMessage();
509}
510
511void SurfaceFlinger::signalTransaction() {
512    mEventQueue.invalidate();
513}
514
515void SurfaceFlinger::signalLayerUpdate() {
516    mEventQueue.invalidate();
517}
518
519void SurfaceFlinger::signalRefresh() {
520    mEventQueue.refresh();
521}
522
523status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
524        nsecs_t reltime, uint32_t flags) {
525    return mEventQueue.postMessage(msg, reltime);
526}
527
528status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
529        nsecs_t reltime, uint32_t flags) {
530    status_t res = mEventQueue.postMessage(msg, reltime);
531    if (res == NO_ERROR) {
532        msg->wait();
533    }
534    return res;
535}
536
537bool SurfaceFlinger::threadLoop() {
538    waitForEvent();
539    return true;
540}
541
542void SurfaceFlinger::onVSyncReceived(int dpy, nsecs_t timestamp) {
543    DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
544    hw.onVSyncReceived(timestamp);
545    mEventThread->onVSyncReceived(dpy, timestamp);
546}
547
548void SurfaceFlinger::eventControl(int event, int enabled) {
549    getHwComposer().eventControl(event, enabled);
550}
551
552void SurfaceFlinger::onMessageReceived(int32_t what) {
553    ATRACE_CALL();
554    switch (what) {
555    case MessageQueue::INVALIDATE:
556        handleMessageTransaction();
557        handleMessageInvalidate();
558        signalRefresh();
559        break;
560    case MessageQueue::REFRESH:
561        handleMessageRefresh();
562        break;
563    }
564}
565
566void SurfaceFlinger::handleMessageTransaction() {
567    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
568    uint32_t transactionFlags = peekTransactionFlags(mask);
569    if (transactionFlags) {
570        handleTransaction(transactionFlags);
571    }
572}
573
574void SurfaceFlinger::handleMessageInvalidate() {
575    handlePageFlip();
576}
577
578void SurfaceFlinger::handleMessageRefresh() {
579    handleRefresh();
580
581    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
582        mVisibleRegionsDirty = false;
583        invalidateHwcGeometry();
584
585        /*
586         *  rebuild the visible layer list per screen
587         */
588
589        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
590        for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
591            DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
592
593            Region opaqueRegion;
594            Region dirtyRegion;
595            computeVisibleRegions(currentLayers,
596                    hw.getLayerStack(), dirtyRegion, opaqueRegion);
597            hw.dirtyRegion.orSelf(dirtyRegion);
598
599            Vector< sp<LayerBase> > layersSortedByZ;
600            const size_t count = currentLayers.size();
601            for (size_t i=0 ; i<count ; i++) {
602                const Layer::State& s(currentLayers[i]->drawingState());
603                if (s.layerStack == hw.getLayerStack()) {
604                    if (!currentLayers[i]->visibleRegion.isEmpty()) {
605                        layersSortedByZ.add(currentLayers[i]);
606                    }
607                }
608            }
609            hw.setVisibleLayersSortedByZ(layersSortedByZ);
610            hw.undefinedRegion.set(hw.getBounds());
611            hw.undefinedRegion.subtractSelf(hw.getTransform().transform(opaqueRegion));
612        }
613    }
614
615    HWComposer& hwc(getHwComposer());
616    if (hwc.initCheck() == NO_ERROR) {
617        // build the h/w work list
618        const bool workListsDirty = mHwWorkListDirty;
619        mHwWorkListDirty = false;
620        for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
621            DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
622            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
623            const size_t count = currentLayers.size();
624
625            hwc.createWorkList(count); // FIXME: the worklist should include enough space for all layer of all displays
626
627            HWComposer::LayerListIterator cur = hwc.begin();
628            const HWComposer::LayerListIterator end = hwc.end();
629            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
630                const sp<LayerBase>& layer(currentLayers[i]);
631
632                if (CC_UNLIKELY(workListsDirty)) {
633                    layer->setGeometry(hw, *cur);
634                    if (mDebugDisableHWC || mDebugRegion) {
635                        cur->setSkip(true);
636                    }
637                }
638
639                /*
640                 * update the per-frame h/w composer data for each layer
641                 * and build the transparent region of the FB
642                 */
643                layer->setPerFrameData(*cur);
644            }
645        }
646        status_t err = hwc.prepare();
647        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
648    }
649
650    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
651    for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
652        DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
653
654        // transform the dirty region into this screen's coordinate space
655        const Transform& planeTransform(hw.getTransform());
656        Region dirtyRegion;
657        if (repaintEverything) {
658            dirtyRegion.set(hw.bounds());
659        } else {
660            dirtyRegion = planeTransform.transform(hw.dirtyRegion);
661            dirtyRegion.andSelf(hw.bounds());
662        }
663        hw.dirtyRegion.clear();
664
665        if (!dirtyRegion.isEmpty()) {
666            if (hw.canDraw()) {
667                // repaint the framebuffer (if needed)
668                handleRepaint(hw, dirtyRegion);
669            }
670        }
671        // inform the h/w that we're done compositing
672        hw.compositionComplete();
673    }
674
675    postFramebuffer();
676
677
678#if 1
679    // render to the external display if we have one
680    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
681    if (externalDisplaySurface != EGL_NO_SURFACE) {
682        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
683        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
684                externalDisplaySurface, externalDisplaySurface,
685                eglGetCurrentContext());
686
687        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
688
689        if (success) {
690            // redraw the screen entirely...
691            glDisable(GL_TEXTURE_EXTERNAL_OES);
692            glDisable(GL_TEXTURE_2D);
693            glClearColor(0,0,0,1);
694            glClear(GL_COLOR_BUFFER_BIT);
695            glMatrixMode(GL_MODELVIEW);
696            glLoadIdentity();
697
698            DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(0)));
699            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
700            const size_t count = layers.size();
701            for (size_t i=0 ; i<count ; ++i) {
702                const sp<LayerBase>& layer(layers[i]);
703                layer->drawForSreenShot(hw);
704            }
705
706            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
707            ALOGE_IF(!success, "external display eglSwapBuffers failed");
708
709            hw.compositionComplete();
710        }
711
712        success = eglMakeCurrent(eglGetCurrentDisplay(),
713                cur, cur, eglGetCurrentContext());
714
715        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
716    }
717#endif
718
719}
720
721void SurfaceFlinger::postFramebuffer()
722{
723    ATRACE_CALL();
724
725    const nsecs_t now = systemTime();
726    mDebugInSwapBuffers = now;
727
728    HWComposer& hwc(getHwComposer());
729
730    for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
731        DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
732        if (hwc.initCheck() == NO_ERROR) {
733            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
734            const size_t count = currentLayers.size();
735            HWComposer::LayerListIterator cur = hwc.begin();
736            const HWComposer::LayerListIterator end = hwc.end();
737            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
738                const sp<LayerBase>& layer(currentLayers[i]);
739                layer->setAcquireFence(*cur);
740            }
741        }
742        hw.flip(hw.swapRegion);
743        hw.swapRegion.clear();
744    }
745
746    if (hwc.initCheck() == NO_ERROR) {
747        // FIXME: eventually commit() won't take arguments
748        hwc.commit(mEGLDisplay, getDefaultDisplayDevice().getEGLSurface());
749    }
750
751    for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
752        DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
753        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
754        const size_t count = currentLayers.size();
755        if (hwc.initCheck() == NO_ERROR) {
756            HWComposer::LayerListIterator cur = hwc.begin();
757            const HWComposer::LayerListIterator end = hwc.end();
758            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
759                currentLayers[i]->onLayerDisplayed(&*cur);
760            }
761        } else {
762            eglSwapBuffers(mEGLDisplay, hw.getEGLSurface());
763            for (size_t i = 0; i < count; i++) {
764                currentLayers[i]->onLayerDisplayed(NULL);
765            }
766        }
767
768        // FIXME: we need to call eglSwapBuffers() on displays that have GL composition
769    }
770
771    mLastSwapBufferTime = systemTime() - now;
772    mDebugInSwapBuffers = 0;
773}
774
775void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
776{
777    ATRACE_CALL();
778
779    Mutex::Autolock _l(mStateLock);
780    const nsecs_t now = systemTime();
781    mDebugInTransaction = now;
782
783    // Here we're guaranteed that some transaction flags are set
784    // so we can call handleTransactionLocked() unconditionally.
785    // We call getTransactionFlags(), which will also clear the flags,
786    // with mStateLock held to guarantee that mCurrentState won't change
787    // until the transaction is committed.
788
789    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
790    transactionFlags = getTransactionFlags(mask);
791    handleTransactionLocked(transactionFlags);
792
793    mLastTransactionTime = systemTime() - now;
794    mDebugInTransaction = 0;
795    invalidateHwcGeometry();
796    // here the transaction has been committed
797}
798
799void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
800{
801    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
802    const size_t count = currentLayers.size();
803
804    /*
805     * Traversal of the children
806     * (perform the transaction for each of them if needed)
807     */
808
809    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
810    if (layersNeedTransaction) {
811        for (size_t i=0 ; i<count ; i++) {
812            const sp<LayerBase>& layer = currentLayers[i];
813            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
814            if (!trFlags) continue;
815
816            const uint32_t flags = layer->doTransaction(0);
817            if (flags & Layer::eVisibleRegion)
818                mVisibleRegionsDirty = true;
819        }
820    }
821
822    /*
823     * Perform our own transaction if needed
824     */
825
826    if (transactionFlags & eTransactionNeeded) {
827        if (mCurrentState.orientation != mDrawingState.orientation) {
828            // the orientation has changed, recompute all visible regions
829            // and invalidate everything.
830
831            const int dpy = 0; // FIXME: should be a parameter
832            DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(dpy)));
833            hw.setOrientation(mCurrentState.orientation);
834            hw.dirtyRegion.set(hw.bounds());
835
836            mVisibleRegionsDirty = true;
837        }
838
839        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
840            // layers have been added
841            mVisibleRegionsDirty = true;
842        }
843
844        // some layers might have been removed, so
845        // we need to update the regions they're exposing.
846        if (mLayersRemoved) {
847            mLayersRemoved = false;
848            mVisibleRegionsDirty = true;
849            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
850            const size_t count = previousLayers.size();
851            for (size_t i=0 ; i<count ; i++) {
852                const sp<LayerBase>& layer(previousLayers[i]);
853                if (currentLayers.indexOf(layer) < 0) {
854                    // this layer is not visible anymore
855                    // TODO: we could traverse the tree from front to back and
856                    //       compute the actual visible region
857                    // TODO: we could cache the transformed region
858                    Layer::State front(layer->drawingState());
859                    Region visibleReg = front.transform.transform(
860                            Region(Rect(front.active.w, front.active.h)));
861                    invalidateLayerStack(front.layerStack, visibleReg);
862                }
863            }
864        }
865    }
866
867    commitTransaction();
868}
869
870void SurfaceFlinger::commitTransaction()
871{
872    if (!mLayersPendingRemoval.isEmpty()) {
873        // Notify removed layers now that they can't be drawn from
874        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
875            mLayersPendingRemoval[i]->onRemoved();
876        }
877        mLayersPendingRemoval.clear();
878    }
879
880    mDrawingState = mCurrentState;
881    mTransationPending = false;
882    mTransactionCV.broadcast();
883}
884
885void SurfaceFlinger::computeVisibleRegions(
886        const LayerVector& currentLayers, uint32_t layerStack,
887        Region& outDirtyRegion, Region& outOpaqueRegion)
888{
889    ATRACE_CALL();
890
891    Region aboveOpaqueLayers;
892    Region aboveCoveredLayers;
893    Region dirty;
894
895    outDirtyRegion.clear();
896
897    size_t i = currentLayers.size();
898    while (i--) {
899        const sp<LayerBase>& layer = currentLayers[i];
900
901        // start with the whole surface at its current location
902        const Layer::State& s(layer->drawingState());
903
904        // only consider the layers on the given later stack
905        if (s.layerStack != layerStack)
906            continue;
907
908        /*
909         * opaqueRegion: area of a surface that is fully opaque.
910         */
911        Region opaqueRegion;
912
913        /*
914         * visibleRegion: area of a surface that is visible on screen
915         * and not fully transparent. This is essentially the layer's
916         * footprint minus the opaque regions above it.
917         * Areas covered by a translucent surface are considered visible.
918         */
919        Region visibleRegion;
920
921        /*
922         * coveredRegion: area of a surface that is covered by all
923         * visible regions above it (which includes the translucent areas).
924         */
925        Region coveredRegion;
926
927
928        // handle hidden surfaces by setting the visible region to empty
929        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
930            const bool translucent = !layer->isOpaque();
931            Rect bounds(layer->computeBounds());
932            visibleRegion.set(bounds);
933            if (!visibleRegion.isEmpty()) {
934                // Remove the transparent area from the visible region
935                if (translucent) {
936                    Region transparentRegionScreen;
937                    const Transform tr(s.transform);
938                    if (tr.transformed()) {
939                        if (tr.preserveRects()) {
940                            // transform the transparent region
941                            transparentRegionScreen = tr.transform(s.transparentRegion);
942                        } else {
943                            // transformation too complex, can't do the
944                            // transparent region optimization.
945                            transparentRegionScreen.clear();
946                        }
947                    } else {
948                        transparentRegionScreen = s.transparentRegion;
949                    }
950                    visibleRegion.subtractSelf(transparentRegionScreen);
951                }
952
953                // compute the opaque region
954                const int32_t layerOrientation = s.transform.getOrientation();
955                if (s.alpha==255 && !translucent &&
956                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
957                    // the opaque region is the layer's footprint
958                    opaqueRegion = visibleRegion;
959                }
960            }
961        }
962
963        // Clip the covered region to the visible region
964        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
965
966        // Update aboveCoveredLayers for next (lower) layer
967        aboveCoveredLayers.orSelf(visibleRegion);
968
969        // subtract the opaque region covered by the layers above us
970        visibleRegion.subtractSelf(aboveOpaqueLayers);
971
972        // compute this layer's dirty region
973        if (layer->contentDirty) {
974            // we need to invalidate the whole region
975            dirty = visibleRegion;
976            // as well, as the old visible region
977            dirty.orSelf(layer->visibleRegion);
978            layer->contentDirty = false;
979        } else {
980            /* compute the exposed region:
981             *   the exposed region consists of two components:
982             *   1) what's VISIBLE now and was COVERED before
983             *   2) what's EXPOSED now less what was EXPOSED before
984             *
985             * note that (1) is conservative, we start with the whole
986             * visible region but only keep what used to be covered by
987             * something -- which mean it may have been exposed.
988             *
989             * (2) handles areas that were not covered by anything but got
990             * exposed because of a resize.
991             */
992            const Region newExposed = visibleRegion - coveredRegion;
993            const Region oldVisibleRegion = layer->visibleRegion;
994            const Region oldCoveredRegion = layer->coveredRegion;
995            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
996            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
997        }
998        dirty.subtractSelf(aboveOpaqueLayers);
999
1000        // accumulate to the screen dirty region
1001        outDirtyRegion.orSelf(dirty);
1002
1003        // Update aboveOpaqueLayers for next (lower) layer
1004        aboveOpaqueLayers.orSelf(opaqueRegion);
1005
1006        // Store the visible region is screen space
1007        layer->setVisibleRegion(visibleRegion);
1008        layer->setCoveredRegion(coveredRegion);
1009    }
1010
1011    outOpaqueRegion = aboveOpaqueLayers;
1012}
1013
1014void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1015        const Region& dirty) {
1016    // FIXME: update the dirty region of all displays
1017    // presenting this layer's layer stack.
1018    DisplayDevice& hw(const_cast<DisplayDevice&>(getDisplayDevice(0)));
1019    hw.dirtyRegion.orSelf(dirty);
1020}
1021
1022void SurfaceFlinger::handlePageFlip()
1023{
1024    ATRACE_CALL();
1025    Region dirtyRegion;
1026
1027    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1028
1029    bool visibleRegions = false;
1030    const size_t count = currentLayers.size();
1031    sp<LayerBase> const* layers = currentLayers.array();
1032    for (size_t i=0 ; i<count ; i++) {
1033        const sp<LayerBase>& layer(layers[i]);
1034        const Region dirty(layer->latchBuffer(visibleRegions));
1035        Layer::State s(layer->drawingState());
1036        invalidateLayerStack(s.layerStack, dirty);
1037    }
1038
1039    mVisibleRegionsDirty |= visibleRegions;
1040}
1041
1042void SurfaceFlinger::invalidateHwcGeometry()
1043{
1044    mHwWorkListDirty = true;
1045}
1046
1047void SurfaceFlinger::handleRefresh()
1048{
1049    bool needInvalidate = false;
1050    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1051    const size_t count = currentLayers.size();
1052    for (size_t i=0 ; i<count ; i++) {
1053        const sp<LayerBase>& layer(currentLayers[i]);
1054        if (layer->onPreComposition()) {
1055            needInvalidate = true;
1056        }
1057    }
1058    if (needInvalidate) {
1059        signalLayerUpdate();
1060    }
1061}
1062
1063void SurfaceFlinger::handleRepaint(const DisplayDevice& hw,
1064        const Region& inDirtyRegion)
1065{
1066    ATRACE_CALL();
1067
1068    Region dirtyRegion(inDirtyRegion);
1069
1070    // compute the invalid region
1071    hw.swapRegion.orSelf(dirtyRegion);
1072
1073    if (CC_UNLIKELY(mDebugRegion)) {
1074        debugFlashRegions(hw, dirtyRegion);
1075    }
1076
1077    uint32_t flags = hw.getFlags();
1078    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1079        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1080        // takes a rectangle, we must make sure to update that whole
1081        // rectangle in that case
1082        dirtyRegion.set(hw.swapRegion.bounds());
1083    } else {
1084        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1085            // We need to redraw the rectangle that will be updated
1086            // (pushed to the framebuffer).
1087            // This is needed because PARTIAL_UPDATES only takes one
1088            // rectangle instead of a region (see DisplayDevice::flip())
1089            dirtyRegion.set(hw.swapRegion.bounds());
1090        } else {
1091            // we need to redraw everything (the whole screen)
1092            dirtyRegion.set(hw.bounds());
1093            hw.swapRegion = dirtyRegion;
1094        }
1095    }
1096
1097    composeSurfaces(hw, dirtyRegion);
1098
1099    // update the swap region and clear the dirty region
1100    hw.swapRegion.orSelf(dirtyRegion);
1101}
1102
1103void SurfaceFlinger::composeSurfaces(const DisplayDevice& hw, const Region& dirty)
1104{
1105    HWComposer& hwc(getHwComposer());
1106    HWComposer::LayerListIterator cur = hwc.begin();
1107    const HWComposer::LayerListIterator end = hwc.end();
1108
1109    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);  // FIXME: this should be per display
1110    if (cur==end || fbLayerCount) {
1111
1112        DisplayDevice::makeCurrent(hw, mEGLContext);
1113
1114        // set the frame buffer
1115        glMatrixMode(GL_MODELVIEW);
1116        glLoadIdentity();
1117
1118        // Never touch the framebuffer if we don't have any framebuffer layers
1119        if (hwc.getLayerCount(HWC_OVERLAY)) { // FIXME: this should be per display
1120            // when using overlays, we assume a fully transparent framebuffer
1121            // NOTE: we could reduce how much we need to clear, for instance
1122            // remove where there are opaque FB layers. however, on some
1123            // GPUs doing a "clean slate" glClear might be more efficient.
1124            // We'll revisit later if needed.
1125            glClearColor(0, 0, 0, 0);
1126            glClear(GL_COLOR_BUFFER_BIT);
1127        } else {
1128            const Region region(hw.undefinedRegion.intersect(dirty));
1129            // screen is already cleared here
1130            if (!region.isEmpty()) {
1131                // can happen with SurfaceView
1132                drawWormhole(region);
1133            }
1134        }
1135
1136        /*
1137         * and then, render the layers targeted at the framebuffer
1138         */
1139
1140        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1141        const size_t count = layers.size();
1142        const Transform& tr = hw.getTransform();
1143        for (size_t i=0 ; i<count ; ++i) {
1144            const sp<LayerBase>& layer(layers[i]);
1145            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1146            if (!clip.isEmpty()) {
1147                if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
1148                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1149                            && layer->isOpaque()) {
1150                        // never clear the very first layer since we're
1151                        // guaranteed the FB is already cleared
1152                        layer->clearWithOpenGL(hw, clip);
1153                    }
1154                    ++cur;
1155                    continue;
1156                }
1157                // render the layer
1158                layer->draw(hw, clip);
1159            }
1160            if (cur != end) {
1161                ++cur;
1162            }
1163        }
1164    }
1165}
1166
1167void SurfaceFlinger::debugFlashRegions(const DisplayDevice& hw,
1168        const Region& dirtyRegion)
1169{
1170    const uint32_t flags = hw.getFlags();
1171    const int32_t height = hw.getHeight();
1172    if (hw.swapRegion.isEmpty()) {
1173        return;
1174    }
1175
1176    if (!(flags & DisplayDevice::SWAP_RECTANGLE)) {
1177        const Region repaint((flags & DisplayDevice::PARTIAL_UPDATES) ?
1178                dirtyRegion.bounds() : hw.bounds());
1179        composeSurfaces(hw, repaint);
1180    }
1181
1182    glDisable(GL_TEXTURE_EXTERNAL_OES);
1183    glDisable(GL_TEXTURE_2D);
1184    glDisable(GL_BLEND);
1185
1186    static int toggle = 0;
1187    toggle = 1 - toggle;
1188    if (toggle) {
1189        glColor4f(1, 0, 1, 1);
1190    } else {
1191        glColor4f(1, 1, 0, 1);
1192    }
1193
1194    Region::const_iterator it = dirtyRegion.begin();
1195    Region::const_iterator const end = dirtyRegion.end();
1196    while (it != end) {
1197        const Rect& r = *it++;
1198        GLfloat vertices[][2] = {
1199                { r.left,  height - r.top },
1200                { r.left,  height - r.bottom },
1201                { r.right, height - r.bottom },
1202                { r.right, height - r.top }
1203        };
1204        glVertexPointer(2, GL_FLOAT, 0, vertices);
1205        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1206    }
1207
1208    hw.flip(hw.swapRegion);
1209
1210    if (mDebugRegion > 1)
1211        usleep(mDebugRegion * 1000);
1212}
1213
1214void SurfaceFlinger::drawWormhole(const Region& region) const
1215{
1216    glDisable(GL_TEXTURE_EXTERNAL_OES);
1217    glDisable(GL_TEXTURE_2D);
1218    glDisable(GL_BLEND);
1219    glColor4f(0,0,0,0);
1220
1221    GLfloat vertices[4][2];
1222    glVertexPointer(2, GL_FLOAT, 0, vertices);
1223    Region::const_iterator it = region.begin();
1224    Region::const_iterator const end = region.end();
1225    while (it != end) {
1226        const Rect& r = *it++;
1227        vertices[0][0] = r.left;
1228        vertices[0][1] = r.top;
1229        vertices[1][0] = r.right;
1230        vertices[1][1] = r.top;
1231        vertices[2][0] = r.right;
1232        vertices[2][1] = r.bottom;
1233        vertices[3][0] = r.left;
1234        vertices[3][1] = r.bottom;
1235        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1236    }
1237}
1238
1239ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1240        const sp<LayerBaseClient>& lbc)
1241{
1242    // attach this layer to the client
1243    size_t name = client->attachLayer(lbc);
1244
1245    // add this layer to the current state list
1246    Mutex::Autolock _l(mStateLock);
1247    mCurrentState.layersSortedByZ.add(lbc);
1248
1249    return ssize_t(name);
1250}
1251
1252status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1253{
1254    Mutex::Autolock _l(mStateLock);
1255    status_t err = purgatorizeLayer_l(layer);
1256    if (err == NO_ERROR)
1257        setTransactionFlags(eTransactionNeeded);
1258    return err;
1259}
1260
1261status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1262{
1263    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1264    if (index >= 0) {
1265        mLayersRemoved = true;
1266        return NO_ERROR;
1267    }
1268    return status_t(index);
1269}
1270
1271status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1272{
1273    // First add the layer to the purgatory list, which makes sure it won't
1274    // go away, then remove it from the main list (through a transaction).
1275    ssize_t err = removeLayer_l(layerBase);
1276    if (err >= 0) {
1277        mLayerPurgatory.add(layerBase);
1278    }
1279
1280    mLayersPendingRemoval.push(layerBase);
1281
1282    // it's possible that we don't find a layer, because it might
1283    // have been destroyed already -- this is not technically an error
1284    // from the user because there is a race between Client::destroySurface(),
1285    // ~Client() and ~ISurface().
1286    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1287}
1288
1289uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1290{
1291    return android_atomic_release_load(&mTransactionFlags);
1292}
1293
1294uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1295{
1296    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1297}
1298
1299uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1300{
1301    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1302    if ((old & flags)==0) { // wake the server up
1303        signalTransaction();
1304    }
1305    return old;
1306}
1307
1308
1309void SurfaceFlinger::setTransactionState(
1310        const Vector<ComposerState>& state,
1311        const Vector<DisplayState>& displays,
1312        uint32_t flags)
1313{
1314    Mutex::Autolock _l(mStateLock);
1315
1316    int orientation = eOrientationUnchanged;
1317    if (displays.size()) {
1318        // TODO: handle all displays
1319        orientation = displays[0].orientation;
1320    }
1321
1322    uint32_t transactionFlags = 0;
1323    if (mCurrentState.orientation != orientation) {
1324        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1325            mCurrentState.orientation = orientation;
1326            transactionFlags |= eTransactionNeeded;
1327        } else if (orientation != eOrientationUnchanged) {
1328            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1329                    orientation);
1330        }
1331    }
1332
1333    const size_t count = state.size();
1334    for (size_t i=0 ; i<count ; i++) {
1335        const ComposerState& s(state[i]);
1336        sp<Client> client( static_cast<Client *>(s.client.get()) );
1337        transactionFlags |= setClientStateLocked(client, s.state);
1338    }
1339
1340    if (transactionFlags) {
1341        // this triggers the transaction
1342        setTransactionFlags(transactionFlags);
1343
1344        // if this is a synchronous transaction, wait for it to take effect
1345        // before returning.
1346        if (flags & eSynchronous) {
1347            mTransationPending = true;
1348        }
1349        while (mTransationPending) {
1350            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1351            if (CC_UNLIKELY(err != NO_ERROR)) {
1352                // just in case something goes wrong in SF, return to the
1353                // called after a few seconds.
1354                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1355                mTransationPending = false;
1356                break;
1357            }
1358        }
1359    }
1360}
1361
1362sp<ISurface> SurfaceFlinger::createLayer(
1363        ISurfaceComposerClient::surface_data_t* params,
1364        const String8& name,
1365        const sp<Client>& client,
1366        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1367        uint32_t flags)
1368{
1369    sp<LayerBaseClient> layer;
1370    sp<ISurface> surfaceHandle;
1371
1372    if (int32_t(w|h) < 0) {
1373        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1374                int(w), int(h));
1375        return surfaceHandle;
1376    }
1377
1378    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1379    switch (flags & eFXSurfaceMask) {
1380        case eFXSurfaceNormal:
1381            layer = createNormalLayer(client, d, w, h, flags, format);
1382            break;
1383        case eFXSurfaceBlur:
1384            // for now we treat Blur as Dim, until we can implement it
1385            // efficiently.
1386        case eFXSurfaceDim:
1387            layer = createDimLayer(client, d, w, h, flags);
1388            break;
1389        case eFXSurfaceScreenshot:
1390            layer = createScreenshotLayer(client, d, w, h, flags);
1391            break;
1392    }
1393
1394    if (layer != 0) {
1395        layer->initStates(w, h, flags);
1396        layer->setName(name);
1397        ssize_t token = addClientLayer(client, layer);
1398        surfaceHandle = layer->getSurface();
1399        if (surfaceHandle != 0) {
1400            params->token = token;
1401            params->identity = layer->getIdentity();
1402        }
1403        setTransactionFlags(eTransactionNeeded);
1404    }
1405
1406    return surfaceHandle;
1407}
1408
1409sp<Layer> SurfaceFlinger::createNormalLayer(
1410        const sp<Client>& client, DisplayID display,
1411        uint32_t w, uint32_t h, uint32_t flags,
1412        PixelFormat& format)
1413{
1414    // initialize the surfaces
1415    switch (format) { // TODO: take h/w into account
1416    case PIXEL_FORMAT_TRANSPARENT:
1417    case PIXEL_FORMAT_TRANSLUCENT:
1418        format = PIXEL_FORMAT_RGBA_8888;
1419        break;
1420    case PIXEL_FORMAT_OPAQUE:
1421#ifdef NO_RGBX_8888
1422        format = PIXEL_FORMAT_RGB_565;
1423#else
1424        format = PIXEL_FORMAT_RGBX_8888;
1425#endif
1426        break;
1427    }
1428
1429#ifdef NO_RGBX_8888
1430    if (format == PIXEL_FORMAT_RGBX_8888)
1431        format = PIXEL_FORMAT_RGBA_8888;
1432#endif
1433
1434    sp<Layer> layer = new Layer(this, display, client);
1435    status_t err = layer->setBuffers(w, h, format, flags);
1436    if (CC_LIKELY(err != NO_ERROR)) {
1437        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1438        layer.clear();
1439    }
1440    return layer;
1441}
1442
1443sp<LayerDim> SurfaceFlinger::createDimLayer(
1444        const sp<Client>& client, DisplayID display,
1445        uint32_t w, uint32_t h, uint32_t flags)
1446{
1447    sp<LayerDim> layer = new LayerDim(this, display, client);
1448    return layer;
1449}
1450
1451sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1452        const sp<Client>& client, DisplayID display,
1453        uint32_t w, uint32_t h, uint32_t flags)
1454{
1455    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1456    return layer;
1457}
1458
1459status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1460{
1461    /*
1462     * called by the window manager, when a surface should be marked for
1463     * destruction.
1464     *
1465     * The surface is removed from the current and drawing lists, but placed
1466     * in the purgatory queue, so it's not destroyed right-away (we need
1467     * to wait for all client's references to go away first).
1468     */
1469
1470    status_t err = NAME_NOT_FOUND;
1471    Mutex::Autolock _l(mStateLock);
1472    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1473
1474    if (layer != 0) {
1475        err = purgatorizeLayer_l(layer);
1476        if (err == NO_ERROR) {
1477            setTransactionFlags(eTransactionNeeded);
1478        }
1479    }
1480    return err;
1481}
1482
1483status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1484{
1485    // called by ~ISurface() when all references are gone
1486    status_t err = NO_ERROR;
1487    sp<LayerBaseClient> l(layer.promote());
1488    if (l != NULL) {
1489        Mutex::Autolock _l(mStateLock);
1490        err = removeLayer_l(l);
1491        if (err == NAME_NOT_FOUND) {
1492            // The surface wasn't in the current list, which means it was
1493            // removed already, which means it is in the purgatory,
1494            // and need to be removed from there.
1495            ssize_t idx = mLayerPurgatory.remove(l);
1496            ALOGE_IF(idx < 0,
1497                    "layer=%p is not in the purgatory list", l.get());
1498        }
1499        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1500                "error removing layer=%p (%s)", l.get(), strerror(-err));
1501    }
1502    return err;
1503}
1504
1505uint32_t SurfaceFlinger::setClientStateLocked(
1506        const sp<Client>& client,
1507        const layer_state_t& s)
1508{
1509    uint32_t flags = 0;
1510    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1511    if (layer != 0) {
1512        const uint32_t what = s.what;
1513        if (what & ePositionChanged) {
1514            if (layer->setPosition(s.x, s.y))
1515                flags |= eTraversalNeeded;
1516        }
1517        if (what & eLayerChanged) {
1518            // NOTE: index needs to be calculated before we update the state
1519            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1520            if (layer->setLayer(s.z)) {
1521                mCurrentState.layersSortedByZ.removeAt(idx);
1522                mCurrentState.layersSortedByZ.add(layer);
1523                // we need traversal (state changed)
1524                // AND transaction (list changed)
1525                flags |= eTransactionNeeded|eTraversalNeeded;
1526            }
1527        }
1528        if (what & eSizeChanged) {
1529            if (layer->setSize(s.w, s.h)) {
1530                flags |= eTraversalNeeded;
1531            }
1532        }
1533        if (what & eAlphaChanged) {
1534            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1535                flags |= eTraversalNeeded;
1536        }
1537        if (what & eMatrixChanged) {
1538            if (layer->setMatrix(s.matrix))
1539                flags |= eTraversalNeeded;
1540        }
1541        if (what & eTransparentRegionChanged) {
1542            if (layer->setTransparentRegionHint(s.transparentRegion))
1543                flags |= eTraversalNeeded;
1544        }
1545        if (what & eVisibilityChanged) {
1546            if (layer->setFlags(s.flags, s.mask))
1547                flags |= eTraversalNeeded;
1548        }
1549        if (what & eCropChanged) {
1550            if (layer->setCrop(s.crop))
1551                flags |= eTraversalNeeded;
1552        }
1553        if (what & eLayerStackChanged) {
1554            // NOTE: index needs to be calculated before we update the state
1555            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1556            if (layer->setLayerStack(s.layerStack)) {
1557                mCurrentState.layersSortedByZ.removeAt(idx);
1558                mCurrentState.layersSortedByZ.add(layer);
1559                // we need traversal (state changed)
1560                // AND transaction (list changed)
1561                flags |= eTransactionNeeded|eTraversalNeeded;
1562            }
1563        }
1564    }
1565    return flags;
1566}
1567
1568// ---------------------------------------------------------------------------
1569
1570void SurfaceFlinger::onScreenAcquired() {
1571    ALOGD("Screen about to return, flinger = %p", this);
1572    const DisplayDevice& hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1573    getHwComposer().acquire();
1574    hw.acquireScreen();
1575    mEventThread->onScreenAcquired();
1576    // this is a temporary work-around, eventually this should be called
1577    // by the power-manager
1578    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1579    // from this point on, SF will process updates again
1580    repaintEverything();
1581}
1582
1583void SurfaceFlinger::onScreenReleased() {
1584    ALOGD("About to give-up screen, flinger = %p", this);
1585    const DisplayDevice& hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1586    if (hw.isScreenAcquired()) {
1587        mEventThread->onScreenReleased();
1588        hw.releaseScreen();
1589        getHwComposer().release();
1590        // from this point on, SF will stop drawing
1591    }
1592}
1593
1594void SurfaceFlinger::unblank() {
1595    class MessageScreenAcquired : public MessageBase {
1596        SurfaceFlinger* flinger;
1597    public:
1598        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1599        virtual bool handler() {
1600            flinger->onScreenAcquired();
1601            return true;
1602        }
1603    };
1604    sp<MessageBase> msg = new MessageScreenAcquired(this);
1605    postMessageSync(msg);
1606}
1607
1608void SurfaceFlinger::blank() {
1609    class MessageScreenReleased : public MessageBase {
1610        SurfaceFlinger* flinger;
1611    public:
1612        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1613        virtual bool handler() {
1614            flinger->onScreenReleased();
1615            return true;
1616        }
1617    };
1618    sp<MessageBase> msg = new MessageScreenReleased(this);
1619    postMessageSync(msg);
1620}
1621
1622// ---------------------------------------------------------------------------
1623
1624status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1625{
1626    const size_t SIZE = 4096;
1627    char buffer[SIZE];
1628    String8 result;
1629
1630    if (!PermissionCache::checkCallingPermission(sDump)) {
1631        snprintf(buffer, SIZE, "Permission Denial: "
1632                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1633                IPCThreadState::self()->getCallingPid(),
1634                IPCThreadState::self()->getCallingUid());
1635        result.append(buffer);
1636    } else {
1637        // Try to get the main lock, but don't insist if we can't
1638        // (this would indicate SF is stuck, but we want to be able to
1639        // print something in dumpsys).
1640        int retry = 3;
1641        while (mStateLock.tryLock()<0 && --retry>=0) {
1642            usleep(1000000);
1643        }
1644        const bool locked(retry >= 0);
1645        if (!locked) {
1646            snprintf(buffer, SIZE,
1647                    "SurfaceFlinger appears to be unresponsive, "
1648                    "dumping anyways (no locks held)\n");
1649            result.append(buffer);
1650        }
1651
1652        bool dumpAll = true;
1653        size_t index = 0;
1654        size_t numArgs = args.size();
1655        if (numArgs) {
1656            if ((index < numArgs) &&
1657                    (args[index] == String16("--list"))) {
1658                index++;
1659                listLayersLocked(args, index, result, buffer, SIZE);
1660                dumpAll = false;
1661            }
1662
1663            if ((index < numArgs) &&
1664                    (args[index] == String16("--latency"))) {
1665                index++;
1666                dumpStatsLocked(args, index, result, buffer, SIZE);
1667                dumpAll = false;
1668            }
1669
1670            if ((index < numArgs) &&
1671                    (args[index] == String16("--latency-clear"))) {
1672                index++;
1673                clearStatsLocked(args, index, result, buffer, SIZE);
1674                dumpAll = false;
1675            }
1676        }
1677
1678        if (dumpAll) {
1679            dumpAllLocked(result, buffer, SIZE);
1680        }
1681
1682        if (locked) {
1683            mStateLock.unlock();
1684        }
1685    }
1686    write(fd, result.string(), result.size());
1687    return NO_ERROR;
1688}
1689
1690void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1691        String8& result, char* buffer, size_t SIZE) const
1692{
1693    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1694    const size_t count = currentLayers.size();
1695    for (size_t i=0 ; i<count ; i++) {
1696        const sp<LayerBase>& layer(currentLayers[i]);
1697        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1698        result.append(buffer);
1699    }
1700}
1701
1702void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1703        String8& result, char* buffer, size_t SIZE) const
1704{
1705    String8 name;
1706    if (index < args.size()) {
1707        name = String8(args[index]);
1708        index++;
1709    }
1710
1711    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1712    const size_t count = currentLayers.size();
1713    for (size_t i=0 ; i<count ; i++) {
1714        const sp<LayerBase>& layer(currentLayers[i]);
1715        if (name.isEmpty()) {
1716            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1717            result.append(buffer);
1718        }
1719        if (name.isEmpty() || (name == layer->getName())) {
1720            layer->dumpStats(result, buffer, SIZE);
1721        }
1722    }
1723}
1724
1725void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1726        String8& result, char* buffer, size_t SIZE) const
1727{
1728    String8 name;
1729    if (index < args.size()) {
1730        name = String8(args[index]);
1731        index++;
1732    }
1733
1734    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1735    const size_t count = currentLayers.size();
1736    for (size_t i=0 ; i<count ; i++) {
1737        const sp<LayerBase>& layer(currentLayers[i]);
1738        if (name.isEmpty() || (name == layer->getName())) {
1739            layer->clearStats();
1740        }
1741    }
1742}
1743
1744void SurfaceFlinger::dumpAllLocked(
1745        String8& result, char* buffer, size_t SIZE) const
1746{
1747    // figure out if we're stuck somewhere
1748    const nsecs_t now = systemTime();
1749    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1750    const nsecs_t inTransaction(mDebugInTransaction);
1751    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1752    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1753
1754    /*
1755     * Dump the visible layer list
1756     */
1757    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1758    const size_t count = currentLayers.size();
1759    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1760    result.append(buffer);
1761    for (size_t i=0 ; i<count ; i++) {
1762        const sp<LayerBase>& layer(currentLayers[i]);
1763        layer->dump(result, buffer, SIZE);
1764    }
1765
1766    /*
1767     * Dump the layers in the purgatory
1768     */
1769
1770    const size_t purgatorySize = mLayerPurgatory.size();
1771    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1772    result.append(buffer);
1773    for (size_t i=0 ; i<purgatorySize ; i++) {
1774        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1775        layer->shortDump(result, buffer, SIZE);
1776    }
1777
1778    /*
1779     * Dump SurfaceFlinger global state
1780     */
1781
1782    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1783    result.append(buffer);
1784
1785    const DisplayDevice& hw(getDefaultDisplayDevice());
1786    const GLExtensions& extensions(GLExtensions::getInstance());
1787    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1788            extensions.getVendor(),
1789            extensions.getRenderer(),
1790            extensions.getVersion());
1791    result.append(buffer);
1792
1793    snprintf(buffer, SIZE, "EGL : %s\n",
1794            eglQueryString(hw.getEGLDisplay(),
1795                    EGL_VERSION_HW_ANDROID));
1796    result.append(buffer);
1797
1798    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1799    result.append(buffer);
1800
1801    hw.undefinedRegion.dump(result, "undefinedRegion");
1802    snprintf(buffer, SIZE,
1803            "  orientation=%d, canDraw=%d\n",
1804            mCurrentState.orientation, hw.canDraw());
1805    result.append(buffer);
1806    snprintf(buffer, SIZE,
1807            "  last eglSwapBuffers() time: %f us\n"
1808            "  last transaction time     : %f us\n"
1809            "  transaction-flags         : %08x\n"
1810            "  refresh-rate              : %f fps\n"
1811            "  x-dpi                     : %f\n"
1812            "  y-dpi                     : %f\n"
1813            "  density                   : %f\n",
1814            mLastSwapBufferTime/1000.0,
1815            mLastTransactionTime/1000.0,
1816            mTransactionFlags,
1817            hw.getRefreshRate(),
1818            hw.getDpiX(),
1819            hw.getDpiY(),
1820            hw.getDensity());
1821    result.append(buffer);
1822
1823    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1824            inSwapBuffersDuration/1000.0);
1825    result.append(buffer);
1826
1827    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1828            inTransactionDuration/1000.0);
1829    result.append(buffer);
1830
1831    /*
1832     * VSYNC state
1833     */
1834    mEventThread->dump(result, buffer, SIZE);
1835
1836    /*
1837     * Dump HWComposer state
1838     */
1839    HWComposer& hwc(getHwComposer());
1840    snprintf(buffer, SIZE, "h/w composer state:\n");
1841    result.append(buffer);
1842    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1843            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1844                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1845    result.append(buffer);
1846    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1847
1848    /*
1849     * Dump gralloc state
1850     */
1851    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1852    alloc.dump(result);
1853    hw.dump(result);
1854}
1855
1856status_t SurfaceFlinger::onTransact(
1857    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1858{
1859    switch (code) {
1860        case CREATE_CONNECTION:
1861        case SET_TRANSACTION_STATE:
1862        case SET_ORIENTATION:
1863        case BOOT_FINISHED:
1864        case TURN_ELECTRON_BEAM_OFF:
1865        case TURN_ELECTRON_BEAM_ON:
1866        case BLANK:
1867        case UNBLANK:
1868        {
1869            // codes that require permission check
1870            IPCThreadState* ipc = IPCThreadState::self();
1871            const int pid = ipc->getCallingPid();
1872            const int uid = ipc->getCallingUid();
1873            if ((uid != AID_GRAPHICS) &&
1874                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1875                ALOGE("Permission Denial: "
1876                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1877                return PERMISSION_DENIED;
1878            }
1879            break;
1880        }
1881        case CAPTURE_SCREEN:
1882        {
1883            // codes that require permission check
1884            IPCThreadState* ipc = IPCThreadState::self();
1885            const int pid = ipc->getCallingPid();
1886            const int uid = ipc->getCallingUid();
1887            if ((uid != AID_GRAPHICS) &&
1888                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1889                ALOGE("Permission Denial: "
1890                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1891                return PERMISSION_DENIED;
1892            }
1893            break;
1894        }
1895    }
1896
1897    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1898    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1899        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1900        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1901            IPCThreadState* ipc = IPCThreadState::self();
1902            const int pid = ipc->getCallingPid();
1903            const int uid = ipc->getCallingUid();
1904            ALOGE("Permission Denial: "
1905                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1906            return PERMISSION_DENIED;
1907        }
1908        int n;
1909        switch (code) {
1910            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1911            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1912                return NO_ERROR;
1913            case 1002:  // SHOW_UPDATES
1914                n = data.readInt32();
1915                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1916                invalidateHwcGeometry();
1917                repaintEverything();
1918                return NO_ERROR;
1919            case 1004:{ // repaint everything
1920                repaintEverything();
1921                return NO_ERROR;
1922            }
1923            case 1005:{ // force transaction
1924                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1925                return NO_ERROR;
1926            }
1927            case 1006:{ // send empty update
1928                signalRefresh();
1929                return NO_ERROR;
1930            }
1931            case 1008:  // toggle use of hw composer
1932                n = data.readInt32();
1933                mDebugDisableHWC = n ? 1 : 0;
1934                invalidateHwcGeometry();
1935                repaintEverything();
1936                return NO_ERROR;
1937            case 1009:  // toggle use of transform hint
1938                n = data.readInt32();
1939                mDebugDisableTransformHint = n ? 1 : 0;
1940                invalidateHwcGeometry();
1941                repaintEverything();
1942                return NO_ERROR;
1943            case 1010:  // interrogate.
1944                reply->writeInt32(0);
1945                reply->writeInt32(0);
1946                reply->writeInt32(mDebugRegion);
1947                reply->writeInt32(0);
1948                reply->writeInt32(mDebugDisableHWC);
1949                return NO_ERROR;
1950            case 1013: {
1951                Mutex::Autolock _l(mStateLock);
1952                const DisplayDevice& hw(getDefaultDisplayDevice());
1953                reply->writeInt32(hw.getPageFlipCount());
1954            }
1955            return NO_ERROR;
1956        }
1957    }
1958    return err;
1959}
1960
1961void SurfaceFlinger::repaintEverything() {
1962    android_atomic_or(1, &mRepaintEverything);
1963    signalTransaction();
1964}
1965
1966// ---------------------------------------------------------------------------
1967
1968status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1969        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1970{
1971    Mutex::Autolock _l(mStateLock);
1972    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1973}
1974
1975status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1976        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1977{
1978    ATRACE_CALL();
1979
1980    if (!GLExtensions::getInstance().haveFramebufferObject())
1981        return INVALID_OPERATION;
1982
1983    // get screen geometry
1984    const DisplayDevice& hw(getDisplayDevice(dpy));
1985    const uint32_t hw_w = hw.getWidth();
1986    const uint32_t hw_h = hw.getHeight();
1987    GLfloat u = 1;
1988    GLfloat v = 1;
1989
1990    // make sure to clear all GL error flags
1991    while ( glGetError() != GL_NO_ERROR ) ;
1992
1993    // create a FBO
1994    GLuint name, tname;
1995    glGenTextures(1, &tname);
1996    glBindTexture(GL_TEXTURE_2D, tname);
1997    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1998    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1999    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2000            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2001    if (glGetError() != GL_NO_ERROR) {
2002        while ( glGetError() != GL_NO_ERROR ) ;
2003        GLint tw = (2 << (31 - clz(hw_w)));
2004        GLint th = (2 << (31 - clz(hw_h)));
2005        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2006                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2007        u = GLfloat(hw_w) / tw;
2008        v = GLfloat(hw_h) / th;
2009    }
2010    glGenFramebuffersOES(1, &name);
2011    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2012    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2013            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2014
2015    // redraw the screen entirely...
2016    glDisable(GL_TEXTURE_EXTERNAL_OES);
2017    glDisable(GL_TEXTURE_2D);
2018    glClearColor(0,0,0,1);
2019    glClear(GL_COLOR_BUFFER_BIT);
2020    glMatrixMode(GL_MODELVIEW);
2021    glLoadIdentity();
2022    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
2023    const size_t count = layers.size();
2024    for (size_t i=0 ; i<count ; ++i) {
2025        const sp<LayerBase>& layer(layers[i]);
2026        layer->drawForSreenShot(hw);
2027    }
2028
2029    hw.compositionComplete();
2030
2031    // back to main framebuffer
2032    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2033    glDeleteFramebuffersOES(1, &name);
2034
2035    *textureName = tname;
2036    *uOut = u;
2037    *vOut = v;
2038    return NO_ERROR;
2039}
2040
2041// ---------------------------------------------------------------------------
2042
2043class VSyncWaiter {
2044    DisplayEventReceiver::Event buffer[4];
2045    sp<Looper> looper;
2046    sp<IDisplayEventConnection> events;
2047    sp<BitTube> eventTube;
2048public:
2049    VSyncWaiter(const sp<EventThread>& eventThread) {
2050        looper = new Looper(true);
2051        events = eventThread->createEventConnection();
2052        eventTube = events->getDataChannel();
2053        looper->addFd(eventTube->getFd(), 0, ALOOPER_EVENT_INPUT, 0, 0);
2054        events->requestNextVsync();
2055    }
2056
2057    void wait() {
2058        ssize_t n;
2059
2060        looper->pollOnce(-1);
2061        // we don't handle any errors here, it doesn't matter
2062        // and we don't want to take the risk to get stuck.
2063
2064        // drain the events...
2065        while ((n = DisplayEventReceiver::getEvents(
2066                eventTube, buffer, 4)) > 0) ;
2067
2068        events->requestNextVsync();
2069    }
2070};
2071
2072status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
2073{
2074    // get screen geometry
2075    const DisplayDevice& hw(getDefaultDisplayDevice());
2076    const uint32_t hw_w = hw.getWidth();
2077    const uint32_t hw_h = hw.getHeight();
2078    const Region screenBounds(hw.getBounds());
2079
2080    GLfloat u, v;
2081    GLuint tname;
2082    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
2083    if (result != NO_ERROR) {
2084        return result;
2085    }
2086
2087    GLfloat vtx[8];
2088    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
2089    glBindTexture(GL_TEXTURE_2D, tname);
2090    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
2091    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2092    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2093    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2094    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2095    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2096    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2097    glVertexPointer(2, GL_FLOAT, 0, vtx);
2098
2099    /*
2100     * Texture coordinate mapping
2101     *
2102     *                 u
2103     *    1 +----------+---+
2104     *      |     |    |   |  image is inverted
2105     *      |     V    |   |  w.r.t. the texture
2106     *  1-v +----------+   |  coordinates
2107     *      |              |
2108     *      |              |
2109     *      |              |
2110     *    0 +--------------+
2111     *      0              1
2112     *
2113     */
2114
2115    class s_curve_interpolator {
2116        const float nbFrames, s, v;
2117    public:
2118        s_curve_interpolator(int nbFrames, float s)
2119        : nbFrames(1.0f / (nbFrames-1)), s(s),
2120          v(1.0f + expf(-s + 0.5f*s)) {
2121        }
2122        float operator()(int f) {
2123            const float x = f * nbFrames;
2124            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2125        }
2126    };
2127
2128    class v_stretch {
2129        const GLfloat hw_w, hw_h;
2130    public:
2131        v_stretch(uint32_t hw_w, uint32_t hw_h)
2132        : hw_w(hw_w), hw_h(hw_h) {
2133        }
2134        void operator()(GLfloat* vtx, float v) {
2135            const GLfloat w = hw_w + (hw_w * v);
2136            const GLfloat h = hw_h - (hw_h * v);
2137            const GLfloat x = (hw_w - w) * 0.5f;
2138            const GLfloat y = (hw_h - h) * 0.5f;
2139            vtx[0] = x;         vtx[1] = y;
2140            vtx[2] = x;         vtx[3] = y + h;
2141            vtx[4] = x + w;     vtx[5] = y + h;
2142            vtx[6] = x + w;     vtx[7] = y;
2143        }
2144    };
2145
2146    class h_stretch {
2147        const GLfloat hw_w, hw_h;
2148    public:
2149        h_stretch(uint32_t hw_w, uint32_t hw_h)
2150        : hw_w(hw_w), hw_h(hw_h) {
2151        }
2152        void operator()(GLfloat* vtx, float v) {
2153            const GLfloat w = hw_w - (hw_w * v);
2154            const GLfloat h = 1.0f;
2155            const GLfloat x = (hw_w - w) * 0.5f;
2156            const GLfloat y = (hw_h - h) * 0.5f;
2157            vtx[0] = x;         vtx[1] = y;
2158            vtx[2] = x;         vtx[3] = y + h;
2159            vtx[4] = x + w;     vtx[5] = y + h;
2160            vtx[6] = x + w;     vtx[7] = y;
2161        }
2162    };
2163
2164    VSyncWaiter vsync(mEventThread);
2165
2166    // the full animation is 24 frames
2167    char value[PROPERTY_VALUE_MAX];
2168    property_get("debug.sf.electron_frames", value, "24");
2169    int nbFrames = (atoi(value) + 1) >> 1;
2170    if (nbFrames <= 0) // just in case
2171        nbFrames = 24;
2172
2173    s_curve_interpolator itr(nbFrames, 7.5f);
2174    s_curve_interpolator itg(nbFrames, 8.0f);
2175    s_curve_interpolator itb(nbFrames, 8.5f);
2176
2177    v_stretch vverts(hw_w, hw_h);
2178
2179    glMatrixMode(GL_TEXTURE);
2180    glLoadIdentity();
2181    glMatrixMode(GL_MODELVIEW);
2182    glLoadIdentity();
2183
2184    glEnable(GL_BLEND);
2185    glBlendFunc(GL_ONE, GL_ONE);
2186    for (int i=0 ; i<nbFrames ; i++) {
2187        float x, y, w, h;
2188        const float vr = itr(i);
2189        const float vg = itg(i);
2190        const float vb = itb(i);
2191
2192        // wait for vsync
2193        vsync.wait();
2194
2195        // clear screen
2196        glColorMask(1,1,1,1);
2197        glClear(GL_COLOR_BUFFER_BIT);
2198        glEnable(GL_TEXTURE_2D);
2199
2200        // draw the red plane
2201        vverts(vtx, vr);
2202        glColorMask(1,0,0,1);
2203        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2204
2205        // draw the green plane
2206        vverts(vtx, vg);
2207        glColorMask(0,1,0,1);
2208        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2209
2210        // draw the blue plane
2211        vverts(vtx, vb);
2212        glColorMask(0,0,1,1);
2213        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2214
2215        // draw the white highlight (we use the last vertices)
2216        glDisable(GL_TEXTURE_2D);
2217        glColorMask(1,1,1,1);
2218        glColor4f(vg, vg, vg, 1);
2219        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2220        hw.flip(screenBounds);
2221    }
2222
2223    h_stretch hverts(hw_w, hw_h);
2224    glDisable(GL_BLEND);
2225    glDisable(GL_TEXTURE_2D);
2226    glColorMask(1,1,1,1);
2227    for (int i=0 ; i<nbFrames ; i++) {
2228        const float v = itg(i);
2229        hverts(vtx, v);
2230
2231        // wait for vsync
2232        vsync.wait();
2233
2234        glClear(GL_COLOR_BUFFER_BIT);
2235        glColor4f(1-v, 1-v, 1-v, 1);
2236        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2237        hw.flip(screenBounds);
2238    }
2239
2240    glColorMask(1,1,1,1);
2241    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2242    glDeleteTextures(1, &tname);
2243    glDisable(GL_TEXTURE_2D);
2244    glDisable(GL_BLEND);
2245    return NO_ERROR;
2246}
2247
2248status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2249{
2250    status_t result = PERMISSION_DENIED;
2251
2252    if (!GLExtensions::getInstance().haveFramebufferObject())
2253        return INVALID_OPERATION;
2254
2255
2256    // get screen geometry
2257    const DisplayDevice& hw(getDefaultDisplayDevice());
2258    const uint32_t hw_w = hw.getWidth();
2259    const uint32_t hw_h = hw.getHeight();
2260    const Region screenBounds(hw.bounds());
2261
2262    GLfloat u, v;
2263    GLuint tname;
2264    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2265    if (result != NO_ERROR) {
2266        return result;
2267    }
2268
2269    GLfloat vtx[8];
2270    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2271    glBindTexture(GL_TEXTURE_2D, tname);
2272    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2273    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2274    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2275    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2276    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2277    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2278    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2279    glVertexPointer(2, GL_FLOAT, 0, vtx);
2280
2281    class s_curve_interpolator {
2282        const float nbFrames, s, v;
2283    public:
2284        s_curve_interpolator(int nbFrames, float s)
2285        : nbFrames(1.0f / (nbFrames-1)), s(s),
2286          v(1.0f + expf(-s + 0.5f*s)) {
2287        }
2288        float operator()(int f) {
2289            const float x = f * nbFrames;
2290            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2291        }
2292    };
2293
2294    class v_stretch {
2295        const GLfloat hw_w, hw_h;
2296    public:
2297        v_stretch(uint32_t hw_w, uint32_t hw_h)
2298        : hw_w(hw_w), hw_h(hw_h) {
2299        }
2300        void operator()(GLfloat* vtx, float v) {
2301            const GLfloat w = hw_w + (hw_w * v);
2302            const GLfloat h = hw_h - (hw_h * v);
2303            const GLfloat x = (hw_w - w) * 0.5f;
2304            const GLfloat y = (hw_h - h) * 0.5f;
2305            vtx[0] = x;         vtx[1] = y;
2306            vtx[2] = x;         vtx[3] = y + h;
2307            vtx[4] = x + w;     vtx[5] = y + h;
2308            vtx[6] = x + w;     vtx[7] = y;
2309        }
2310    };
2311
2312    class h_stretch {
2313        const GLfloat hw_w, hw_h;
2314    public:
2315        h_stretch(uint32_t hw_w, uint32_t hw_h)
2316        : hw_w(hw_w), hw_h(hw_h) {
2317        }
2318        void operator()(GLfloat* vtx, float v) {
2319            const GLfloat w = hw_w - (hw_w * v);
2320            const GLfloat h = 1.0f;
2321            const GLfloat x = (hw_w - w) * 0.5f;
2322            const GLfloat y = (hw_h - h) * 0.5f;
2323            vtx[0] = x;         vtx[1] = y;
2324            vtx[2] = x;         vtx[3] = y + h;
2325            vtx[4] = x + w;     vtx[5] = y + h;
2326            vtx[6] = x + w;     vtx[7] = y;
2327        }
2328    };
2329
2330    VSyncWaiter vsync(mEventThread);
2331
2332    // the full animation is 12 frames
2333    int nbFrames = 8;
2334    s_curve_interpolator itr(nbFrames, 7.5f);
2335    s_curve_interpolator itg(nbFrames, 8.0f);
2336    s_curve_interpolator itb(nbFrames, 8.5f);
2337
2338    h_stretch hverts(hw_w, hw_h);
2339    glDisable(GL_BLEND);
2340    glDisable(GL_TEXTURE_2D);
2341    glColorMask(1,1,1,1);
2342    for (int i=nbFrames-1 ; i>=0 ; i--) {
2343        const float v = itg(i);
2344        hverts(vtx, v);
2345
2346        // wait for vsync
2347        vsync.wait();
2348
2349        glClear(GL_COLOR_BUFFER_BIT);
2350        glColor4f(1-v, 1-v, 1-v, 1);
2351        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2352        hw.flip(screenBounds);
2353    }
2354
2355    nbFrames = 4;
2356    v_stretch vverts(hw_w, hw_h);
2357    glEnable(GL_BLEND);
2358    glBlendFunc(GL_ONE, GL_ONE);
2359    for (int i=nbFrames-1 ; i>=0 ; i--) {
2360        float x, y, w, h;
2361        const float vr = itr(i);
2362        const float vg = itg(i);
2363        const float vb = itb(i);
2364
2365        // wait for vsync
2366        vsync.wait();
2367
2368        // clear screen
2369        glColorMask(1,1,1,1);
2370        glClear(GL_COLOR_BUFFER_BIT);
2371        glEnable(GL_TEXTURE_2D);
2372
2373        // draw the red plane
2374        vverts(vtx, vr);
2375        glColorMask(1,0,0,1);
2376        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2377
2378        // draw the green plane
2379        vverts(vtx, vg);
2380        glColorMask(0,1,0,1);
2381        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2382
2383        // draw the blue plane
2384        vverts(vtx, vb);
2385        glColorMask(0,0,1,1);
2386        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2387
2388        hw.flip(screenBounds);
2389    }
2390
2391    glColorMask(1,1,1,1);
2392    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2393    glDeleteTextures(1, &tname);
2394    glDisable(GL_TEXTURE_2D);
2395    glDisable(GL_BLEND);
2396
2397    return NO_ERROR;
2398}
2399
2400// ---------------------------------------------------------------------------
2401
2402status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2403{
2404    ATRACE_CALL();
2405
2406    DisplayDevice& hw(const_cast<DisplayDevice&>(getDefaultDisplayDevice()));
2407    if (!hw.canDraw()) {
2408        // we're already off
2409        return NO_ERROR;
2410    }
2411
2412    // turn off hwc while we're doing the animation
2413    getHwComposer().disable();
2414    // and make sure to turn it back on (if needed) next time we compose
2415    invalidateHwcGeometry();
2416
2417    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2418        electronBeamOffAnimationImplLocked();
2419    }
2420
2421    // always clear the whole screen at the end of the animation
2422    glClearColor(0,0,0,1);
2423    glClear(GL_COLOR_BUFFER_BIT);
2424    hw.flip( Region(hw.bounds()) );
2425
2426    return NO_ERROR;
2427}
2428
2429status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2430{
2431    class MessageTurnElectronBeamOff : public MessageBase {
2432        SurfaceFlinger* flinger;
2433        int32_t mode;
2434        status_t result;
2435    public:
2436        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2437            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2438        }
2439        status_t getResult() const {
2440            return result;
2441        }
2442        virtual bool handler() {
2443            Mutex::Autolock _l(flinger->mStateLock);
2444            result = flinger->turnElectronBeamOffImplLocked(mode);
2445            return true;
2446        }
2447    };
2448
2449    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2450    status_t res = postMessageSync(msg);
2451    if (res == NO_ERROR) {
2452        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2453
2454        // work-around: when the power-manager calls us we activate the
2455        // animation. eventually, the "on" animation will be called
2456        // by the power-manager itself
2457        mElectronBeamAnimationMode = mode;
2458    }
2459    return res;
2460}
2461
2462// ---------------------------------------------------------------------------
2463
2464status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2465{
2466    DisplayDevice& hw(const_cast<DisplayDevice&>(getDefaultDisplayDevice()));
2467    if (hw.canDraw()) {
2468        // we're already on
2469        return NO_ERROR;
2470    }
2471    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2472        electronBeamOnAnimationImplLocked();
2473    }
2474
2475    // make sure to redraw the whole screen when the animation is done
2476    hw.dirtyRegion.set(hw.bounds());
2477    signalTransaction();
2478
2479    return NO_ERROR;
2480}
2481
2482status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2483{
2484    class MessageTurnElectronBeamOn : public MessageBase {
2485        SurfaceFlinger* flinger;
2486        int32_t mode;
2487        status_t result;
2488    public:
2489        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2490            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2491        }
2492        status_t getResult() const {
2493            return result;
2494        }
2495        virtual bool handler() {
2496            Mutex::Autolock _l(flinger->mStateLock);
2497            result = flinger->turnElectronBeamOnImplLocked(mode);
2498            return true;
2499        }
2500    };
2501
2502    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2503    return NO_ERROR;
2504}
2505
2506// ---------------------------------------------------------------------------
2507
2508status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2509        sp<IMemoryHeap>* heap,
2510        uint32_t* w, uint32_t* h, PixelFormat* f,
2511        uint32_t sw, uint32_t sh,
2512        uint32_t minLayerZ, uint32_t maxLayerZ)
2513{
2514    ATRACE_CALL();
2515
2516    status_t result = PERMISSION_DENIED;
2517
2518    // only one display supported for now
2519    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2520        return BAD_VALUE;
2521    }
2522
2523    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2524        return INVALID_OPERATION;
2525    }
2526
2527    // get screen geometry
2528    const DisplayDevice& hw(getDisplayDevice(dpy));
2529    const uint32_t hw_w = hw.getWidth();
2530    const uint32_t hw_h = hw.getHeight();
2531
2532    // if we have secure windows on this display, never allow the screen capture
2533    if (hw.getSecureLayerVisible()) {
2534        return PERMISSION_DENIED;
2535    }
2536
2537    if ((sw > hw_w) || (sh > hw_h)) {
2538        return BAD_VALUE;
2539    }
2540
2541    sw = (!sw) ? hw_w : sw;
2542    sh = (!sh) ? hw_h : sh;
2543    const size_t size = sw * sh * 4;
2544
2545    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2546    //        sw, sh, minLayerZ, maxLayerZ);
2547
2548    // make sure to clear all GL error flags
2549    while ( glGetError() != GL_NO_ERROR ) ;
2550
2551    // create a FBO
2552    GLuint name, tname;
2553    glGenRenderbuffersOES(1, &tname);
2554    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2555    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2556
2557    glGenFramebuffersOES(1, &name);
2558    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2559    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2560            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2561
2562    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2563
2564    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2565
2566        // invert everything, b/c glReadPixel() below will invert the FB
2567        glViewport(0, 0, sw, sh);
2568        glMatrixMode(GL_PROJECTION);
2569        glPushMatrix();
2570        glLoadIdentity();
2571        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2572        glMatrixMode(GL_MODELVIEW);
2573
2574        // redraw the screen entirely...
2575        glClearColor(0,0,0,1);
2576        glClear(GL_COLOR_BUFFER_BIT);
2577
2578        const LayerVector& layers(mDrawingState.layersSortedByZ);
2579        const size_t count = layers.size();
2580        for (size_t i=0 ; i<count ; ++i) {
2581            const sp<LayerBase>& layer(layers[i]);
2582            const uint32_t flags = layer->drawingState().flags;
2583            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2584                const uint32_t z = layer->drawingState().z;
2585                if (z >= minLayerZ && z <= maxLayerZ) {
2586                    layer->drawForSreenShot(hw);
2587                }
2588            }
2589        }
2590
2591        // check for errors and return screen capture
2592        if (glGetError() != GL_NO_ERROR) {
2593            // error while rendering
2594            result = INVALID_OPERATION;
2595        } else {
2596            // allocate shared memory large enough to hold the
2597            // screen capture
2598            sp<MemoryHeapBase> base(
2599                    new MemoryHeapBase(size, 0, "screen-capture") );
2600            void* const ptr = base->getBase();
2601            if (ptr) {
2602                // capture the screen with glReadPixels()
2603                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2604                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2605                if (glGetError() == GL_NO_ERROR) {
2606                    *heap = base;
2607                    *w = sw;
2608                    *h = sh;
2609                    *f = PIXEL_FORMAT_RGBA_8888;
2610                    result = NO_ERROR;
2611                }
2612            } else {
2613                result = NO_MEMORY;
2614            }
2615        }
2616        glViewport(0, 0, hw_w, hw_h);
2617        glMatrixMode(GL_PROJECTION);
2618        glPopMatrix();
2619        glMatrixMode(GL_MODELVIEW);
2620    } else {
2621        result = BAD_VALUE;
2622    }
2623
2624    // release FBO resources
2625    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2626    glDeleteRenderbuffersOES(1, &tname);
2627    glDeleteFramebuffersOES(1, &name);
2628
2629    hw.compositionComplete();
2630
2631    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2632
2633    return result;
2634}
2635
2636
2637status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2638        sp<IMemoryHeap>* heap,
2639        uint32_t* width, uint32_t* height, PixelFormat* format,
2640        uint32_t sw, uint32_t sh,
2641        uint32_t minLayerZ, uint32_t maxLayerZ)
2642{
2643    // only one display supported for now
2644    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2645        return BAD_VALUE;
2646
2647    if (!GLExtensions::getInstance().haveFramebufferObject())
2648        return INVALID_OPERATION;
2649
2650    class MessageCaptureScreen : public MessageBase {
2651        SurfaceFlinger* flinger;
2652        DisplayID dpy;
2653        sp<IMemoryHeap>* heap;
2654        uint32_t* w;
2655        uint32_t* h;
2656        PixelFormat* f;
2657        uint32_t sw;
2658        uint32_t sh;
2659        uint32_t minLayerZ;
2660        uint32_t maxLayerZ;
2661        status_t result;
2662    public:
2663        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2664                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2665                uint32_t sw, uint32_t sh,
2666                uint32_t minLayerZ, uint32_t maxLayerZ)
2667            : flinger(flinger), dpy(dpy),
2668              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2669              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2670              result(PERMISSION_DENIED)
2671        {
2672        }
2673        status_t getResult() const {
2674            return result;
2675        }
2676        virtual bool handler() {
2677            Mutex::Autolock _l(flinger->mStateLock);
2678            result = flinger->captureScreenImplLocked(dpy,
2679                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2680            return true;
2681        }
2682    };
2683
2684    sp<MessageBase> msg = new MessageCaptureScreen(this,
2685            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2686    status_t res = postMessageSync(msg);
2687    if (res == NO_ERROR) {
2688        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2689    }
2690    return res;
2691}
2692
2693// ---------------------------------------------------------------------------
2694
2695SurfaceFlinger::LayerVector::LayerVector() {
2696}
2697
2698SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2699    : SortedVector<sp<LayerBase> >(rhs) {
2700}
2701
2702int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2703    const void* rhs) const
2704{
2705    // sort layers per layer-stack, then by z-order and finally by sequence
2706    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2707    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2708
2709    uint32_t ls = l->currentState().layerStack;
2710    uint32_t rs = r->currentState().layerStack;
2711    if (ls != rs)
2712        return ls - rs;
2713
2714    uint32_t lz = l->currentState().z;
2715    uint32_t rz = r->currentState().z;
2716    if (lz != rz)
2717        return lz - rz;
2718
2719    return l->sequence - r->sequence;
2720}
2721
2722// ---------------------------------------------------------------------------
2723
2724SurfaceFlinger::State::State()
2725    : orientation(ISurfaceComposer::eOrientationDefault),
2726      orientationFlags(0) {
2727}
2728
2729// ---------------------------------------------------------------------------
2730
2731GraphicBufferAlloc::GraphicBufferAlloc() {}
2732
2733GraphicBufferAlloc::~GraphicBufferAlloc() {}
2734
2735sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2736        PixelFormat format, uint32_t usage, status_t* error) {
2737    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2738    status_t err = graphicBuffer->initCheck();
2739    *error = err;
2740    if (err != 0 || graphicBuffer->handle == 0) {
2741        if (err == NO_MEMORY) {
2742            GraphicBuffer::dumpAllocationsToSystemLog();
2743        }
2744        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2745             "failed (%s), handle=%p",
2746                w, h, strerror(-err), graphicBuffer->handle);
2747        return 0;
2748    }
2749    return graphicBuffer;
2750}
2751
2752// ---------------------------------------------------------------------------
2753
2754}; // namespace android
2755