SurfaceFlinger.cpp revision 180f10de6f504d2ba56ff32ae8ed53c58bb458e9
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56#include <private/gui/SyncFeatures.h>
57
58#include "clz.h"
59#include "DdmConnection.h"
60#include "DisplayDevice.h"
61#include "Client.h"
62#include "EventThread.h"
63#include "GLExtensions.h"
64#include "Layer.h"
65#include "LayerDim.h"
66#include "SurfaceFlinger.h"
67
68#include "DisplayHardware/FramebufferSurface.h"
69#include "DisplayHardware/HWComposer.h"
70#include "DisplayHardware/VirtualDisplaySurface.h"
71
72#define DISPLAY_COUNT       1
73
74EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mAnimCompositionPending(false),
97        mDebugRegion(0),
98        mDebugDDMS(0),
99        mDebugDisableHWC(0),
100        mDebugDisableTransformHint(0),
101        mDebugInSwapBuffers(0),
102        mLastSwapBufferTime(0),
103        mDebugInTransaction(0),
104        mLastTransactionTime(0),
105        mBootFinished(false)
106{
107    ALOGI("SurfaceFlinger is starting");
108
109    // debugging stuff...
110    char value[PROPERTY_VALUE_MAX];
111
112    property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
113    mGpuToCpuSupported = !atoi(value);
114
115    property_get("debug.sf.showupdates", value, "0");
116    mDebugRegion = atoi(value);
117
118    property_get("debug.sf.ddms", value, "0");
119    mDebugDDMS = atoi(value);
120    if (mDebugDDMS) {
121        if (!startDdmConnection()) {
122            // start failed, and DDMS debugging not enabled
123            mDebugDDMS = 0;
124        }
125    }
126    ALOGI_IF(mDebugRegion, "showupdates enabled");
127    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
128}
129
130void SurfaceFlinger::onFirstRef()
131{
132    mEventQueue.init(this);
133
134    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
135
136    // Wait for the main thread to be done with its initialization
137    mReadyToRunBarrier.wait();
138}
139
140
141SurfaceFlinger::~SurfaceFlinger()
142{
143    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
144    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
145    eglTerminate(display);
146}
147
148void SurfaceFlinger::binderDied(const wp<IBinder>& who)
149{
150    // the window manager died on us. prepare its eulogy.
151
152    // restore initial conditions (default device unblank, etc)
153    initializeDisplays();
154
155    // restart the boot-animation
156    startBootAnim();
157}
158
159sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
160{
161    sp<ISurfaceComposerClient> bclient;
162    sp<Client> client(new Client(this));
163    status_t err = client->initCheck();
164    if (err == NO_ERROR) {
165        bclient = client;
166    }
167    return bclient;
168}
169
170sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
171        bool secure)
172{
173    class DisplayToken : public BBinder {
174        sp<SurfaceFlinger> flinger;
175        virtual ~DisplayToken() {
176             // no more references, this display must be terminated
177             Mutex::Autolock _l(flinger->mStateLock);
178             flinger->mCurrentState.displays.removeItem(this);
179             flinger->setTransactionFlags(eDisplayTransactionNeeded);
180         }
181     public:
182        DisplayToken(const sp<SurfaceFlinger>& flinger)
183            : flinger(flinger) {
184        }
185    };
186
187    sp<BBinder> token = new DisplayToken(this);
188
189    Mutex::Autolock _l(mStateLock);
190    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
191    info.displayName = displayName;
192    info.isSecure = secure;
193    mCurrentState.displays.add(token, info);
194
195    return token;
196}
197
198void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
199    ALOGW_IF(mBuiltinDisplays[type],
200            "Overwriting display token for display type %d", type);
201    mBuiltinDisplays[type] = new BBinder();
202    DisplayDeviceState info(type);
203    // All non-virtual displays are currently considered secure.
204    info.isSecure = true;
205    mCurrentState.displays.add(mBuiltinDisplays[type], info);
206}
207
208sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
209    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
210        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
211        return NULL;
212    }
213    return mBuiltinDisplays[id];
214}
215
216sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
217{
218    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
219    return gba;
220}
221
222void SurfaceFlinger::bootFinished()
223{
224    const nsecs_t now = systemTime();
225    const nsecs_t duration = now - mBootTime;
226    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
227    mBootFinished = true;
228
229    // wait patiently for the window manager death
230    const String16 name("window");
231    sp<IBinder> window(defaultServiceManager()->getService(name));
232    if (window != 0) {
233        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
234    }
235
236    // stop boot animation
237    // formerly we would just kill the process, but we now ask it to exit so it
238    // can choose where to stop the animation.
239    property_set("service.bootanim.exit", "1");
240}
241
242void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
243    class MessageDestroyGLTexture : public MessageBase {
244        GLuint texture;
245    public:
246        MessageDestroyGLTexture(GLuint texture)
247            : texture(texture) {
248        }
249        virtual bool handler() {
250            glDeleteTextures(1, &texture);
251            return true;
252        }
253    };
254    postMessageAsync(new MessageDestroyGLTexture(texture));
255}
256
257status_t SurfaceFlinger::selectConfigForAttribute(
258        EGLDisplay dpy,
259        EGLint const* attrs,
260        EGLint attribute, EGLint wanted,
261        EGLConfig* outConfig)
262{
263    EGLConfig config = NULL;
264    EGLint numConfigs = -1, n=0;
265    eglGetConfigs(dpy, NULL, 0, &numConfigs);
266    EGLConfig* const configs = new EGLConfig[numConfigs];
267    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
268
269    if (n) {
270        if (attribute != EGL_NONE) {
271            for (int i=0 ; i<n ; i++) {
272                EGLint value = 0;
273                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
274                if (wanted == value) {
275                    *outConfig = configs[i];
276                    delete [] configs;
277                    return NO_ERROR;
278                }
279            }
280        } else {
281            // just pick the first one
282            *outConfig = configs[0];
283            delete [] configs;
284            return NO_ERROR;
285        }
286    }
287    delete [] configs;
288    return NAME_NOT_FOUND;
289}
290
291class EGLAttributeVector {
292    struct Attribute;
293    class Adder;
294    friend class Adder;
295    KeyedVector<Attribute, EGLint> mList;
296    struct Attribute {
297        Attribute() {};
298        Attribute(EGLint v) : v(v) { }
299        EGLint v;
300        bool operator < (const Attribute& other) const {
301            // this places EGL_NONE at the end
302            EGLint lhs(v);
303            EGLint rhs(other.v);
304            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
305            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
306            return lhs < rhs;
307        }
308    };
309    class Adder {
310        friend class EGLAttributeVector;
311        EGLAttributeVector& v;
312        EGLint attribute;
313        Adder(EGLAttributeVector& v, EGLint attribute)
314            : v(v), attribute(attribute) {
315        }
316    public:
317        void operator = (EGLint value) {
318            if (attribute != EGL_NONE) {
319                v.mList.add(attribute, value);
320            }
321        }
322        operator EGLint () const { return v.mList[attribute]; }
323    };
324public:
325    EGLAttributeVector() {
326        mList.add(EGL_NONE, EGL_NONE);
327    }
328    void remove(EGLint attribute) {
329        if (attribute != EGL_NONE) {
330            mList.removeItem(attribute);
331        }
332    }
333    Adder operator [] (EGLint attribute) {
334        return Adder(*this, attribute);
335    }
336    EGLint operator [] (EGLint attribute) const {
337       return mList[attribute];
338    }
339    // cast-operator to (EGLint const*)
340    operator EGLint const* () const { return &mList.keyAt(0).v; }
341};
342
343EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
344    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
345    // it is to be used with WIFI displays
346    EGLConfig config;
347    EGLint dummy;
348    status_t err;
349
350    EGLAttributeVector attribs;
351    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
352    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
353    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
354    attribs[EGL_RED_SIZE]                   = 8;
355    attribs[EGL_GREEN_SIZE]                 = 8;
356    attribs[EGL_BLUE_SIZE]                  = 8;
357
358    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
359    if (!err)
360        goto success;
361
362    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
363    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
364    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
365    err = selectConfigForAttribute(display, attribs,
366            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
367    if (!err)
368        goto success;
369
370    // maybe we failed because of EGL_RECORDABLE_ANDROID
371    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
372    attribs.remove(EGL_RECORDABLE_ANDROID);
373    err = selectConfigForAttribute(display, attribs,
374            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
375    if (!err)
376        goto success;
377
378    // allow less than 24-bit color; the non-gpu-accelerated emulator only
379    // supports 16-bit color
380    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
381    attribs.remove(EGL_RED_SIZE);
382    attribs.remove(EGL_GREEN_SIZE);
383    attribs.remove(EGL_BLUE_SIZE);
384    err = selectConfigForAttribute(display, attribs,
385            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
386    if (!err)
387        goto success;
388
389    // this EGL is too lame for Android
390    ALOGE("no suitable EGLConfig found, giving up");
391
392    return 0;
393
394success:
395    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
396        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
397    return config;
398}
399
400EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
401    // Also create our EGLContext
402    EGLint contextAttributes[] = {
403#ifdef EGL_IMG_context_priority
404#ifdef HAS_CONTEXT_PRIORITY
405#warning "using EGL_IMG_context_priority"
406            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
407#endif
408#endif
409            EGL_NONE, EGL_NONE
410    };
411    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
412    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
413    return ctxt;
414}
415
416void SurfaceFlinger::initializeGL(EGLDisplay display) {
417    GLExtensions& extensions(GLExtensions::getInstance());
418    extensions.initWithGLStrings(
419            glGetString(GL_VENDOR),
420            glGetString(GL_RENDERER),
421            glGetString(GL_VERSION),
422            glGetString(GL_EXTENSIONS),
423            eglQueryString(display, EGL_VENDOR),
424            eglQueryString(display, EGL_VERSION),
425            eglQueryString(display, EGL_EXTENSIONS));
426
427    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
428    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
429
430    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
431    glPixelStorei(GL_PACK_ALIGNMENT, 4);
432    glEnableClientState(GL_VERTEX_ARRAY);
433    glShadeModel(GL_FLAT);
434    glDisable(GL_DITHER);
435    glDisable(GL_CULL_FACE);
436
437    struct pack565 {
438        inline uint16_t operator() (int r, int g, int b) const {
439            return (r<<11)|(g<<5)|b;
440        }
441    } pack565;
442
443    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
444    glGenTextures(1, &mProtectedTexName);
445    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
446    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
447    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
448    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
449    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
450    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
451            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
452
453    // print some debugging info
454    EGLint r,g,b,a;
455    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
456    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
457    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
458    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
459    ALOGI("EGL informations:");
460    ALOGI("vendor    : %s", extensions.getEglVendor());
461    ALOGI("version   : %s", extensions.getEglVersion());
462    ALOGI("extensions: %s", extensions.getEglExtension());
463    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
464    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
465    ALOGI("OpenGL ES informations:");
466    ALOGI("vendor    : %s", extensions.getVendor());
467    ALOGI("renderer  : %s", extensions.getRenderer());
468    ALOGI("version   : %s", extensions.getVersion());
469    ALOGI("extensions: %s", extensions.getExtension());
470    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
471    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
472}
473
474status_t SurfaceFlinger::readyToRun()
475{
476    ALOGI(  "SurfaceFlinger's main thread ready to run. "
477            "Initializing graphics H/W...");
478
479    Mutex::Autolock _l(mStateLock);
480
481    // initialize EGL for the default display
482    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
483    eglInitialize(mEGLDisplay, NULL, NULL);
484
485    // Initialize the H/W composer object.  There may or may not be an
486    // actual hardware composer underneath.
487    mHwc = new HWComposer(this,
488            *static_cast<HWComposer::EventHandler *>(this));
489
490    // initialize the config and context
491    EGLint format = mHwc->getVisualID();
492    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
493    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
494
495    // figure out which format we got
496    eglGetConfigAttrib(mEGLDisplay, mEGLConfig,
497            EGL_NATIVE_VISUAL_ID, &mEGLNativeVisualId);
498
499    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
500            "couldn't create EGLContext");
501
502    // initialize our non-virtual displays
503    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
504        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
505        // set-up the displays that are already connected
506        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
507            // All non-virtual displays are currently considered secure.
508            bool isSecure = true;
509            createBuiltinDisplayLocked(type);
510            wp<IBinder> token = mBuiltinDisplays[i];
511
512            sp<DisplayDevice> hw = new DisplayDevice(this,
513                    type, allocateHwcDisplayId(type), isSecure, token,
514                    new FramebufferSurface(*mHwc, i),
515                    mEGLConfig);
516            if (i > DisplayDevice::DISPLAY_PRIMARY) {
517                // FIXME: currently we don't get blank/unblank requests
518                // for displays other than the main display, so we always
519                // assume a connected display is unblanked.
520                ALOGD("marking display %d as acquired/unblanked", i);
521                hw->acquireScreen();
522            }
523            mDisplays.add(token, hw);
524        }
525    }
526
527    //  we need a GL context current in a few places, when initializing
528    //  OpenGL ES (see below), or creating a layer,
529    //  or when a texture is (asynchronously) destroyed, and for that
530    //  we need a valid surface, so it's convenient to use the main display
531    //  for that.
532    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
533
534    //  initialize OpenGL ES
535    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
536    initializeGL(mEGLDisplay);
537
538    // start the EventThread
539    mEventThread = new EventThread(this);
540    mEventQueue.setEventThread(mEventThread);
541
542    // initialize our drawing state
543    mDrawingState = mCurrentState;
544
545
546    // We're now ready to accept clients...
547    mReadyToRunBarrier.open();
548
549    // set initial conditions (e.g. unblank default device)
550    initializeDisplays();
551
552    // start boot animation
553    startBootAnim();
554
555    return NO_ERROR;
556}
557
558int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
559    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
560            type : mHwc->allocateDisplayId();
561}
562
563void SurfaceFlinger::startBootAnim() {
564    // start boot animation
565    property_set("service.bootanim.exit", "0");
566    property_set("ctl.start", "bootanim");
567}
568
569uint32_t SurfaceFlinger::getMaxTextureSize() const {
570    return mMaxTextureSize;
571}
572
573uint32_t SurfaceFlinger::getMaxViewportDims() const {
574    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
575            mMaxViewportDims[0] : mMaxViewportDims[1];
576}
577
578// ----------------------------------------------------------------------------
579
580bool SurfaceFlinger::authenticateSurfaceTexture(
581        const sp<IGraphicBufferProducer>& bufferProducer) const {
582    Mutex::Autolock _l(mStateLock);
583    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
584    return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
585}
586
587status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
588    int32_t type = NAME_NOT_FOUND;
589    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
590        if (display == mBuiltinDisplays[i]) {
591            type = i;
592            break;
593        }
594    }
595
596    if (type < 0) {
597        return type;
598    }
599
600    const HWComposer& hwc(getHwComposer());
601    float xdpi = hwc.getDpiX(type);
602    float ydpi = hwc.getDpiY(type);
603
604    // TODO: Not sure if display density should handled by SF any longer
605    class Density {
606        static int getDensityFromProperty(char const* propName) {
607            char property[PROPERTY_VALUE_MAX];
608            int density = 0;
609            if (property_get(propName, property, NULL) > 0) {
610                density = atoi(property);
611            }
612            return density;
613        }
614    public:
615        static int getEmuDensity() {
616            return getDensityFromProperty("qemu.sf.lcd_density"); }
617        static int getBuildDensity()  {
618            return getDensityFromProperty("ro.sf.lcd_density"); }
619    };
620
621    if (type == DisplayDevice::DISPLAY_PRIMARY) {
622        // The density of the device is provided by a build property
623        float density = Density::getBuildDensity() / 160.0f;
624        if (density == 0) {
625            // the build doesn't provide a density -- this is wrong!
626            // use xdpi instead
627            ALOGE("ro.sf.lcd_density must be defined as a build property");
628            density = xdpi / 160.0f;
629        }
630        if (Density::getEmuDensity()) {
631            // if "qemu.sf.lcd_density" is specified, it overrides everything
632            xdpi = ydpi = density = Density::getEmuDensity();
633            density /= 160.0f;
634        }
635        info->density = density;
636
637        // TODO: this needs to go away (currently needed only by webkit)
638        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
639        info->orientation = hw->getOrientation();
640        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
641    } else {
642        // TODO: where should this value come from?
643        static const int TV_DENSITY = 213;
644        info->density = TV_DENSITY / 160.0f;
645        info->orientation = 0;
646    }
647
648    info->w = hwc.getWidth(type);
649    info->h = hwc.getHeight(type);
650    info->xdpi = xdpi;
651    info->ydpi = ydpi;
652    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
653
654    // All non-virtual displays are currently considered secure.
655    info->secure = true;
656
657    return NO_ERROR;
658}
659
660// ----------------------------------------------------------------------------
661
662sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
663    return mEventThread->createEventConnection();
664}
665
666// ----------------------------------------------------------------------------
667
668void SurfaceFlinger::waitForEvent() {
669    mEventQueue.waitMessage();
670}
671
672void SurfaceFlinger::signalTransaction() {
673    mEventQueue.invalidate();
674}
675
676void SurfaceFlinger::signalLayerUpdate() {
677    mEventQueue.invalidate();
678}
679
680void SurfaceFlinger::signalRefresh() {
681    mEventQueue.refresh();
682}
683
684status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
685        nsecs_t reltime, uint32_t flags) {
686    return mEventQueue.postMessage(msg, reltime);
687}
688
689status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
690        nsecs_t reltime, uint32_t flags) {
691    status_t res = mEventQueue.postMessage(msg, reltime);
692    if (res == NO_ERROR) {
693        msg->wait();
694    }
695    return res;
696}
697
698bool SurfaceFlinger::threadLoop() {
699    waitForEvent();
700    return true;
701}
702
703void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
704    if (mEventThread == NULL) {
705        // This is a temporary workaround for b/7145521.  A non-null pointer
706        // does not mean EventThread has finished initializing, so this
707        // is not a correct fix.
708        ALOGW("WARNING: EventThread not started, ignoring vsync");
709        return;
710    }
711    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
712        // we should only receive DisplayDevice::DisplayType from the vsync callback
713        mEventThread->onVSyncReceived(type, timestamp);
714    }
715}
716
717void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
718    if (mEventThread == NULL) {
719        // This is a temporary workaround for b/7145521.  A non-null pointer
720        // does not mean EventThread has finished initializing, so this
721        // is not a correct fix.
722        ALOGW("WARNING: EventThread not started, ignoring hotplug");
723        return;
724    }
725
726    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
727        Mutex::Autolock _l(mStateLock);
728        if (connected) {
729            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
730        } else {
731            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
732            mBuiltinDisplays[type].clear();
733        }
734        setTransactionFlags(eDisplayTransactionNeeded);
735
736        // Defer EventThread notification until SF has updated mDisplays.
737    }
738}
739
740void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
741    getHwComposer().eventControl(disp, event, enabled);
742}
743
744void SurfaceFlinger::onMessageReceived(int32_t what) {
745    ATRACE_CALL();
746    switch (what) {
747    case MessageQueue::TRANSACTION:
748        handleMessageTransaction();
749        break;
750    case MessageQueue::INVALIDATE:
751        handleMessageTransaction();
752        handleMessageInvalidate();
753        signalRefresh();
754        break;
755    case MessageQueue::REFRESH:
756        handleMessageRefresh();
757        break;
758    }
759}
760
761void SurfaceFlinger::handleMessageTransaction() {
762    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
763    if (transactionFlags) {
764        handleTransaction(transactionFlags);
765    }
766}
767
768void SurfaceFlinger::handleMessageInvalidate() {
769    ATRACE_CALL();
770    handlePageFlip();
771}
772
773void SurfaceFlinger::handleMessageRefresh() {
774    ATRACE_CALL();
775    preComposition();
776    rebuildLayerStacks();
777    setUpHWComposer();
778    doDebugFlashRegions();
779    doComposition();
780    postComposition();
781}
782
783void SurfaceFlinger::doDebugFlashRegions()
784{
785    // is debugging enabled
786    if (CC_LIKELY(!mDebugRegion))
787        return;
788
789    const bool repaintEverything = mRepaintEverything;
790    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
791        const sp<DisplayDevice>& hw(mDisplays[dpy]);
792        if (hw->canDraw()) {
793            // transform the dirty region into this screen's coordinate space
794            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
795            if (!dirtyRegion.isEmpty()) {
796                // redraw the whole screen
797                doComposeSurfaces(hw, Region(hw->bounds()));
798
799                // and draw the dirty region
800                glDisable(GL_TEXTURE_EXTERNAL_OES);
801                glDisable(GL_TEXTURE_2D);
802                glDisable(GL_BLEND);
803                glColor4f(1, 0, 1, 1);
804                const int32_t height = hw->getHeight();
805                Region::const_iterator it = dirtyRegion.begin();
806                Region::const_iterator const end = dirtyRegion.end();
807                while (it != end) {
808                    const Rect& r = *it++;
809                    GLfloat vertices[][2] = {
810                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
811                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
812                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
813                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
814                    };
815                    glVertexPointer(2, GL_FLOAT, 0, vertices);
816                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
817                }
818                hw->compositionComplete();
819                hw->swapBuffers(getHwComposer());
820            }
821        }
822    }
823
824    postFramebuffer();
825
826    if (mDebugRegion > 1) {
827        usleep(mDebugRegion * 1000);
828    }
829
830    HWComposer& hwc(getHwComposer());
831    if (hwc.initCheck() == NO_ERROR) {
832        status_t err = hwc.prepare();
833        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
834    }
835}
836
837void SurfaceFlinger::preComposition()
838{
839    bool needExtraInvalidate = false;
840    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
841    const size_t count = currentLayers.size();
842    for (size_t i=0 ; i<count ; i++) {
843        if (currentLayers[i]->onPreComposition()) {
844            needExtraInvalidate = true;
845        }
846    }
847    if (needExtraInvalidate) {
848        signalLayerUpdate();
849    }
850}
851
852void SurfaceFlinger::postComposition()
853{
854    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
855    const size_t count = currentLayers.size();
856    for (size_t i=0 ; i<count ; i++) {
857        currentLayers[i]->onPostComposition();
858    }
859
860    if (mAnimCompositionPending) {
861        mAnimCompositionPending = false;
862
863        const HWComposer& hwc = getHwComposer();
864        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
865        if (presentFence->isValid()) {
866            mAnimFrameTracker.setActualPresentFence(presentFence);
867        } else {
868            // The HWC doesn't support present fences, so use the refresh
869            // timestamp instead.
870            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
871            mAnimFrameTracker.setActualPresentTime(presentTime);
872        }
873        mAnimFrameTracker.advanceFrame();
874    }
875}
876
877void SurfaceFlinger::rebuildLayerStacks() {
878    // rebuild the visible layer list per screen
879    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
880        ATRACE_CALL();
881        mVisibleRegionsDirty = false;
882        invalidateHwcGeometry();
883
884        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
885        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
886            Region opaqueRegion;
887            Region dirtyRegion;
888            Vector< sp<Layer> > layersSortedByZ;
889            const sp<DisplayDevice>& hw(mDisplays[dpy]);
890            const Transform& tr(hw->getTransform());
891            const Rect bounds(hw->getBounds());
892            if (hw->canDraw()) {
893                SurfaceFlinger::computeVisibleRegions(currentLayers,
894                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
895
896                const size_t count = currentLayers.size();
897                for (size_t i=0 ; i<count ; i++) {
898                    const sp<Layer>& layer(currentLayers[i]);
899                    const Layer::State& s(layer->drawingState());
900                    if (s.layerStack == hw->getLayerStack()) {
901                        Region drawRegion(tr.transform(
902                                layer->visibleNonTransparentRegion));
903                        drawRegion.andSelf(bounds);
904                        if (!drawRegion.isEmpty()) {
905                            layersSortedByZ.add(layer);
906                        }
907                    }
908                }
909            }
910            hw->setVisibleLayersSortedByZ(layersSortedByZ);
911            hw->undefinedRegion.set(bounds);
912            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
913            hw->dirtyRegion.orSelf(dirtyRegion);
914        }
915    }
916}
917
918void SurfaceFlinger::setUpHWComposer() {
919    HWComposer& hwc(getHwComposer());
920    if (hwc.initCheck() == NO_ERROR) {
921        // build the h/w work list
922        if (CC_UNLIKELY(mHwWorkListDirty)) {
923            mHwWorkListDirty = false;
924            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
925                sp<const DisplayDevice> hw(mDisplays[dpy]);
926                const int32_t id = hw->getHwcDisplayId();
927                if (id >= 0) {
928                    const Vector< sp<Layer> >& currentLayers(
929                        hw->getVisibleLayersSortedByZ());
930                    const size_t count = currentLayers.size();
931                    if (hwc.createWorkList(id, count) == NO_ERROR) {
932                        HWComposer::LayerListIterator cur = hwc.begin(id);
933                        const HWComposer::LayerListIterator end = hwc.end(id);
934                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
935                            const sp<Layer>& layer(currentLayers[i]);
936                            layer->setGeometry(hw, *cur);
937                            if (mDebugDisableHWC || mDebugRegion) {
938                                cur->setSkip(true);
939                            }
940                        }
941                    }
942                }
943            }
944        }
945
946        // set the per-frame data
947        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
948            sp<const DisplayDevice> hw(mDisplays[dpy]);
949            const int32_t id = hw->getHwcDisplayId();
950            if (id >= 0) {
951                const Vector< sp<Layer> >& currentLayers(
952                    hw->getVisibleLayersSortedByZ());
953                const size_t count = currentLayers.size();
954                HWComposer::LayerListIterator cur = hwc.begin(id);
955                const HWComposer::LayerListIterator end = hwc.end(id);
956                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
957                    /*
958                     * update the per-frame h/w composer data for each layer
959                     * and build the transparent region of the FB
960                     */
961                    const sp<Layer>& layer(currentLayers[i]);
962                    layer->setPerFrameData(hw, *cur);
963                }
964            }
965        }
966
967        status_t err = hwc.prepare();
968        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
969    }
970}
971
972void SurfaceFlinger::doComposition() {
973    ATRACE_CALL();
974    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
975    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
976        const sp<DisplayDevice>& hw(mDisplays[dpy]);
977        if (hw->canDraw()) {
978            // transform the dirty region into this screen's coordinate space
979            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
980
981            // repaint the framebuffer (if needed)
982            doDisplayComposition(hw, dirtyRegion);
983
984            hw->dirtyRegion.clear();
985            hw->flip(hw->swapRegion);
986            hw->swapRegion.clear();
987        }
988        // inform the h/w that we're done compositing
989        hw->compositionComplete();
990    }
991    postFramebuffer();
992}
993
994void SurfaceFlinger::postFramebuffer()
995{
996    ATRACE_CALL();
997
998    const nsecs_t now = systemTime();
999    mDebugInSwapBuffers = now;
1000
1001    HWComposer& hwc(getHwComposer());
1002    if (hwc.initCheck() == NO_ERROR) {
1003        if (!hwc.supportsFramebufferTarget()) {
1004            // EGL spec says:
1005            //   "surface must be bound to the calling thread's current context,
1006            //    for the current rendering API."
1007            DisplayDevice::makeCurrent(mEGLDisplay,
1008                    getDefaultDisplayDevice(), mEGLContext);
1009        }
1010        hwc.commit();
1011    }
1012
1013    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1014        sp<const DisplayDevice> hw(mDisplays[dpy]);
1015        const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
1016        hw->onSwapBuffersCompleted(hwc);
1017        const size_t count = currentLayers.size();
1018        int32_t id = hw->getHwcDisplayId();
1019        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1020            HWComposer::LayerListIterator cur = hwc.begin(id);
1021            const HWComposer::LayerListIterator end = hwc.end(id);
1022            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1023                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1024            }
1025        } else {
1026            for (size_t i = 0; i < count; i++) {
1027                currentLayers[i]->onLayerDisplayed(hw, NULL);
1028            }
1029        }
1030    }
1031
1032    mLastSwapBufferTime = systemTime() - now;
1033    mDebugInSwapBuffers = 0;
1034}
1035
1036void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1037{
1038    ATRACE_CALL();
1039
1040    Mutex::Autolock _l(mStateLock);
1041    const nsecs_t now = systemTime();
1042    mDebugInTransaction = now;
1043
1044    // Here we're guaranteed that some transaction flags are set
1045    // so we can call handleTransactionLocked() unconditionally.
1046    // We call getTransactionFlags(), which will also clear the flags,
1047    // with mStateLock held to guarantee that mCurrentState won't change
1048    // until the transaction is committed.
1049
1050    transactionFlags = getTransactionFlags(eTransactionMask);
1051    handleTransactionLocked(transactionFlags);
1052
1053    mLastTransactionTime = systemTime() - now;
1054    mDebugInTransaction = 0;
1055    invalidateHwcGeometry();
1056    // here the transaction has been committed
1057}
1058
1059void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1060{
1061    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1062    const size_t count = currentLayers.size();
1063
1064    /*
1065     * Traversal of the children
1066     * (perform the transaction for each of them if needed)
1067     */
1068
1069    if (transactionFlags & eTraversalNeeded) {
1070        for (size_t i=0 ; i<count ; i++) {
1071            const sp<Layer>& layer(currentLayers[i]);
1072            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1073            if (!trFlags) continue;
1074
1075            const uint32_t flags = layer->doTransaction(0);
1076            if (flags & Layer::eVisibleRegion)
1077                mVisibleRegionsDirty = true;
1078        }
1079    }
1080
1081    /*
1082     * Perform display own transactions if needed
1083     */
1084
1085    if (transactionFlags & eDisplayTransactionNeeded) {
1086        // here we take advantage of Vector's copy-on-write semantics to
1087        // improve performance by skipping the transaction entirely when
1088        // know that the lists are identical
1089        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1090        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1091        if (!curr.isIdenticalTo(draw)) {
1092            mVisibleRegionsDirty = true;
1093            const size_t cc = curr.size();
1094                  size_t dc = draw.size();
1095
1096            // find the displays that were removed
1097            // (ie: in drawing state but not in current state)
1098            // also handle displays that changed
1099            // (ie: displays that are in both lists)
1100            for (size_t i=0 ; i<dc ; i++) {
1101                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1102                if (j < 0) {
1103                    // in drawing state but not in current state
1104                    if (!draw[i].isMainDisplay()) {
1105                        // Call makeCurrent() on the primary display so we can
1106                        // be sure that nothing associated with this display
1107                        // is current.
1108                        const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
1109                        DisplayDevice::makeCurrent(mEGLDisplay, defaultDisplay, mEGLContext);
1110                        sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
1111                        if (hw != NULL)
1112                            hw->disconnect(getHwComposer());
1113                        if (draw[i].type < DisplayDevice::NUM_DISPLAY_TYPES)
1114                            mEventThread->onHotplugReceived(draw[i].type, false);
1115                        mDisplays.removeItem(draw.keyAt(i));
1116                    } else {
1117                        ALOGW("trying to remove the main display");
1118                    }
1119                } else {
1120                    // this display is in both lists. see if something changed.
1121                    const DisplayDeviceState& state(curr[j]);
1122                    const wp<IBinder>& display(curr.keyAt(j));
1123                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1124                        // changing the surface is like destroying and
1125                        // recreating the DisplayDevice, so we just remove it
1126                        // from the drawing state, so that it get re-added
1127                        // below.
1128                        sp<DisplayDevice> hw(getDisplayDevice(display));
1129                        if (hw != NULL)
1130                            hw->disconnect(getHwComposer());
1131                        mDisplays.removeItem(display);
1132                        mDrawingState.displays.removeItemsAt(i);
1133                        dc--; i--;
1134                        // at this point we must loop to the next item
1135                        continue;
1136                    }
1137
1138                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1139                    if (disp != NULL) {
1140                        if (state.layerStack != draw[i].layerStack) {
1141                            disp->setLayerStack(state.layerStack);
1142                        }
1143                        if ((state.orientation != draw[i].orientation)
1144                                || (state.viewport != draw[i].viewport)
1145                                || (state.frame != draw[i].frame))
1146                        {
1147                            disp->setProjection(state.orientation,
1148                                    state.viewport, state.frame);
1149                        }
1150                    }
1151                }
1152            }
1153
1154            // find displays that were added
1155            // (ie: in current state but not in drawing state)
1156            for (size_t i=0 ; i<cc ; i++) {
1157                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1158                    const DisplayDeviceState& state(curr[i]);
1159
1160                    sp<DisplaySurface> dispSurface;
1161                    int32_t hwcDisplayId = -1;
1162                    if (state.isVirtualDisplay()) {
1163                        // Virtual displays without a surface are dormant:
1164                        // they have external state (layer stack, projection,
1165                        // etc.) but no internal state (i.e. a DisplayDevice).
1166                        if (state.surface != NULL) {
1167                            hwcDisplayId = allocateHwcDisplayId(state.type);
1168                            dispSurface = new VirtualDisplaySurface(
1169                                    *mHwc, hwcDisplayId, state.surface,
1170                                    state.displayName);
1171                        }
1172                    } else {
1173                        ALOGE_IF(state.surface!=NULL,
1174                                "adding a supported display, but rendering "
1175                                "surface is provided (%p), ignoring it",
1176                                state.surface.get());
1177                        hwcDisplayId = allocateHwcDisplayId(state.type);
1178                        // for supported (by hwc) displays we provide our
1179                        // own rendering surface
1180                        dispSurface = new FramebufferSurface(*mHwc, state.type);
1181                    }
1182
1183                    const wp<IBinder>& display(curr.keyAt(i));
1184                    if (dispSurface != NULL) {
1185                        sp<DisplayDevice> hw = new DisplayDevice(this,
1186                                state.type, hwcDisplayId, state.isSecure,
1187                                display, dispSurface, mEGLConfig);
1188                        hw->setLayerStack(state.layerStack);
1189                        hw->setProjection(state.orientation,
1190                                state.viewport, state.frame);
1191                        hw->setDisplayName(state.displayName);
1192                        mDisplays.add(display, hw);
1193                        if (state.isVirtualDisplay()) {
1194                            if (hwcDisplayId >= 0) {
1195                                mHwc->setVirtualDisplayProperties(hwcDisplayId,
1196                                        hw->getWidth(), hw->getHeight(),
1197                                        hw->getFormat());
1198                            }
1199                        } else {
1200                            mEventThread->onHotplugReceived(state.type, true);
1201                        }
1202                    }
1203                }
1204            }
1205        }
1206    }
1207
1208    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1209        // The transform hint might have changed for some layers
1210        // (either because a display has changed, or because a layer
1211        // as changed).
1212        //
1213        // Walk through all the layers in currentLayers,
1214        // and update their transform hint.
1215        //
1216        // If a layer is visible only on a single display, then that
1217        // display is used to calculate the hint, otherwise we use the
1218        // default display.
1219        //
1220        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1221        // the hint is set before we acquire a buffer from the surface texture.
1222        //
1223        // NOTE: layer transactions have taken place already, so we use their
1224        // drawing state. However, SurfaceFlinger's own transaction has not
1225        // happened yet, so we must use the current state layer list
1226        // (soon to become the drawing state list).
1227        //
1228        sp<const DisplayDevice> disp;
1229        uint32_t currentlayerStack = 0;
1230        for (size_t i=0; i<count; i++) {
1231            // NOTE: we rely on the fact that layers are sorted by
1232            // layerStack first (so we don't have to traverse the list
1233            // of displays for every layer).
1234            const sp<Layer>& layer(currentLayers[i]);
1235            uint32_t layerStack = layer->drawingState().layerStack;
1236            if (i==0 || currentlayerStack != layerStack) {
1237                currentlayerStack = layerStack;
1238                // figure out if this layerstack is mirrored
1239                // (more than one display) if so, pick the default display,
1240                // if not, pick the only display it's on.
1241                disp.clear();
1242                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1243                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1244                    if (hw->getLayerStack() == currentlayerStack) {
1245                        if (disp == NULL) {
1246                            disp = hw;
1247                        } else {
1248                            disp = getDefaultDisplayDevice();
1249                            break;
1250                        }
1251                    }
1252                }
1253            }
1254            if (disp != NULL) {
1255                // presumably this means this layer is using a layerStack
1256                // that is not visible on any display
1257                layer->updateTransformHint(disp);
1258            }
1259        }
1260    }
1261
1262
1263    /*
1264     * Perform our own transaction if needed
1265     */
1266
1267    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1268    if (currentLayers.size() > previousLayers.size()) {
1269        // layers have been added
1270        mVisibleRegionsDirty = true;
1271    }
1272
1273    // some layers might have been removed, so
1274    // we need to update the regions they're exposing.
1275    if (mLayersRemoved) {
1276        mLayersRemoved = false;
1277        mVisibleRegionsDirty = true;
1278        const size_t count = previousLayers.size();
1279        for (size_t i=0 ; i<count ; i++) {
1280            const sp<Layer>& layer(previousLayers[i]);
1281            if (currentLayers.indexOf(layer) < 0) {
1282                // this layer is not visible anymore
1283                // TODO: we could traverse the tree from front to back and
1284                //       compute the actual visible region
1285                // TODO: we could cache the transformed region
1286                const Layer::State& s(layer->drawingState());
1287                Region visibleReg = s.transform.transform(
1288                        Region(Rect(s.active.w, s.active.h)));
1289                invalidateLayerStack(s.layerStack, visibleReg);
1290            }
1291        }
1292    }
1293
1294    commitTransaction();
1295}
1296
1297void SurfaceFlinger::commitTransaction()
1298{
1299    if (!mLayersPendingRemoval.isEmpty()) {
1300        // Notify removed layers now that they can't be drawn from
1301        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1302            mLayersPendingRemoval[i]->onRemoved();
1303        }
1304        mLayersPendingRemoval.clear();
1305    }
1306
1307    // If this transaction is part of a window animation then the next frame
1308    // we composite should be considered an animation as well.
1309    mAnimCompositionPending = mAnimTransactionPending;
1310
1311    mDrawingState = mCurrentState;
1312    mTransactionPending = false;
1313    mAnimTransactionPending = false;
1314    mTransactionCV.broadcast();
1315}
1316
1317void SurfaceFlinger::computeVisibleRegions(
1318        const LayerVector& currentLayers, uint32_t layerStack,
1319        Region& outDirtyRegion, Region& outOpaqueRegion)
1320{
1321    ATRACE_CALL();
1322
1323    Region aboveOpaqueLayers;
1324    Region aboveCoveredLayers;
1325    Region dirty;
1326
1327    outDirtyRegion.clear();
1328
1329    size_t i = currentLayers.size();
1330    while (i--) {
1331        const sp<Layer>& layer = currentLayers[i];
1332
1333        // start with the whole surface at its current location
1334        const Layer::State& s(layer->drawingState());
1335
1336        // only consider the layers on the given layer stack
1337        if (s.layerStack != layerStack)
1338            continue;
1339
1340        /*
1341         * opaqueRegion: area of a surface that is fully opaque.
1342         */
1343        Region opaqueRegion;
1344
1345        /*
1346         * visibleRegion: area of a surface that is visible on screen
1347         * and not fully transparent. This is essentially the layer's
1348         * footprint minus the opaque regions above it.
1349         * Areas covered by a translucent surface are considered visible.
1350         */
1351        Region visibleRegion;
1352
1353        /*
1354         * coveredRegion: area of a surface that is covered by all
1355         * visible regions above it (which includes the translucent areas).
1356         */
1357        Region coveredRegion;
1358
1359        /*
1360         * transparentRegion: area of a surface that is hinted to be completely
1361         * transparent. This is only used to tell when the layer has no visible
1362         * non-transparent regions and can be removed from the layer list. It
1363         * does not affect the visibleRegion of this layer or any layers
1364         * beneath it. The hint may not be correct if apps don't respect the
1365         * SurfaceView restrictions (which, sadly, some don't).
1366         */
1367        Region transparentRegion;
1368
1369
1370        // handle hidden surfaces by setting the visible region to empty
1371        if (CC_LIKELY(layer->isVisible())) {
1372            const bool translucent = !layer->isOpaque();
1373            Rect bounds(s.transform.transform(layer->computeBounds()));
1374            visibleRegion.set(bounds);
1375            if (!visibleRegion.isEmpty()) {
1376                // Remove the transparent area from the visible region
1377                if (translucent) {
1378                    const Transform tr(s.transform);
1379                    if (tr.transformed()) {
1380                        if (tr.preserveRects()) {
1381                            // transform the transparent region
1382                            transparentRegion = tr.transform(s.activeTransparentRegion);
1383                        } else {
1384                            // transformation too complex, can't do the
1385                            // transparent region optimization.
1386                            transparentRegion.clear();
1387                        }
1388                    } else {
1389                        transparentRegion = s.activeTransparentRegion;
1390                    }
1391                }
1392
1393                // compute the opaque region
1394                const int32_t layerOrientation = s.transform.getOrientation();
1395                if (s.alpha==255 && !translucent &&
1396                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1397                    // the opaque region is the layer's footprint
1398                    opaqueRegion = visibleRegion;
1399                }
1400            }
1401        }
1402
1403        // Clip the covered region to the visible region
1404        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1405
1406        // Update aboveCoveredLayers for next (lower) layer
1407        aboveCoveredLayers.orSelf(visibleRegion);
1408
1409        // subtract the opaque region covered by the layers above us
1410        visibleRegion.subtractSelf(aboveOpaqueLayers);
1411
1412        // compute this layer's dirty region
1413        if (layer->contentDirty) {
1414            // we need to invalidate the whole region
1415            dirty = visibleRegion;
1416            // as well, as the old visible region
1417            dirty.orSelf(layer->visibleRegion);
1418            layer->contentDirty = false;
1419        } else {
1420            /* compute the exposed region:
1421             *   the exposed region consists of two components:
1422             *   1) what's VISIBLE now and was COVERED before
1423             *   2) what's EXPOSED now less what was EXPOSED before
1424             *
1425             * note that (1) is conservative, we start with the whole
1426             * visible region but only keep what used to be covered by
1427             * something -- which mean it may have been exposed.
1428             *
1429             * (2) handles areas that were not covered by anything but got
1430             * exposed because of a resize.
1431             */
1432            const Region newExposed = visibleRegion - coveredRegion;
1433            const Region oldVisibleRegion = layer->visibleRegion;
1434            const Region oldCoveredRegion = layer->coveredRegion;
1435            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1436            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1437        }
1438        dirty.subtractSelf(aboveOpaqueLayers);
1439
1440        // accumulate to the screen dirty region
1441        outDirtyRegion.orSelf(dirty);
1442
1443        // Update aboveOpaqueLayers for next (lower) layer
1444        aboveOpaqueLayers.orSelf(opaqueRegion);
1445
1446        // Store the visible region in screen space
1447        layer->setVisibleRegion(visibleRegion);
1448        layer->setCoveredRegion(coveredRegion);
1449        layer->setVisibleNonTransparentRegion(
1450                visibleRegion.subtract(transparentRegion));
1451    }
1452
1453    outOpaqueRegion = aboveOpaqueLayers;
1454}
1455
1456void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1457        const Region& dirty) {
1458    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1459        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1460        if (hw->getLayerStack() == layerStack) {
1461            hw->dirtyRegion.orSelf(dirty);
1462        }
1463    }
1464}
1465
1466void SurfaceFlinger::handlePageFlip()
1467{
1468    Region dirtyRegion;
1469
1470    bool visibleRegions = false;
1471    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1472    const size_t count = currentLayers.size();
1473    for (size_t i=0 ; i<count ; i++) {
1474        const sp<Layer>& layer(currentLayers[i]);
1475        const Region dirty(layer->latchBuffer(visibleRegions));
1476        const Layer::State& s(layer->drawingState());
1477        invalidateLayerStack(s.layerStack, dirty);
1478    }
1479
1480    mVisibleRegionsDirty |= visibleRegions;
1481}
1482
1483void SurfaceFlinger::invalidateHwcGeometry()
1484{
1485    mHwWorkListDirty = true;
1486}
1487
1488
1489void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1490        const Region& inDirtyRegion)
1491{
1492    Region dirtyRegion(inDirtyRegion);
1493
1494    // compute the invalid region
1495    hw->swapRegion.orSelf(dirtyRegion);
1496
1497    uint32_t flags = hw->getFlags();
1498    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1499        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1500        // takes a rectangle, we must make sure to update that whole
1501        // rectangle in that case
1502        dirtyRegion.set(hw->swapRegion.bounds());
1503    } else {
1504        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1505            // We need to redraw the rectangle that will be updated
1506            // (pushed to the framebuffer).
1507            // This is needed because PARTIAL_UPDATES only takes one
1508            // rectangle instead of a region (see DisplayDevice::flip())
1509            dirtyRegion.set(hw->swapRegion.bounds());
1510        } else {
1511            // we need to redraw everything (the whole screen)
1512            dirtyRegion.set(hw->bounds());
1513            hw->swapRegion = dirtyRegion;
1514        }
1515    }
1516
1517    doComposeSurfaces(hw, dirtyRegion);
1518
1519    // update the swap region and clear the dirty region
1520    hw->swapRegion.orSelf(dirtyRegion);
1521
1522    // swap buffers (presentation)
1523    hw->swapBuffers(getHwComposer());
1524}
1525
1526void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1527{
1528    const int32_t id = hw->getHwcDisplayId();
1529    HWComposer& hwc(getHwComposer());
1530    HWComposer::LayerListIterator cur = hwc.begin(id);
1531    const HWComposer::LayerListIterator end = hwc.end(id);
1532
1533    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1534    if (hasGlesComposition) {
1535        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1536
1537        // set the frame buffer
1538        glMatrixMode(GL_MODELVIEW);
1539        glLoadIdentity();
1540
1541        // Never touch the framebuffer if we don't have any framebuffer layers
1542        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1543        if (hasHwcComposition) {
1544            // when using overlays, we assume a fully transparent framebuffer
1545            // NOTE: we could reduce how much we need to clear, for instance
1546            // remove where there are opaque FB layers. however, on some
1547            // GPUs doing a "clean slate" glClear might be more efficient.
1548            // We'll revisit later if needed.
1549            glClearColor(0, 0, 0, 0);
1550            glClear(GL_COLOR_BUFFER_BIT);
1551        } else {
1552            // we start with the whole screen area
1553            const Region bounds(hw->getBounds());
1554
1555            // we remove the scissor part
1556            // we're left with the letterbox region
1557            // (common case is that letterbox ends-up being empty)
1558            const Region letterbox(bounds.subtract(hw->getScissor()));
1559
1560            // compute the area to clear
1561            Region region(hw->undefinedRegion.merge(letterbox));
1562
1563            // but limit it to the dirty region
1564            region.andSelf(dirty);
1565
1566            // screen is already cleared here
1567            if (!region.isEmpty()) {
1568                // can happen with SurfaceView
1569                drawWormhole(hw, region);
1570            }
1571        }
1572
1573        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1574            // just to be on the safe side, we don't set the
1575            // scissor on the main display. It should never be needed
1576            // anyways (though in theory it could since the API allows it).
1577            const Rect& bounds(hw->getBounds());
1578            const Rect& scissor(hw->getScissor());
1579            if (scissor != bounds) {
1580                // scissor doesn't match the screen's dimensions, so we
1581                // need to clear everything outside of it and enable
1582                // the GL scissor so we don't draw anything where we shouldn't
1583                const GLint height = hw->getHeight();
1584                glScissor(scissor.left, height - scissor.bottom,
1585                        scissor.getWidth(), scissor.getHeight());
1586                // enable scissor for this frame
1587                glEnable(GL_SCISSOR_TEST);
1588            }
1589        }
1590    }
1591
1592    /*
1593     * and then, render the layers targeted at the framebuffer
1594     */
1595
1596    const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1597    const size_t count = layers.size();
1598    const Transform& tr = hw->getTransform();
1599    if (cur != end) {
1600        // we're using h/w composer
1601        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1602            const sp<Layer>& layer(layers[i]);
1603            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1604            if (!clip.isEmpty()) {
1605                switch (cur->getCompositionType()) {
1606                    case HWC_OVERLAY: {
1607                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1608                                && i
1609                                && layer->isOpaque()
1610                                && hasGlesComposition) {
1611                            // never clear the very first layer since we're
1612                            // guaranteed the FB is already cleared
1613                            layer->clearWithOpenGL(hw, clip);
1614                        }
1615                        break;
1616                    }
1617                    case HWC_FRAMEBUFFER: {
1618                        layer->draw(hw, clip);
1619                        break;
1620                    }
1621                    case HWC_FRAMEBUFFER_TARGET: {
1622                        // this should not happen as the iterator shouldn't
1623                        // let us get there.
1624                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1625                        break;
1626                    }
1627                }
1628            }
1629            layer->setAcquireFence(hw, *cur);
1630        }
1631    } else {
1632        // we're not using h/w composer
1633        for (size_t i=0 ; i<count ; ++i) {
1634            const sp<Layer>& layer(layers[i]);
1635            const Region clip(dirty.intersect(
1636                    tr.transform(layer->visibleRegion)));
1637            if (!clip.isEmpty()) {
1638                layer->draw(hw, clip);
1639            }
1640        }
1641    }
1642
1643    // disable scissor at the end of the frame
1644    glDisable(GL_SCISSOR_TEST);
1645}
1646
1647void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1648        const Region& region) const
1649{
1650    glDisable(GL_TEXTURE_EXTERNAL_OES);
1651    glDisable(GL_TEXTURE_2D);
1652    glDisable(GL_BLEND);
1653    glColor4f(0,0,0,0);
1654
1655    const int32_t height = hw->getHeight();
1656    Region::const_iterator it = region.begin();
1657    Region::const_iterator const end = region.end();
1658    while (it != end) {
1659        const Rect& r = *it++;
1660        GLfloat vertices[][2] = {
1661                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1662                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1663                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1664                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1665        };
1666        glVertexPointer(2, GL_FLOAT, 0, vertices);
1667        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1668    }
1669}
1670
1671void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1672        const sp<IBinder>& handle,
1673        const sp<IGraphicBufferProducer>& gbc,
1674        const sp<Layer>& lbc)
1675{
1676    // attach this layer to the client
1677    client->attachLayer(handle, lbc);
1678
1679    // add this layer to the current state list
1680    Mutex::Autolock _l(mStateLock);
1681    mCurrentState.layersSortedByZ.add(lbc);
1682    mGraphicBufferProducerList.add(gbc->asBinder());
1683}
1684
1685status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer)
1686{
1687    Mutex::Autolock _l(mStateLock);
1688    ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1689    if (index >= 0) {
1690        mLayersPendingRemoval.push(layer);
1691        mLayersRemoved = true;
1692        setTransactionFlags(eTransactionNeeded);
1693        return NO_ERROR;
1694    }
1695    return status_t(index);
1696}
1697
1698uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1699{
1700    return android_atomic_release_load(&mTransactionFlags);
1701}
1702
1703uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1704{
1705    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1706}
1707
1708uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1709{
1710    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1711    if ((old & flags)==0) { // wake the server up
1712        signalTransaction();
1713    }
1714    return old;
1715}
1716
1717void SurfaceFlinger::setTransactionState(
1718        const Vector<ComposerState>& state,
1719        const Vector<DisplayState>& displays,
1720        uint32_t flags)
1721{
1722    ATRACE_CALL();
1723    Mutex::Autolock _l(mStateLock);
1724    uint32_t transactionFlags = 0;
1725
1726    if (flags & eAnimation) {
1727        // For window updates that are part of an animation we must wait for
1728        // previous animation "frames" to be handled.
1729        while (mAnimTransactionPending) {
1730            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1731            if (CC_UNLIKELY(err != NO_ERROR)) {
1732                // just in case something goes wrong in SF, return to the
1733                // caller after a few seconds.
1734                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1735                        "waiting for previous animation frame");
1736                mAnimTransactionPending = false;
1737                break;
1738            }
1739        }
1740    }
1741
1742    size_t count = displays.size();
1743    for (size_t i=0 ; i<count ; i++) {
1744        const DisplayState& s(displays[i]);
1745        transactionFlags |= setDisplayStateLocked(s);
1746    }
1747
1748    count = state.size();
1749    for (size_t i=0 ; i<count ; i++) {
1750        const ComposerState& s(state[i]);
1751        // Here we need to check that the interface we're given is indeed
1752        // one of our own. A malicious client could give us a NULL
1753        // IInterface, or one of its own or even one of our own but a
1754        // different type. All these situations would cause us to crash.
1755        //
1756        // NOTE: it would be better to use RTTI as we could directly check
1757        // that we have a Client*. however, RTTI is disabled in Android.
1758        if (s.client != NULL) {
1759            sp<IBinder> binder = s.client->asBinder();
1760            if (binder != NULL) {
1761                String16 desc(binder->getInterfaceDescriptor());
1762                if (desc == ISurfaceComposerClient::descriptor) {
1763                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1764                    transactionFlags |= setClientStateLocked(client, s.state);
1765                }
1766            }
1767        }
1768    }
1769
1770    if (transactionFlags) {
1771        // this triggers the transaction
1772        setTransactionFlags(transactionFlags);
1773
1774        // if this is a synchronous transaction, wait for it to take effect
1775        // before returning.
1776        if (flags & eSynchronous) {
1777            mTransactionPending = true;
1778        }
1779        if (flags & eAnimation) {
1780            mAnimTransactionPending = true;
1781        }
1782        while (mTransactionPending) {
1783            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1784            if (CC_UNLIKELY(err != NO_ERROR)) {
1785                // just in case something goes wrong in SF, return to the
1786                // called after a few seconds.
1787                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1788                mTransactionPending = false;
1789                break;
1790            }
1791        }
1792    }
1793}
1794
1795uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1796{
1797    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1798    if (dpyIdx < 0)
1799        return 0;
1800
1801    uint32_t flags = 0;
1802    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1803    if (disp.isValid()) {
1804        const uint32_t what = s.what;
1805        if (what & DisplayState::eSurfaceChanged) {
1806            if (disp.surface->asBinder() != s.surface->asBinder()) {
1807                disp.surface = s.surface;
1808                flags |= eDisplayTransactionNeeded;
1809            }
1810        }
1811        if (what & DisplayState::eLayerStackChanged) {
1812            if (disp.layerStack != s.layerStack) {
1813                disp.layerStack = s.layerStack;
1814                flags |= eDisplayTransactionNeeded;
1815            }
1816        }
1817        if (what & DisplayState::eDisplayProjectionChanged) {
1818            if (disp.orientation != s.orientation) {
1819                disp.orientation = s.orientation;
1820                flags |= eDisplayTransactionNeeded;
1821            }
1822            if (disp.frame != s.frame) {
1823                disp.frame = s.frame;
1824                flags |= eDisplayTransactionNeeded;
1825            }
1826            if (disp.viewport != s.viewport) {
1827                disp.viewport = s.viewport;
1828                flags |= eDisplayTransactionNeeded;
1829            }
1830        }
1831    }
1832    return flags;
1833}
1834
1835uint32_t SurfaceFlinger::setClientStateLocked(
1836        const sp<Client>& client,
1837        const layer_state_t& s)
1838{
1839    uint32_t flags = 0;
1840    sp<Layer> layer(client->getLayerUser(s.surface));
1841    if (layer != 0) {
1842        const uint32_t what = s.what;
1843        if (what & layer_state_t::ePositionChanged) {
1844            if (layer->setPosition(s.x, s.y))
1845                flags |= eTraversalNeeded;
1846        }
1847        if (what & layer_state_t::eLayerChanged) {
1848            // NOTE: index needs to be calculated before we update the state
1849            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1850            if (layer->setLayer(s.z)) {
1851                mCurrentState.layersSortedByZ.removeAt(idx);
1852                mCurrentState.layersSortedByZ.add(layer);
1853                // we need traversal (state changed)
1854                // AND transaction (list changed)
1855                flags |= eTransactionNeeded|eTraversalNeeded;
1856            }
1857        }
1858        if (what & layer_state_t::eSizeChanged) {
1859            if (layer->setSize(s.w, s.h)) {
1860                flags |= eTraversalNeeded;
1861            }
1862        }
1863        if (what & layer_state_t::eAlphaChanged) {
1864            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1865                flags |= eTraversalNeeded;
1866        }
1867        if (what & layer_state_t::eMatrixChanged) {
1868            if (layer->setMatrix(s.matrix))
1869                flags |= eTraversalNeeded;
1870        }
1871        if (what & layer_state_t::eTransparentRegionChanged) {
1872            if (layer->setTransparentRegionHint(s.transparentRegion))
1873                flags |= eTraversalNeeded;
1874        }
1875        if (what & layer_state_t::eVisibilityChanged) {
1876            if (layer->setFlags(s.flags, s.mask))
1877                flags |= eTraversalNeeded;
1878        }
1879        if (what & layer_state_t::eCropChanged) {
1880            if (layer->setCrop(s.crop))
1881                flags |= eTraversalNeeded;
1882        }
1883        if (what & layer_state_t::eLayerStackChanged) {
1884            // NOTE: index needs to be calculated before we update the state
1885            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1886            if (layer->setLayerStack(s.layerStack)) {
1887                mCurrentState.layersSortedByZ.removeAt(idx);
1888                mCurrentState.layersSortedByZ.add(layer);
1889                // we need traversal (state changed)
1890                // AND transaction (list changed)
1891                flags |= eTransactionNeeded|eTraversalNeeded;
1892            }
1893        }
1894    }
1895    return flags;
1896}
1897
1898status_t SurfaceFlinger::createLayer(
1899        const String8& name,
1900        const sp<Client>& client,
1901        uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
1902        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
1903{
1904    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1905    if (int32_t(w|h) < 0) {
1906        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1907                int(w), int(h));
1908        return BAD_VALUE;
1909    }
1910
1911    status_t result = NO_ERROR;
1912
1913    sp<Layer> layer;
1914
1915    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1916        case ISurfaceComposerClient::eFXSurfaceNormal:
1917            result = createNormalLayer(client,
1918                    name, w, h, flags, format,
1919                    handle, gbp, &layer);
1920            break;
1921        case ISurfaceComposerClient::eFXSurfaceDim:
1922            result = createDimLayer(client,
1923                    name, w, h, flags,
1924                    handle, gbp, &layer);
1925            break;
1926        default:
1927            result = BAD_VALUE;
1928            break;
1929    }
1930
1931    if (result == NO_ERROR) {
1932        addClientLayer(client, *handle, *gbp, layer);
1933        setTransactionFlags(eTransactionNeeded);
1934    }
1935    return result;
1936}
1937
1938status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
1939        const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
1940        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1941{
1942    // initialize the surfaces
1943    switch (format) {
1944    case PIXEL_FORMAT_TRANSPARENT:
1945    case PIXEL_FORMAT_TRANSLUCENT:
1946        format = PIXEL_FORMAT_RGBA_8888;
1947        break;
1948    case PIXEL_FORMAT_OPAQUE:
1949#ifdef NO_RGBX_8888
1950        format = PIXEL_FORMAT_RGB_565;
1951#else
1952        format = PIXEL_FORMAT_RGBX_8888;
1953#endif
1954        break;
1955    }
1956
1957#ifdef NO_RGBX_8888
1958    if (format == PIXEL_FORMAT_RGBX_8888)
1959        format = PIXEL_FORMAT_RGBA_8888;
1960#endif
1961
1962    *outLayer = new Layer(this, client, name, w, h, flags);
1963    status_t err = (*outLayer)->setBuffers(w, h, format, flags);
1964    if (err == NO_ERROR) {
1965        *handle = (*outLayer)->getHandle();
1966        *gbp = (*outLayer)->getBufferQueue();
1967    }
1968
1969    ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
1970    return err;
1971}
1972
1973status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
1974        const String8& name, uint32_t w, uint32_t h, uint32_t flags,
1975        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1976{
1977    *outLayer = new LayerDim(this, client, name, w, h, flags);
1978    *handle = (*outLayer)->getHandle();
1979    *gbp = (*outLayer)->getBufferQueue();
1980    return NO_ERROR;
1981}
1982
1983status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
1984{
1985    // called by the window manager when it wants to remove a Layer
1986    status_t err = NO_ERROR;
1987    sp<Layer> l(client->getLayerUser(handle));
1988    if (l != NULL) {
1989        err = removeLayer(l);
1990        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1991                "error removing layer=%p (%s)", l.get(), strerror(-err));
1992    }
1993    return err;
1994}
1995
1996status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
1997{
1998    // called by ~LayerCleaner() when all references to the IBinder (handle)
1999    // are gone
2000    status_t err = NO_ERROR;
2001    sp<Layer> l(layer.promote());
2002    if (l != NULL) {
2003        err = removeLayer(l);
2004        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2005                "error removing layer=%p (%s)", l.get(), strerror(-err));
2006    }
2007    return err;
2008}
2009
2010// ---------------------------------------------------------------------------
2011
2012void SurfaceFlinger::onInitializeDisplays() {
2013    // reset screen orientation and use primary layer stack
2014    Vector<ComposerState> state;
2015    Vector<DisplayState> displays;
2016    DisplayState d;
2017    d.what = DisplayState::eDisplayProjectionChanged |
2018             DisplayState::eLayerStackChanged;
2019    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2020    d.layerStack = 0;
2021    d.orientation = DisplayState::eOrientationDefault;
2022    d.frame.makeInvalid();
2023    d.viewport.makeInvalid();
2024    displays.add(d);
2025    setTransactionState(state, displays, 0);
2026    onScreenAcquired(getDefaultDisplayDevice());
2027}
2028
2029void SurfaceFlinger::initializeDisplays() {
2030    class MessageScreenInitialized : public MessageBase {
2031        SurfaceFlinger* flinger;
2032    public:
2033        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2034        virtual bool handler() {
2035            flinger->onInitializeDisplays();
2036            return true;
2037        }
2038    };
2039    sp<MessageBase> msg = new MessageScreenInitialized(this);
2040    postMessageAsync(msg);  // we may be called from main thread, use async message
2041}
2042
2043
2044void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2045    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2046    if (hw->isScreenAcquired()) {
2047        // this is expected, e.g. when power manager wakes up during boot
2048        ALOGD(" screen was previously acquired");
2049        return;
2050    }
2051
2052    hw->acquireScreen();
2053    int32_t type = hw->getDisplayType();
2054    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2055        // built-in display, tell the HWC
2056        getHwComposer().acquire(type);
2057
2058        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2059            // FIXME: eventthread only knows about the main display right now
2060            mEventThread->onScreenAcquired();
2061        }
2062    }
2063    mVisibleRegionsDirty = true;
2064    repaintEverything();
2065}
2066
2067void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2068    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2069    if (!hw->isScreenAcquired()) {
2070        ALOGD(" screen was previously released");
2071        return;
2072    }
2073
2074    hw->releaseScreen();
2075    int32_t type = hw->getDisplayType();
2076    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2077        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2078            // FIXME: eventthread only knows about the main display right now
2079            mEventThread->onScreenReleased();
2080        }
2081
2082        // built-in display, tell the HWC
2083        getHwComposer().release(type);
2084    }
2085    mVisibleRegionsDirty = true;
2086    // from this point on, SF will stop drawing on this display
2087}
2088
2089void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2090    class MessageScreenAcquired : public MessageBase {
2091        SurfaceFlinger& mFlinger;
2092        sp<IBinder> mDisplay;
2093    public:
2094        MessageScreenAcquired(SurfaceFlinger& flinger,
2095                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2096        virtual bool handler() {
2097            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2098            if (hw == NULL) {
2099                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2100            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2101                ALOGW("Attempt to unblank virtual display");
2102            } else {
2103                mFlinger.onScreenAcquired(hw);
2104            }
2105            return true;
2106        }
2107    };
2108    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2109    postMessageSync(msg);
2110}
2111
2112void SurfaceFlinger::blank(const sp<IBinder>& display) {
2113    class MessageScreenReleased : public MessageBase {
2114        SurfaceFlinger& mFlinger;
2115        sp<IBinder> mDisplay;
2116    public:
2117        MessageScreenReleased(SurfaceFlinger& flinger,
2118                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2119        virtual bool handler() {
2120            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2121            if (hw == NULL) {
2122                ALOGE("Attempt to blank null display %p", mDisplay.get());
2123            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2124                ALOGW("Attempt to blank virtual display");
2125            } else {
2126                mFlinger.onScreenReleased(hw);
2127            }
2128            return true;
2129        }
2130    };
2131    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2132    postMessageSync(msg);
2133}
2134
2135// ---------------------------------------------------------------------------
2136
2137status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2138{
2139    const size_t SIZE = 4096;
2140    char buffer[SIZE];
2141    String8 result;
2142
2143    if (!PermissionCache::checkCallingPermission(sDump)) {
2144        snprintf(buffer, SIZE, "Permission Denial: "
2145                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2146                IPCThreadState::self()->getCallingPid(),
2147                IPCThreadState::self()->getCallingUid());
2148        result.append(buffer);
2149    } else {
2150        // Try to get the main lock, but don't insist if we can't
2151        // (this would indicate SF is stuck, but we want to be able to
2152        // print something in dumpsys).
2153        int retry = 3;
2154        while (mStateLock.tryLock()<0 && --retry>=0) {
2155            usleep(1000000);
2156        }
2157        const bool locked(retry >= 0);
2158        if (!locked) {
2159            snprintf(buffer, SIZE,
2160                    "SurfaceFlinger appears to be unresponsive, "
2161                    "dumping anyways (no locks held)\n");
2162            result.append(buffer);
2163        }
2164
2165        bool dumpAll = true;
2166        size_t index = 0;
2167        size_t numArgs = args.size();
2168        if (numArgs) {
2169            if ((index < numArgs) &&
2170                    (args[index] == String16("--list"))) {
2171                index++;
2172                listLayersLocked(args, index, result, buffer, SIZE);
2173                dumpAll = false;
2174            }
2175
2176            if ((index < numArgs) &&
2177                    (args[index] == String16("--latency"))) {
2178                index++;
2179                dumpStatsLocked(args, index, result, buffer, SIZE);
2180                dumpAll = false;
2181            }
2182
2183            if ((index < numArgs) &&
2184                    (args[index] == String16("--latency-clear"))) {
2185                index++;
2186                clearStatsLocked(args, index, result, buffer, SIZE);
2187                dumpAll = false;
2188            }
2189        }
2190
2191        if (dumpAll) {
2192            dumpAllLocked(result, buffer, SIZE);
2193        }
2194
2195        if (locked) {
2196            mStateLock.unlock();
2197        }
2198    }
2199    write(fd, result.string(), result.size());
2200    return NO_ERROR;
2201}
2202
2203void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2204        String8& result, char* buffer, size_t SIZE) const
2205{
2206    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2207    const size_t count = currentLayers.size();
2208    for (size_t i=0 ; i<count ; i++) {
2209        const sp<Layer>& layer(currentLayers[i]);
2210        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2211        result.append(buffer);
2212    }
2213}
2214
2215void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2216        String8& result, char* buffer, size_t SIZE) const
2217{
2218    String8 name;
2219    if (index < args.size()) {
2220        name = String8(args[index]);
2221        index++;
2222    }
2223
2224    const nsecs_t period =
2225            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2226    result.appendFormat("%lld\n", period);
2227
2228    if (name.isEmpty()) {
2229        mAnimFrameTracker.dump(result);
2230    } else {
2231        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2232        const size_t count = currentLayers.size();
2233        for (size_t i=0 ; i<count ; i++) {
2234            const sp<Layer>& layer(currentLayers[i]);
2235            if (name == layer->getName()) {
2236                layer->dumpStats(result, buffer, SIZE);
2237            }
2238        }
2239    }
2240}
2241
2242void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2243        String8& result, char* buffer, size_t SIZE)
2244{
2245    String8 name;
2246    if (index < args.size()) {
2247        name = String8(args[index]);
2248        index++;
2249    }
2250
2251    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2252    const size_t count = currentLayers.size();
2253    for (size_t i=0 ; i<count ; i++) {
2254        const sp<Layer>& layer(currentLayers[i]);
2255        if (name.isEmpty() || (name == layer->getName())) {
2256            layer->clearStats();
2257        }
2258    }
2259
2260    mAnimFrameTracker.clear();
2261}
2262
2263/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2264{
2265    static const char* config =
2266            " [sf"
2267#ifdef NO_RGBX_8888
2268            " NO_RGBX_8888"
2269#endif
2270#ifdef HAS_CONTEXT_PRIORITY
2271            " HAS_CONTEXT_PRIORITY"
2272#endif
2273#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2274            " NEVER_DEFAULT_TO_ASYNC_MODE"
2275#endif
2276#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2277            " TARGET_DISABLE_TRIPLE_BUFFERING"
2278#endif
2279            "]";
2280    result.append(config);
2281}
2282
2283void SurfaceFlinger::dumpAllLocked(
2284        String8& result, char* buffer, size_t SIZE) const
2285{
2286    // figure out if we're stuck somewhere
2287    const nsecs_t now = systemTime();
2288    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2289    const nsecs_t inTransaction(mDebugInTransaction);
2290    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2291    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2292
2293    /*
2294     * Dump library configuration.
2295     */
2296    result.append("Build configuration:");
2297    appendSfConfigString(result);
2298    appendUiConfigString(result);
2299    appendGuiConfigString(result);
2300    result.append("\n");
2301
2302    result.append("Sync configuration: ");
2303    result.append(SyncFeatures::getInstance().toString());
2304    result.append("\n");
2305
2306    /*
2307     * Dump the visible layer list
2308     */
2309    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2310    const size_t count = currentLayers.size();
2311    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2312    result.append(buffer);
2313    for (size_t i=0 ; i<count ; i++) {
2314        const sp<Layer>& layer(currentLayers[i]);
2315        layer->dump(result, buffer, SIZE);
2316    }
2317
2318    /*
2319     * Dump Display state
2320     */
2321
2322    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2323    result.append(buffer);
2324    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2325        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2326        hw->dump(result, buffer, SIZE);
2327    }
2328
2329    /*
2330     * Dump SurfaceFlinger global state
2331     */
2332
2333    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2334    result.append(buffer);
2335
2336    HWComposer& hwc(getHwComposer());
2337    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2338    const GLExtensions& extensions(GLExtensions::getInstance());
2339
2340    snprintf(buffer, SIZE, "EGL implementation : %s\n",
2341            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2342    result.append(buffer);
2343    snprintf(buffer, SIZE, "%s\n",
2344            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2345    result.append(buffer);
2346
2347    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2348            extensions.getVendor(),
2349            extensions.getRenderer(),
2350            extensions.getVersion());
2351    result.append(buffer);
2352    snprintf(buffer, SIZE, "%s\n", extensions.getExtension());
2353    result.append(buffer);
2354
2355    hw->undefinedRegion.dump(result, "undefinedRegion");
2356    snprintf(buffer, SIZE,
2357            "  orientation=%d, canDraw=%d\n",
2358            hw->getOrientation(), hw->canDraw());
2359    result.append(buffer);
2360    snprintf(buffer, SIZE,
2361            "  last eglSwapBuffers() time: %f us\n"
2362            "  last transaction time     : %f us\n"
2363            "  transaction-flags         : %08x\n"
2364            "  refresh-rate              : %f fps\n"
2365            "  x-dpi                     : %f\n"
2366            "  y-dpi                     : %f\n"
2367            "  EGL_NATIVE_VISUAL_ID      : %d\n"
2368            "  gpu_to_cpu_unsupported    : %d\n"
2369            ,
2370            mLastSwapBufferTime/1000.0,
2371            mLastTransactionTime/1000.0,
2372            mTransactionFlags,
2373            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2374            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2375            hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2376            mEGLNativeVisualId,
2377            !mGpuToCpuSupported);
2378    result.append(buffer);
2379
2380    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2381            inSwapBuffersDuration/1000.0);
2382    result.append(buffer);
2383
2384    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2385            inTransactionDuration/1000.0);
2386    result.append(buffer);
2387
2388    /*
2389     * VSYNC state
2390     */
2391    mEventThread->dump(result, buffer, SIZE);
2392
2393    /*
2394     * Dump HWComposer state
2395     */
2396    snprintf(buffer, SIZE, "h/w composer state:\n");
2397    result.append(buffer);
2398    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2399            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2400                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2401    result.append(buffer);
2402    hwc.dump(result, buffer, SIZE);
2403
2404    /*
2405     * Dump gralloc state
2406     */
2407    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2408    alloc.dump(result);
2409}
2410
2411const Vector< sp<Layer> >&
2412SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2413    // Note: mStateLock is held here
2414    wp<IBinder> dpy;
2415    for (size_t i=0 ; i<mDisplays.size() ; i++) {
2416        if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2417            dpy = mDisplays.keyAt(i);
2418            break;
2419        }
2420    }
2421    if (dpy == NULL) {
2422        ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2423        // Just use the primary display so we have something to return
2424        dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2425    }
2426    return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2427}
2428
2429bool SurfaceFlinger::startDdmConnection()
2430{
2431    void* libddmconnection_dso =
2432            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2433    if (!libddmconnection_dso) {
2434        return false;
2435    }
2436    void (*DdmConnection_start)(const char* name);
2437    DdmConnection_start =
2438            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2439    if (!DdmConnection_start) {
2440        dlclose(libddmconnection_dso);
2441        return false;
2442    }
2443    (*DdmConnection_start)(getServiceName());
2444    return true;
2445}
2446
2447status_t SurfaceFlinger::onTransact(
2448    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2449{
2450    switch (code) {
2451        case CREATE_CONNECTION:
2452        case CREATE_DISPLAY:
2453        case SET_TRANSACTION_STATE:
2454        case BOOT_FINISHED:
2455        case BLANK:
2456        case UNBLANK:
2457        {
2458            // codes that require permission check
2459            IPCThreadState* ipc = IPCThreadState::self();
2460            const int pid = ipc->getCallingPid();
2461            const int uid = ipc->getCallingUid();
2462            if ((uid != AID_GRAPHICS) &&
2463                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2464                ALOGE("Permission Denial: "
2465                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2466                return PERMISSION_DENIED;
2467            }
2468            break;
2469        }
2470        case CAPTURE_SCREEN:
2471        {
2472            // codes that require permission check
2473            IPCThreadState* ipc = IPCThreadState::self();
2474            const int pid = ipc->getCallingPid();
2475            const int uid = ipc->getCallingUid();
2476            if ((uid != AID_GRAPHICS) &&
2477                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2478                ALOGE("Permission Denial: "
2479                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2480                return PERMISSION_DENIED;
2481            }
2482            break;
2483        }
2484    }
2485
2486    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2487    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2488        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2489        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2490            IPCThreadState* ipc = IPCThreadState::self();
2491            const int pid = ipc->getCallingPid();
2492            const int uid = ipc->getCallingUid();
2493            ALOGE("Permission Denial: "
2494                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2495            return PERMISSION_DENIED;
2496        }
2497        int n;
2498        switch (code) {
2499            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2500            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2501                return NO_ERROR;
2502            case 1002:  // SHOW_UPDATES
2503                n = data.readInt32();
2504                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2505                invalidateHwcGeometry();
2506                repaintEverything();
2507                return NO_ERROR;
2508            case 1004:{ // repaint everything
2509                repaintEverything();
2510                return NO_ERROR;
2511            }
2512            case 1005:{ // force transaction
2513                setTransactionFlags(
2514                        eTransactionNeeded|
2515                        eDisplayTransactionNeeded|
2516                        eTraversalNeeded);
2517                return NO_ERROR;
2518            }
2519            case 1006:{ // send empty update
2520                signalRefresh();
2521                return NO_ERROR;
2522            }
2523            case 1008:  // toggle use of hw composer
2524                n = data.readInt32();
2525                mDebugDisableHWC = n ? 1 : 0;
2526                invalidateHwcGeometry();
2527                repaintEverything();
2528                return NO_ERROR;
2529            case 1009:  // toggle use of transform hint
2530                n = data.readInt32();
2531                mDebugDisableTransformHint = n ? 1 : 0;
2532                invalidateHwcGeometry();
2533                repaintEverything();
2534                return NO_ERROR;
2535            case 1010:  // interrogate.
2536                reply->writeInt32(0);
2537                reply->writeInt32(0);
2538                reply->writeInt32(mDebugRegion);
2539                reply->writeInt32(0);
2540                reply->writeInt32(mDebugDisableHWC);
2541                return NO_ERROR;
2542            case 1013: {
2543                Mutex::Autolock _l(mStateLock);
2544                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2545                reply->writeInt32(hw->getPageFlipCount());
2546            }
2547            return NO_ERROR;
2548        }
2549    }
2550    return err;
2551}
2552
2553void SurfaceFlinger::repaintEverything() {
2554    android_atomic_or(1, &mRepaintEverything);
2555    signalTransaction();
2556}
2557
2558// ---------------------------------------------------------------------------
2559// Capture screen into an IGraphiBufferProducer
2560// ---------------------------------------------------------------------------
2561
2562status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2563        const sp<IGraphicBufferProducer>& producer,
2564        uint32_t reqWidth, uint32_t reqHeight,
2565        uint32_t minLayerZ, uint32_t maxLayerZ,
2566        bool isCpuConsumer) {
2567
2568    if (CC_UNLIKELY(display == 0))
2569        return BAD_VALUE;
2570
2571    if (CC_UNLIKELY(producer == 0))
2572        return BAD_VALUE;
2573
2574    class MessageCaptureScreen : public MessageBase {
2575        SurfaceFlinger* flinger;
2576        sp<IBinder> display;
2577        sp<IGraphicBufferProducer> producer;
2578        uint32_t reqWidth, reqHeight;
2579        uint32_t minLayerZ,maxLayerZ;
2580        bool isCpuConsumer;
2581        status_t result;
2582    public:
2583        MessageCaptureScreen(SurfaceFlinger* flinger,
2584                const sp<IBinder>& display,
2585                const sp<IGraphicBufferProducer>& producer,
2586                uint32_t reqWidth, uint32_t reqHeight,
2587                uint32_t minLayerZ, uint32_t maxLayerZ, bool isCpuConsumer)
2588            : flinger(flinger), display(display), producer(producer),
2589              reqWidth(reqWidth), reqHeight(reqHeight),
2590              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2591              isCpuConsumer(isCpuConsumer),
2592              result(PERMISSION_DENIED)
2593        {
2594        }
2595        status_t getResult() const {
2596            return result;
2597        }
2598        virtual bool handler() {
2599            Mutex::Autolock _l(flinger->mStateLock);
2600            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2601
2602            bool useReadPixels = false;
2603            if (isCpuConsumer) {
2604                bool formatSupportedBytBitmap =
2605                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBA_8888) ||
2606                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBX_8888);
2607                if (formatSupportedBytBitmap == false) {
2608                    // the pixel format we have is not compatible with
2609                    // Bitmap.java, which is the likely client of this API,
2610                    // so we just revert to glReadPixels() in that case.
2611                    useReadPixels = true;
2612                }
2613                if (flinger->mGpuToCpuSupported == false) {
2614                    // When we know the GL->CPU path works, we can call
2615                    // captureScreenImplLocked() directly, instead of using the
2616                    // glReadPixels() workaround.
2617                    useReadPixels = true;
2618                }
2619            }
2620
2621            if (!useReadPixels) {
2622                result = flinger->captureScreenImplLocked(hw,
2623                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2624            } else {
2625                result = flinger->captureScreenImplCpuConsumerLocked(hw,
2626                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2627            }
2628            return true;
2629        }
2630    };
2631
2632    // make sure to process transactions before screenshots -- a transaction
2633    // might already be pending but scheduled for VSYNC; this guarantees we
2634    // will handle it before the screenshot. When VSYNC finally arrives
2635    // the scheduled transaction will be a no-op. If no transactions are
2636    // scheduled at this time, this will end-up being a no-op as well.
2637    mEventQueue.invalidateTransactionNow();
2638
2639    sp<MessageBase> msg = new MessageCaptureScreen(this,
2640            display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ,
2641            isCpuConsumer);
2642    status_t res = postMessageSync(msg);
2643    if (res == NO_ERROR) {
2644        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2645    }
2646    return res;
2647}
2648
2649
2650void SurfaceFlinger::renderScreenImplLocked(
2651        const sp<const DisplayDevice>& hw,
2652        uint32_t reqWidth, uint32_t reqHeight,
2653        uint32_t minLayerZ, uint32_t maxLayerZ,
2654        bool yswap)
2655{
2656    ATRACE_CALL();
2657
2658    // get screen geometry
2659    const uint32_t hw_w = hw->getWidth();
2660    const uint32_t hw_h = hw->getHeight();
2661
2662    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2663
2664    // make sure to clear all GL error flags
2665    while ( glGetError() != GL_NO_ERROR ) ;
2666
2667    // set-up our viewport
2668    glViewport(0, 0, reqWidth, reqHeight);
2669    glMatrixMode(GL_PROJECTION);
2670    glLoadIdentity();
2671    if (yswap)  glOrthof(0, hw_w, hw_h, 0, 0, 1);
2672    else        glOrthof(0, hw_w, 0, hw_h, 0, 1);
2673    glMatrixMode(GL_MODELVIEW);
2674    glLoadIdentity();
2675
2676    // redraw the screen entirely...
2677    glDisable(GL_SCISSOR_TEST);
2678    glClearColor(0,0,0,1);
2679    glClear(GL_COLOR_BUFFER_BIT);
2680    glDisable(GL_TEXTURE_EXTERNAL_OES);
2681    glDisable(GL_TEXTURE_2D);
2682
2683    const LayerVector& layers( mDrawingState.layersSortedByZ );
2684    const size_t count = layers.size();
2685    for (size_t i=0 ; i<count ; ++i) {
2686        const sp<Layer>& layer(layers[i]);
2687        const Layer::State& state(layer->drawingState());
2688        if (state.layerStack == hw->getLayerStack()) {
2689            if (state.z >= minLayerZ && state.z <= maxLayerZ) {
2690                if (layer->isVisible()) {
2691                    if (filtering) layer->setFiltering(true);
2692                    layer->draw(hw);
2693                    if (filtering) layer->setFiltering(false);
2694                }
2695            }
2696        }
2697    }
2698
2699    // compositionComplete is needed for older driver
2700    hw->compositionComplete();
2701}
2702
2703
2704status_t SurfaceFlinger::captureScreenImplLocked(
2705        const sp<const DisplayDevice>& hw,
2706        const sp<IGraphicBufferProducer>& producer,
2707        uint32_t reqWidth, uint32_t reqHeight,
2708        uint32_t minLayerZ, uint32_t maxLayerZ)
2709{
2710    ATRACE_CALL();
2711
2712    // get screen geometry
2713    const uint32_t hw_w = hw->getWidth();
2714    const uint32_t hw_h = hw->getHeight();
2715
2716    // if we have secure windows on this display, never allow the screen capture
2717    if (hw->getSecureLayerVisible()) {
2718        ALOGW("FB is protected: PERMISSION_DENIED");
2719        return PERMISSION_DENIED;
2720    }
2721
2722    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2723        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2724                reqWidth, reqHeight, hw_w, hw_h);
2725        return BAD_VALUE;
2726    }
2727
2728    reqWidth = (!reqWidth) ? hw_w : reqWidth;
2729    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2730
2731    // Create a surface to render into
2732    sp<Surface> surface = new Surface(producer);
2733    ANativeWindow* const window = surface.get();
2734
2735    // set the buffer size to what the user requested
2736    native_window_set_buffers_user_dimensions(window, reqWidth, reqHeight);
2737
2738    // and create the corresponding EGLSurface
2739    EGLSurface eglSurface = eglCreateWindowSurface(
2740            mEGLDisplay, mEGLConfig, window, NULL);
2741    if (eglSurface == EGL_NO_SURFACE) {
2742        ALOGE("captureScreenImplLocked: eglCreateWindowSurface() failed 0x%4x",
2743                eglGetError());
2744        return BAD_VALUE;
2745    }
2746
2747    if (!eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext)) {
2748        ALOGE("captureScreenImplLocked: eglMakeCurrent() failed 0x%4x",
2749                eglGetError());
2750        eglDestroySurface(mEGLDisplay, eglSurface);
2751        return BAD_VALUE;
2752    }
2753
2754    renderScreenImplLocked(hw, reqWidth, reqHeight, minLayerZ, maxLayerZ, false);
2755
2756    // and finishing things up...
2757    if (eglSwapBuffers(mEGLDisplay, eglSurface) != EGL_TRUE) {
2758        ALOGE("captureScreenImplLocked: eglSwapBuffers() failed 0x%4x",
2759                eglGetError());
2760        eglDestroySurface(mEGLDisplay, eglSurface);
2761        return BAD_VALUE;
2762    }
2763
2764    eglDestroySurface(mEGLDisplay, eglSurface);
2765
2766    return NO_ERROR;
2767}
2768
2769
2770status_t SurfaceFlinger::captureScreenImplCpuConsumerLocked(
2771        const sp<const DisplayDevice>& hw,
2772        const sp<IGraphicBufferProducer>& producer,
2773        uint32_t reqWidth, uint32_t reqHeight,
2774        uint32_t minLayerZ, uint32_t maxLayerZ)
2775{
2776    ATRACE_CALL();
2777
2778    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2779        return INVALID_OPERATION;
2780    }
2781
2782    // get screen geometry
2783    const uint32_t hw_w = hw->getWidth();
2784    const uint32_t hw_h = hw->getHeight();
2785
2786    // if we have secure windows on this display, never allow the screen capture
2787    if (hw->getSecureLayerVisible()) {
2788        ALOGW("FB is protected: PERMISSION_DENIED");
2789        return PERMISSION_DENIED;
2790    }
2791
2792    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2793        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2794                reqWidth, reqHeight, hw_w, hw_h);
2795        return BAD_VALUE;
2796    }
2797
2798    reqWidth  = (!reqWidth)  ? hw_w : reqWidth;
2799    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2800
2801    GLuint tname;
2802    glGenRenderbuffersOES(1, &tname);
2803    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2804    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, reqWidth, reqHeight);
2805
2806    // create a FBO
2807    GLuint name;
2808    glGenFramebuffersOES(1, &name);
2809    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2810    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2811            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2812
2813    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2814
2815    status_t result = NO_ERROR;
2816    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2817
2818        renderScreenImplLocked(hw, reqWidth, reqHeight, minLayerZ, maxLayerZ, true);
2819
2820        // Below we render the screenshot into the
2821        // CpuConsumer using glReadPixels from our FBO.
2822        // Some older drivers don't support the GL->CPU path so we
2823        // have to wrap it with a CPU->CPU path, which is what
2824        // glReadPixels essentially is.
2825
2826        sp<Surface> sur = new Surface(producer);
2827        ANativeWindow* window = sur.get();
2828
2829        if (native_window_api_connect(window, NATIVE_WINDOW_API_CPU) == NO_ERROR) {
2830            int err = 0;
2831            err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
2832            err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
2833            err |= native_window_set_usage(window,
2834                    GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
2835
2836            if (err == NO_ERROR) {
2837                ANativeWindowBuffer* buffer;
2838                if (native_window_dequeue_buffer_and_wait(window,  &buffer) == NO_ERROR) {
2839                    sp<GraphicBuffer> buf = static_cast<GraphicBuffer*>(buffer);
2840                    void* vaddr;
2841                    if (buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, &vaddr) == NO_ERROR) {
2842                        glReadPixels(0, 0, buffer->stride, reqHeight,
2843                                GL_RGBA, GL_UNSIGNED_BYTE, vaddr);
2844                        buf->unlock();
2845                    }
2846                    window->queueBuffer(window, buffer, -1);
2847                }
2848            }
2849            native_window_api_disconnect(window, NATIVE_WINDOW_API_CPU);
2850        }
2851
2852    } else {
2853        ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES while taking screenshot");
2854        result = INVALID_OPERATION;
2855    }
2856
2857    // back to main framebuffer
2858    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2859    glDeleteRenderbuffersOES(1, &tname);
2860    glDeleteFramebuffersOES(1, &name);
2861
2862    DisplayDevice::setViewportAndProjection(hw);
2863
2864    return result;
2865}
2866
2867// ---------------------------------------------------------------------------
2868
2869SurfaceFlinger::LayerVector::LayerVector() {
2870}
2871
2872SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2873    : SortedVector<sp<Layer> >(rhs) {
2874}
2875
2876int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2877    const void* rhs) const
2878{
2879    // sort layers per layer-stack, then by z-order and finally by sequence
2880    const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
2881    const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
2882
2883    uint32_t ls = l->currentState().layerStack;
2884    uint32_t rs = r->currentState().layerStack;
2885    if (ls != rs)
2886        return ls - rs;
2887
2888    uint32_t lz = l->currentState().z;
2889    uint32_t rz = r->currentState().z;
2890    if (lz != rz)
2891        return lz - rz;
2892
2893    return l->sequence - r->sequence;
2894}
2895
2896// ---------------------------------------------------------------------------
2897
2898SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2899    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2900}
2901
2902SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2903    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2904    viewport.makeInvalid();
2905    frame.makeInvalid();
2906}
2907
2908// ---------------------------------------------------------------------------
2909
2910}; // namespace android
2911